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R. Carretero-González,1 D. Khatri,2 Mason A. Porter,3 P. G. Kevrekidis,4 and C. Daraio2,*
1Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182-7720, USA

2Graduate Aeronautical Laboratories (GALCIT) and Department of Applied Physics, California Institute of Technology,
Pasadena, California 91125, USA

3Oxford Center for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, OX1 3LB, United Kingdom
4Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

(Received 12 August 2008; published 16 January 2009)

We provide a quantitative characterization of dissipative effects in one-dimensional granular crystals.

We use the propagation of highly nonlinear solitary waves as a diagnostic tool and develop optimization

schemes that allow one to compute the relevant exponents and prefactors of the dissipative terms in the

equations of motion. We thereby propose a quantitatively accurate extension of the Hertzian model that

encompasses dissipative effects via a discrete Laplacian of the velocities. Experiments and computations

with steel, brass, and polytetrafluoroethylene reveal a common dissipation exponent with a material-

dependent prefactor.
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Introduction.—Since the advent of the famous Fermi-
Pasta-Ulam model over 50 years ago, nonlinear oscillator
chains have received a remarkable amount of attention in a
wide range of physical settings [1]. Areas of intense theo-
retical and experimental interest over the past decade in-
clude (but are not limited to) DNA double-strand dynamics
in biophysics [2], coupled waveguide arrays in nonlinear
optics [3], breathing oscillations in micromechanical can-
tilever arrays [4], and Bose-Einstein condensation in opti-
cal lattices in atomic physics [5].

Within this general theme of interplay between nonline-
arity and discreteness, one of the key subjects has been the
study of 1D granular materials, which consist of chains of
interacting particles that start from point contact with each
other and deform elastically when compressed. In contrast
to classically studied disordered granular media, highly
packed granular lattices have negligible frictional and rota-
tional dynamics, in favor of axial stress propagation [6,7].
The highly nonlinear dynamic response of such ‘‘crystals’’
has been the subject of considerable attention [6,8–23].
Additionally, granular crystals can be created from numer-
ous material types and sizes, which makes their properties
extremely tunable [8–10]. This flexibility is valuable not
only for basic studies of the underlying physics but also in
potential applications such as shock [24] and energy ab-
sorbing layers [13,18,20,21], sound focusing devices (tun-
able acoustic lenses and delay lines), actuators [25,26],
sound absorption layers, and sound scramblers [11,12,23].

While the standard Hertzian force model has been used
extensively in most dynamical investigations and is now
textbook material [8,27], recent experimentally motivated
investigations have illustrated the challenging need to in-
clude dissipation effects [24,28–30]. Dissipative terms re-
lated to friction [31], plasticity [32], viscoelasticity [33],
and viscous drag [23,30] have been proposed to model

particle collisions [6,7,27]. However, none of these models
captures both qualitatively and quantitatively the decay
and wave shape of the highly nonlinear solitary waves
observed experimentally. It is this important experimental
and theoretical aspect of packed granular lattices that we
aim to tackle in this Letter through the combination of
modeling, numerical and physical experiments, and a de-
tailed comparison thereof. Based on the earlier proposi-
tions of Refs. [6,7,24,30], we illustrate the prevalent nature
of dissipation in the form of a discrete Laplacian in the
velocities with uniform exponent and a material-dependent
prefactor. The broad interest of our findings stems not only
from their general nature for granular crystals of different
materials but also from the significance of similar models
in other fields, such as 1D lattice turbulence [34].
Experimental setup.—We assembled a monodisperse

chain of N beads (here we report results for N ¼ 70 but
we performed experiments for up to N ¼ 188 with similar
results) of different materials (see Table I) with radius R ¼
2:38 mm in a horizontal setup [see Fig. 1(a)] arranged in a
four-garolite rod stand. (To ensure contact between the
particles, the guide was tilted at 4�.) To directly visualize
the waves, we embedded calibrated piezosensors (RC�
103 �s, Piezo Systems, Inc; see Fig. 1(b) of Ref. [11])

TABLE I. Material properties (mass m, elastic modulus E, and
Poisson ratio �) for stainless steel [35,36], PTFE [11,37,38], and
brass [39]. The last two columns present our best estimates,
together with their standard deviation, of the dissipation coef-
ficients (�;�).

Material m (g) E (GPa) � � �

Steel 0.45 193 0.30 1:81� 0:25 �5:58� 1:30
PTFE 0.123 1.46 0.46 1:68� 0:16 �1:56� 0:19
Brass 0.48 103 0.34 1:85� 0:13 �6:84� 0:66
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inside selected particles, as described in Refs. [10–13]. We
generated solitary waves by impacting the chain with a
striker (identical to the particles in the chain) launched
along a ramp. We calculated the impact velocities vimp (in

m=s) using a high-speed camera at the end of the ramp:
v1;2 ¼ 1:77, v3;4 ¼ 1:55, v5;6 ¼ 1:40, v7;8 ¼ 1:04, and

v9;10 ¼ 0:79.
Model.—We model a dissipative chain of N spherical

beads as a 1D lattice with Hertzian interactions [8]:

€y n ¼ Að�3=2
n � �3=2

nþ1Þ þ �sj _�n � _�nþ1j�; (1)

where s � sgnð _�n � _�nþ1Þ, A � E
ffiffiffiffiffiffi

2R
p

=½3mð1� �2Þ�,
n 2 f1; . . . ; Ng, yn is the deviation of the nth bead from
its equilibrium, �n � maxfyn�1 � yn; 0g for n 2
f2; . . . ; Ng, �1 � 0, �Nþ1 � maxfyN; 0g, E is the Young’s
(elastic) modulus of the beads, � is their Poisson ratio,m is
their mass, and R is their radius. The particle n ¼ 0 repre-
sents the striker. Dissipation is incorporated by using a
phenomenological force with prefactor � < 0, between
adjacent beads that depends on their relative velocities
(in particular, on the ‘‘discrete Laplacian’’ in the veloc-
ities), generalizing earlier models (with dissipation expo-
nent � ¼ 1 specifically) for dry granular matter [30].

In contrast to previous works that a priori assume that
� ¼ 1 (i.e., that model dissipation using a linear dashpot)
[30], we determine both � and � by directly comparing
experimental and numerical results. The general coeffi-
cient � is thus a phenomenological parameter derived
from the best fitting. We introduce the absolute value and
the sign parameter s into (1) to ensure that genuine dis-
sipation is guaranteed irrespective of the sign of the relative
velocities between consecutive beads. The units of �
would depend on the value of � and, accordingly, are
more properly investigated in dynamic models that in-
corporate dissipation based on detailed measurements of
restitutive losses that cannot currently be achieved experi-
mentally [6]. Importantly, the value we obtain for � differs
decidedly from the coefficients used in previous modeling
attempts [30] (see the discussion below).

Determining the dissipation coefficients.—We now de-
termine the ‘‘optimal’’ dissipation coefficients (�;�) from
the experimental data for different materials and different
configurations. The experimental data consist of the time
series of the force through each sensor. We optimize the

pair (�; �) by minimizing the following two differences
between numerics and each particular experiment:

Dð�;�Þ ¼ 1

N

X

N

n¼1

jFexpt
m ðnÞ � Fnum

m ðnÞj
�Fexpt
m

; (2)

�nð�;�Þ ¼ 1

T

Z tf

ti

jFexptðt; nÞ � Fnumðt;nÞj
�FexptðnÞ dt; (3)

where �Fexpt
m � ð1=NÞPN

n¼1 F
expt
m ðnÞ, �FexptðnÞ ¼

Rtf
ti F

exptðt; nÞdt, Fðt;nÞ is the time series data of the force

through the nth sensor [see Fig. 1(b)], and FmðnÞ ¼
maxtfFðt; nÞg is the maximum force recorded by the nth
sensor over the recording time span ½ti; tf ¼ ti þ T�, where
T is typically about 100 �s. The superscripts ‘‘expt’’ and
‘‘num’’ denote, respectively, the experimental and numeri-
cal data. The function Dð�;�Þ measures the ‘‘distance’’
between the numerics and the experiment using the max-
ima of the forces through all sensors of the experiment. The
function�nð�; �Þmeasures the difference between experi-
mental and numerical pulse shapes that go through the nth
sensor. In order to avoid biasing �nð�; �Þ with the differ-
ence in force magnitude [which is already taken into
account when optimizing Dð�; �Þ], we rescale the experi-
mental data so that the numerical and experimental max-
ima match before we compare wave forms. That is,

Fexptðt; nÞ ! Fexptðt; nÞFnum
m ðnÞ=Fexpt

m ðnÞ. Figures 2(a) and
2(b) depict, respectively, the differences Dð�;�Þ and
�nð�; �Þ in a particular (�; �) range for a steel chain
using a sensor placed towards the end of the chain. As
can be observed from these panels, the optimization of the
force maxima Fnum

m [Fig. 2(a)] and the force pulse shape
[Fig. 2(b)] are not sufficient on their own to determine the
dissipation parameters. However, it is meaningful (and
well defined) to optimize force maxima and pulse shape
together by taking the intersection between the minima of
each case (see the point at the intersection of the solid
curves and dashed curves). For experiment j (with impact
velocity vj), we average the parameter pair (�j; �j) over

four sensors located throughout the bead chain. Finally, we

average ð�;�Þ ¼ 1
Ne

PNe

j¼1ð�j; �jÞ over the Ne ¼ 10 differ-

ent experiments to obtain the optimal dissipation parame-
ters (�; �) and compute the standard deviation for the Ne

experiments.
We summarize our results, for three different set of

experiments—using steel, Teflon [polytetrafluoroethylene
(PTFE)], and brass beads—in the last two columns of
Table I. In order to validate the results of the above
optimization procedure a posteriori, we take the optimal
dissipation parameters for the steel bead chain and com-
pare the maximal forces obtained numerically with the
experiments in Fig. 2(c). In Fig. 2(c), we show two typical
examples (for impact velocities v3 and v8) and also plot the
curves incorporating the standard deviation measured in
our analysis. As can be clearly observed, all experimental
data points fall well within the predicted region. To further
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FIG. 1 (color online). (a) Schematic diagram of the experi-
mental setup. (b) Solitary wave decay in a chain composed of 70
steel particles impacted by a steel bead with vimp ¼ v1. The

(blue) solid curves correspond to the recordings for sensors
placed in particles 9, 16, 24, 31, 40, 50, 56, and 63.
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validate our results, we compared the dependence of
the pulse velocity v against the maximal force Fnum

m in
Fig. 2(d). This panel shows a typical example; we obtained
similar results (not shown here) for the other configura-
tions. The obtained exponent is extremely close to the
theoretical value of 1=6 (shown by the dashed line) [8].

In order to gain a deeper understanding of the role of the
dissipation exponent �, we depict in Fig. 3 the pulse shape
for two sensors in the steel chain (one near the beginning of

the chain and the other one near the end). We depict the
experimental pulse (smoothed by nearest-neighbor averag-
ing) with the (red) solid curve. The thin (blue) curves,
depict three numerical runs using three different pairs
(�; �) along the minimum curve [shown by a solid curve
in Fig. 2(a)].
It is interesting to note that for all materials tested,

higher impact velocities correspond to a faster initial decay
as compared to the latter part of the chain (probably related
to the initiation of plasticity at the contact). Also, by
comparing the wave decay in chains composed of steel
and Teflon (or brass) beads, a faster and more pronounced
energy loss is evident for the softer beads. To understand
this dissipation physically, one should explore a more de-
tailed analysis of the contact plasticity, inelastic restitution,
and hydrodynamic drag.
Note that the optimal dissipation exponent � for the

three material types considered is consonant with a value
close to � ¼ 1:75. This indicates the prevalence of the
phenomenological damping introduced in Eq. (1), which is
one of the principal findings of this Letter. It is important to
point out the disparity of this optimal exponent from earlier
investigations, which focused on the (linear dashpot) case
of � ¼ 1 [24,30,34]. On the other hand, the dissipation
prefactor � naturally does depend on the material. For steel
and brass, which have similar material properties, � is also
similar (steel has � ¼ �5:58 and brass has � ¼ �6:84).
However, for Teflon, as can be anticipated from the much
lower elastic modulus E, the prefactor � is significantly
smaller (� ¼ �1:56).
We show typical examples of the results for Teflon (left

column) and brass (right column) in Fig. 4. The top panels
depict the maximal force through the chain using the
optimal dissipation parameters. Note in the pulse shape
results (bottom panels) for Teflon and brass that low dis-
sipation exponents � tend to overestimate the size of the
secondary pulse hump. Another relevant observation, in
connection with its much smaller dissipation prefactor �, is
that chains of Teflon beads may offer the first unambiguous
observation of the secondary pulses [see Fig. 4(c)] argued
in Ref. [30] to arise for weaker dissipation.
Conclusions.—In this Letter, we have offered for the first

time a quantitative and systematic modeling attempt at the
role of dissipation in granular crystals. Through detailed
comparison of numerical simulations and experiments in a
variety of materials (steel, Teflon, and brass), we have
demonstrated a generic functional form of the dissipation,
modeled by a phenomenological term based on the second
difference of the velocities between adjacent beads (i.e., a
discrete Laplacian) that is raised to a common exponent.
This allowed us to augment the standard dynamical model
based on Hertzian forces to encompass this dissipation
effect in (optimal) quantitative agreement with our experi-
ments. We found that the dissipation prefactor is material
dependent and that the considerably weaker prefactor of
Teflon (in comparison to brass and steel) allows one to
observe unambiguously (and for the first time) secondary
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FIG. 3 (color online). Force versus time for the steel chain with
vimp ¼ v2 through sensors at positions (a) n ¼ 16 and

(b) n ¼ 56. The (red) thick solid curve depicts the (smoothed;
see text) experimental series, and the thin (blue) dashed curves,
dotted curves, and solid curves, respectively, show the numerics
with ð�;�Þ ¼ ð1;�5:5Þ, (1:4;�6), and (1:81;�5:58). The last
case corresponds to the best fit (see text) for the dissipation
parameters for the chains of steel beads.
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FIG. 2 (color online). Optimization of the dissipation coeffi-
cients (�;�) for a steel chain. (a) Difference Dð�; �Þ, as defined
in Eq. (2), between the force maxima recorded in the experiment
and our model. (b) Difference �nð�;�Þ, as defined in Eq. (3), in
wave forms between the experiment and our model for sensor
n ¼ 56. The solid curves and dashed curves correspond to the
minima obtained from (a) and (b), respectively. (c) Maximum
force Fnum

m ðnÞ for experiments with vimp ¼ v3 (top curves) and

vimp ¼ v8 (bottom curves, displaced by 5 units for clarity). The

(red) circles correspond to the experiment, and the (green) thick
curves give the numerical best fit with ð�;�Þ ¼ ð1:81�
0:25;�5:58� 1:30Þ. The dashed curves correspond to the ex-
treme cases using the standard deviation found in the optimal
parameters. (d) Velocity of traveling front versus the maximum
force (in a log-log plot). The solid curve represents the best
linear fit, which gives v / F0:17

m ; we also show a dashed line with
slope 1=6.
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pulses such as the ones proposed in Ref. [30]. Our study
also provides a starting point for future quantitative inves-
tigations of this newly proposed model. For example, it
would be worth examining the critical prefactor below
which a secondary wave should be expected to emerge,
the interplay of the role of dissipation and plasticity (and a
quantitative incorporation of the latter) in the dynamics,
and extensions of the present considerations to higher-
dimensional settings.
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FIG. 4 (color online). Results for the Teflon (left column) and
brass (right column) experiments. The top panels depict the same
information as Fig. 2(c) for experiments with impact velocities
(a) v3 (top curves) and v8 (bottom curves, displaced by 0.3 units
for clarity) and (b) velocities v3 (top curves) and v6

(bottom curves, displaced by 7 units for clarity). The best fit
for the dissipation parameters for Teflon and brass are, respec-
tively, ð�;�Þ ¼ ð1:68� 0:16;�1:56� 0:19Þ and ð�;�Þ ¼
ð1:85� 0:13;�6:84� 0:66Þ. The bottom panels show the
same information as in Fig. 3. In (c), we depict the force versus
time through the sensor at n ¼ 38 with ð�;�Þ ¼ ð1;�1:56Þ,
(1:4;�1:56), and (1:68;�1:56). In (d), we show the same
information for the sensor at n ¼ 14 with ð�;�Þ ¼ ð1;�5:5Þ,
(1:4;�6), and (1:85;�6:84).
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