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Nanoptera in Weakly Nonlinear Woodpile Chains and Diatomic Granular Chains\ast 

Guo Deng\dagger , Christopher J. Lustri\dagger , and Mason A. Porter\ddagger 

Abstract. We study ``nanoptera,"" which are nonlocalized solitary waves with exponentially small but nonde-
caying oscillations, in two singularly perturbed Hertzian chains with precompression. These two
systems are woodpile chains (which we model as systems of Hertzian particles and springs) and
diatomic Hertzian chains with alternating masses. We demonstrate that nanoptera arise from the
Stokes phenomenon and appear as special curves (called Stokes curves) are crossed in the complex
plane. We use techniques from exponential asymptotics to obtain approximations of the oscillation
amplitudes. Our analysis demonstrates that traveling-wave solutions in a singularly perturbed wood-
pile chain have a single Stokes curve, which generates oscillations behind the wave front. Comparing
these asymptotic predictions with numerical simulations reveals that our asymptotic approximation
accurately describes the nondecaying oscillatory behavior in a woodpile chain. We perform a similar
analysis of a diatomic Hertzian chain, and we show that each nanopteron solution has two distinct
exponentially small oscillatory contributions. We demonstrate that there exists a set of mass ratios
for which these two contributions cancel to produce localized solitary waves. This result builds on
prior experimental and numerical observations that there exist mass ratios that support localized
solitary waves in diatomic Hertzian chains without precompression. Comparing our asymptotic and
numerical results for a diatomic Hertzian chain with precompression reveals that our exponential
asymptotic approach accurately predicts the oscillation amplitude for a wide range of system param-
eters, but it fails to identify several values of the mass ratio that correspond to localized solitary-wave
solutions.
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1. Introduction.

1.1. Particle chains. The behavior of a particle chain under compression depends on the
character of the interactions between particles. A key example is the Hertzian interaction [37],
which describes the compression between adjacent frictionless spherical particles due to phys-
ical contact between neighboring particles. Hertzian interactions were first used to describe
static chain configurations. Nesterenko [66] demonstrated that it is also reasonable to model
dynamical processes, such as wave propagation, in particle chains using Hertzian interactions
between adjacent particles if certain constraints on the particle contact areas, the stresses at
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NANOPTERA IN WOODPILE CHAINS AND DIATOMIC GRANULAR CHAINS 2413

the contact points, and the characteristic time scales of the dynamics are satisfied. These
constraints were validated in experimental studies [19, 53]. Chains of particles with Hertzian
interactions, which are typically called ``Hertzian chains,"" have been the subject of numerous
investigations in the last few decades [18, 71, 83] because of their rich dynamics and their
potential uses in practical engineering applications [79].

A general equation that governs the motion of particles in a chain is the following system
of differential--difference equations:

(1.1) m(n)\"x(n, t) = \phi \prime (x(n+ 1, t) - x(n, t)) - \phi \prime (x(n, t) - x(n - 1, t)) ,

where n \in \BbbZ , the quantity m(n) is the mass of the nth particle, x(n, t) is the position of the
nth particle at time t, a dot denotes differentiation with respect to time, a prime denotes
differentiation with respect to space, and the interaction potential between adjacent particles
is

\phi (r) =

\Biggl\{ 
c(\delta 0  - r)\alpha +1 , r \leq \delta 0 ,

0 , r > \delta 0 ,
c = constant ,(1.2)

where \alpha > 1 and the ``precompression parameter"" \delta 0 is the equilibrium overlap of adjacent
particles that arise from the precompression that is induced by an external force. In Figure 1,
we illustrate a particle chain with precompression. The power-law interaction potential (1.2)
is 0 when particles are not in contact, and it cannot take negative values. For algebraic
convenience, we set c = 1/(\alpha + 1) in all of our examples. The exponent \alpha in the power-law
interaction potential (1.2) depends on the contact geometry between adjacent particles [88].
As was illustrated in [28, 90], \alpha is tunable experimentally. The choice of \alpha = 3/2 gives the
widely studied Hertzian interaction potential, but it is also relevant to consider other values
of the exponent \alpha [18]. For example, Nesterenko [69] used a model with \alpha = 3 to study
transverse vibrations of unstressed linear elastic fibers. Sen and Manciu [85] and \'Avalos and
Sen [3] investigated chains with power-law interaction potentials for several different values
of \alpha . The transition from interactions with \alpha = 2 to Hertzian interactions was investigated
in [32].

The existence of solitary waves in Hertzian chains with precompression was first reported
in [66]. It was subsequently shown that particle chains with other interaction exponents
\alpha > 1 also support the propagation of solitary waves [67, 68]. Friesecke and Wattis [30]
showed that solitary-wave solutions can occur in nonlinear lattices with a broad class of
interaction potentials that are known as ``superquadratic potentials,""1 which includes power-
law interactions with \alpha > 1. See [18, 71, 83] for reviews of the properties of solitary waves in
granular chains. Particle chains with \alpha < 1 do not support solitary waves; see [35, 70, 99] for
discussions of such chains.

Since the first prediction of solitary waves in Hertzian chains [66], there have been many
theoretical, numerical, and experimental studies of the properties of solitary waves in Hertzian
chains [18, 71, 72, 79, 83]. These studies have concerned a wide variety of topics, including the

1An interaction potential \phi (r) is ``superquadratic"" when \phi (r)/r2 strictly increases with | r| for all r \in \Lambda for
either \Lambda = ( - \infty , 0) or \Lambda = (0,\infty ).
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2R− δ0

F

. . . . . .

F

Figure 1. Schematic illustration of a particle chain with precompression. The chain consists of N identical,
aligned spheres with radius R. The interaction potential between adjacent spheres is governed by (1.2). Applying
a compressive force F at both ends of the chain compresses each sphere at the contact point by a uniform distance
\delta 0.

generation [19, 21, 23, 39, 53], propagation [19, 21, 23, 39, 53], interaction [3, 4, 5, 22, 47, 58],
and long-time dynamics [4, 5, 81, 82, 84] of solitary waves in monoatomic Hertzian chains, in
which every particle is the same.

The system (1.1)--(1.2) that describes the dynamics of a particle chain is both nonlinear and
nonintegrable, so typically one cannot study its solutions using exact, fully analytical methods.
However, under the assumption of small deformations, such that | x(n - 1, t) - x(n, t)| /\delta 0 \ll 1,
one can expand the right-hand side of (1.1) as a Taylor series in the normalized deformation
size [66]. Neglecting terms of order \scrO ((| x(n  - 1, t)  - x(n, t)| /\delta 0)4) produces the frequently
studied Fermi--Pasta--Ulam--Tsingou (FPUT) chain. In the long-wavelength limit, in which
the characteristic spatial size of a solution is much larger than the lattice spacing, one can
approximate the lattice system (1.1)--(1.2) by a continuous system. In the limit of both small
deformations and long wavelengths in comparison to particle size, the monoatomic Hertzian
system with precompression reduces to the Korteweg--de Vries (KdV) equation [71]. In this
dual limit, one can approximate the solitary-wave behavior in a Hertzian chain as a soliton
solution of the KdV equation [52]. Building on this idea, the interaction of solitary waves in a
Hertzian chain in the long-wavelength limit was described in [87] using a two-soliton solution
of the KdV equation.

A remarkable feature of Hertzian chains (and higher-dimensional generalizations of them)
is their tunability. It is possible to produce a wide range of dynamical behaviors through simple
modifications of a homogeneous Hertzian system, such as by incorporating different types of
particle heterogeneities. These modifications can produce behavior that is very different from
that of homogeneous Hertzian chains. For example, researchers have explored the behavior of
Hertzian chains with impurities [25, 64, 86], disordered particle arrangements [34, 50, 59, 60,
62, 66], quasiperiodicity [63], and segments with different materials (i.e., so-called ``compound
chains"") [20, 73, 94, 95]. It has been demonstrated that impurities can cause solitary waves
to scatter [25, 64, 86]. Transport and localization of energy in Hertzian systems with disorder
and quasiperiodicity were studied in [50, 62, 63]. In Hertzian chains with randomly arranged
masses, solitary waves can delocalize, such that the energy that is carried by a solitary wave
spreads among many particles in a chain [34, 59, 60]. The scattering of solitary waves at an
interface of a compound Hertzian system was studied in [73, 94]. Other phenomena that have
been studied in numerical and experimental investigations of heterogeneous Hertzian chains
include energy trapping [20, 95], shock disintegration [20], and the generation of secondary
solitary waves [94].D
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.

.

.

Identical rods

(a) A physical woodpile system

. . . . . .

: Particle of mass m1

: Particle of mass m2

: Spring with
: spring constant k

(b) A woodpile-chain model

. . . . . .

: Particle of mass m1

: Particle of mass m2

(c) A diatomic chain of particles

Figure 2. The chains of particles that we examine in the present study. The schematic illustration in (a)
shows the physical configuration of orthogonal rods that is known as a ``woodpile chain."" The schematic in
(b) shows an idealized mathematical model of the physical configuration in (a). This model consists of heavy
spherical particles in physical contact with interactions that are governed by (1.2) and light spherical particles
(which are sometimes called ``resonators"") that are attached to each heavy particle by a spring. The schematic
illustration in (c) shows a diatomic chain of alternating heavy and light spheres with Hertzian interactions. We
analyze the models in (b) and (c).

It is also interesting to consider other types of heterogeneous chains, including (1) particle--
rod systems that model so-called ``woodpile chains"" [18, 46, 49, 51, 54, 55, 97, 98] and (2)
diatomic chains [11, 18, 36, 41, 44, 45, 48, 65, 76, 77, 78, 80, 92]. It is feasible to study both
woodpile chains and diatomic chains in laboratory experiments.

A woodpile chain consists of orthogonally stacked slender rigid cylinders with mass m1

(see Figure 2(a)). The interaction force along the direction of the stack is determined by (1.2),
and one can model the elastic deformation along the direction that is perpendicular to the
stack direction using internal ``resonators,"" where the mass and elastic constant of a resonator
depend on its material and shape. When considering a stack of identical cylinders, each
resonator has the same mass m2 and elastic constant k. We model such a woodpile chain as
a monoatomic granular chain in which each particle is connected to an external particle by a
rod, which we treat as a linear spring. Each particle in the chain has mass m1, each external
particle has massm2, and each linear spring has spring constant k. We illustrate this woodpile-
chain model in Figure 2(b). For the rest of the present study, we use the term ``woodpile
chain"" to refer to this idealized system. Much of the existing work on woodpile chains has
concentrated on their linear elastic responses [46, 51, 97]. Some recent work examined the
behavior of traveling waves in woodpile chains with no precompression [49, 98] and hence in a
strongly nonlinear regime. Other studies have investigated the existence of discrete breathers
in woodpile chains both without precompression [55] and with precompression [54].

A diatomic chain consists of particles with some characteristic, such as particle mass, that
alternates in adjacent particles. We consider chains (see Figure 2(c)) in which particles with
an even index have massm1 and particles with an odd index have massm2. Diatomic Hertzian
chains have rich dynamics [18]. They can have both discrete-breather solutions [11, 92] and
stationary shock waves [65]. There have also been studies of the propagation and scattering
of nonlinear waves in both ordered and disordered diatomic Hertzian chains [36, 76, 77, 78]D
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2416 GUO DENG, CHRISTOPHER J. LUSTRI, AND MASON A. PORTER

x = ct

(a) Solitary wave

x = ct

(b) One-sided nanopteron

x = ct

(c) Two-sided nanopteron

Figure 3. Comparison of the profiles of (a) a standard solitary wave, (b) a one-sided nanopteron, and (c) a
two-sided nanopteron. The depicted waves propagate at speeds of c0, c1, and c2, respectively. The solitary wave
is localized spatially, whereas the nanoptera have nondecaying oscillatory tails on (b) one side or (c) both sides
of the wave front. The waves in (a) and (c) propagate without decaying, but the wave in (b) cannot propagate
indefinitely. In (b), the nanopteron decays very slowly because the one-sided radiation draws energy from the
wave front. Additionally, because this decay occurs over a long time scale, the one-sided nanopteron in (b) is
said to be ``metastable.""

and of chaotic dynamics in diatomic Hertzian chains that are damped and driven [41].

1.2. Nanoptera. Typically, traveling-wave solutions in woodpile and diatomic Hertzian
systems are not truly localized [44, 49, 98]; they also include a small nonlocalized oscillatory
tail and thus take the form of a nanopteron [12]. A nanopteron is the superposition of a
central solitary wave and a persistent oscillation in the ``far field"" (which refers to the region
in which the distance from the central solitary wave tends to infinity) on one side or both
sides of the central wave.2 These oscillations typically have an exponentially small amplitude
with respect to a perturbation parameter. (In the present study, this parameter is the ratio
between the masses of the two types of particles in a chain.) We show examples of nanoptera
in Figure 3. A genuine solitary wave is exponentially localized, but a nanopteron is localized
only up to algebraic orders in the small parameter.

In uncompressed diatomic Hertzian chains, nondecaying oscillations are absent at certain
values of the system parameters [44]. These sets of parameters arise from the satisfaction
of an ``antiresonance condition."" When such a condition is satisfied, nanoptera in uncom-
pressed diatomic Hertzian chains become solitary waves that propagate without attenuation.
Other studies that have examined antiresonance conditions in diatomic Hertzian chains in-
clude [48, 80]. Hertzian chains can also have nanopteron solutions that travel with particularly
strong dispersion and attenuation. Such behavior occurs if a chain satisfies a ``resonance con-
dition"" [45, 48, 80], which one obtains in a similar fashion as an antiresonance condition.
The study of nanopteron solutions in one-dimensional Hertzian chains [44] was extended to
two-dimensional Hertzian systems by Manjunath, Awasthi, and Geubelle [61], who obtained
antiresonance conditions for these systems and examined the properties of solitary-wave so-
lutions when these conditions are satisfied. Antiresonance conditions were also identified for
uncompressed woodpile chains by Xu, Kevrekidis, and Stefanov [98].

2Several studies have used the term ``nanoptera"" to refer only to the small oscillations in the tails. We do
not follow this convention; instead, we use ``nanopteron"" to refer to a solution that includes both a central
wave and additional small oscillations.
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Nanoptera have been studied in many other particle chains, such as diatomic Toda chains
[57, 74, 91, 93], diatomic FPUT chains [26, 40, 56, 93], and chains with an on-site non-
linear potential in which each particle is linearly coupled to its neighbors [43]. The exis-
tence of nanopteron solutions in a diatomic FPUT chain was proven rigorously in [26, 40],
and nanoptera in periodic Toda chains were studied using a multiple-scale approach in [93].
Recently, Faver and Hupkes [27] studied diatomic FPUT chains using numerical continuation.
They explored the relationship between nanopteron solutions in chains in which one mass is
much larger than the other (i.e., in the so-called ``small-mass-ratio regime"") and traveling-wave
solutions in chains with a mass ratio that is close to 1.

Antiresonance conditions, at which the small oscillations disappear entirely and a
nanopteron becomes a genuine solitary wave, have been identified in diatomic Toda chains [57,
91, 93], diatomic FPUT chains [56], woodpile chains without precompression [98], and a dis-
crete nonlinear Schr\"odinger equation [1]. In these examples, the antiresonance conditions are
satisfied at values of system parameters for which two sets of oscillations interfere destructively.

An exponential asymptotic method was applied recently by Lustri [56] and Lustri and
Porter [57] to study exponentially small oscillations in diatomic Toda and FPUT chains. They
showed that the tailing oscillations in these diatomic systems are examples of the ``Stokes phe-
nomenon,"" which refers to behavior that is switched on when special curves (called ``Stokes
curves"") are crossed in the complex plane. They demonstrated that traveling-wave solutions
in these diatomic chains possess two Stokes curves, which generate two distinct oscillations
with the same amplitude but different phases. For particular values of the mass ratio, the
oscillations are precisely out of phase. The oscillations thus cancel, and the solution is a
localized solitary wave. Lustri [56] and Lustri and Porter [57] also derived asymptotic an-
tiresonance conditions for the mass ratios in these systems. In the present study, we use
exponential asymptotic methods to examine nanoptera in precompressed woodpile chains and
precompressed diatomic Hertzian chains. The precompression in these systems forces particles
to remain in contact as a nanopteron propagates along a chain.

As we illustrated in Figure 3, nanoptera can have oscillations on either one side or
both sides of a central traveling wave. The existence of symmetric nondecaying two-sided
nanopteron solutions has been proven for a fifth-order KdV equation [42]. Subsequently, sym-
metric nanopteron solutions of this fifth-order KdV equation were constructed numerically
using perturbation series by Boyd [13], who then showed that his numerical approach cannot
be used to compute one-sided nanopteron solutions in that system. It was proven in [6] that
one-sided nanopteron solutions of the fifth-order KdV equation cannot propagate indefinitely
without changing form. The one-sided oscillation draws energy from the central wave, which
causes the amplitude of the central core to decay. The eventual decay of nanopteron solutions
of the fifth-order KdV equation is a result of energy conservation, and one can similarly argue
against the existence of one-sided nanoptera in any energy-conserving system. The instabil-
ity of one-sided nanopteron solutions in the fifth-order KdV equation was discussed further
in [33].

Giardetti et al. [31] simulated one-sided nanoptera in a diatomic FPUT model with small
mass ratios for a long enough time to obtain a solution that appeared to be a stable traveling
wave. In their simulations, both the central solitary wave and the oscillatory tail traveled
without any apparent decay. However, the energy of the system that they studied is conserved.D
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Consequently, it is impossible for both the central core and the one-sided oscillation to have a
constant amplitude indefinitely because the one-sided oscillation constantly draws energy from
the central core [31, 44, 93]. Therefore, it was conjectured in [31] that the decay of one-sided
nanoptera in diatomic FPUT chains occurs on a time scale that is exponentially large in the
limit that the mass-ratio parameter tends to 0. Solutions that decay on exponentially slow
time scales are sometimes known as ``metastable"" solutions (they are also sometimes called
``quasistable"" solutions), which describe asymptotic solutions that appear to be stable longer
than any inverse power of a small parameter before eventually decaying. In experimental
settings, nanoptera are typically generated by a pulse moving through an undisturbed chain.
This produces one-sided nanoptera, with no oscillations in the undisturbed region ahead of the
pulse. To the best of our knowledge, there do not currently exist experimental realizations
of two-sided nanoptera. The nanoptera that we consider are all one-sided and therefore
metastable; however, as we will note at the end of section 3.3, it is straightforward to extend
our analysis to the stable case of two-sided nanoptera, which is primarily of theoretical interest
thus far.

In the present study, we compute the behavior of nanopteron solutions in precompressed
woodpile and diatomic Hertzian chains in the asymptotic limit m2/m1 \rightarrow 0. In this limit, both
of these chains are singularly perturbed around a monoatomic Hertzian chain. Jayaprakash,
Starosvetsky, and Vakakis [44] investigated this limit for uncompressed diatomic Hertzian
chains, but existing studies of woodpile chains have not focused on the small-mass-ratio regime.

In the present paper, we apply an exponential asymptotic method that was developed
in [17, 75] and was used in [56, 57] to study traveling waves in diatomic Toda and FPUT
chains with small mass ratios. In a typical asymptotic power-series analysis, one expands a
solution as an algebraic series in some small parameter. One then computes the terms in
the series using a recursion relation that one obtains by asymptotic matching. This process
can never capture exponentially small behavior, which is smaller than any of the algebraic
series terms in the asymptotic limit. By contrast, the exponential asymptotic method that we
use in the present paper is capable of describing asymptotic behavior on this exponentially
small scale. Additionally, it only requires the direct computation of the leading-order series
behavior. We describe this exponential asymptotic approach in detail in section 2.

1.3. Outline of the paper. We first investigate traveling-wave solutions in a woodpile
chain with precompression in the limit that the wavelength of the central traveling wave is
large in comparison to the particle size; this is a weakly nonlinear regime. We show that the
traveling waves in this system are nanoptera and that the nondecaying exponentially small
oscillations behind the wave front arise from the Stokes phenomenon. Using an exponential
asymptotic approach, we obtain simple asymptotic expressions for the exponentially small,
constant-amplitude waves in the wake of (i.e., in the spatial region behind) the leading-order
solitary wave. We demonstrate that the solution has a single oscillatory contribution in the
wake of the leading wave and thus can never be canceled out. Consequently, the woodpile
chains that we examine do not have an antiresonance condition. This contrasts with the
results of Xu, Kevrekidis, and Stefanov [98], who identified antiresonance conditions for a
woodpile system with no precompression.

We then study traveling waves in a diatomic Hertzian chain using the same exponentialD
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asymptotic approach. The key difference between diatomic Hertzian chains and woodpile
chains is that traveling waves in diatomic Hertzian chains have two Stokes curves; this yields
solutions with two oscillatory contributions. For certain mass ratios, the two oscillatory con-
tributions cancel precisely and the traveling-wave solution becomes a genuine localized solitary
wave.

For both woodpile and diatomic Hertzian chains, we use the long-wavelength approxima-
tion from [71] to describe the leading-order solitary-wave behavior (as in [56]). This differs
from a diatomic Toda chain [57], for which there exists an analytical expression for the leading-
order wave behavior. Our analysis of woodpile and diatomic Hertzian chains has two distinct
small parameters, which are associated with the small mass ratio and the large traveling-wave
length scale.

Our paper proceeds as follows. In section 2, we discuss the exponential asymptotic method
that we employ in our analysis. In sections 3.1--3.3, we use this exponential asymptotic method
to obtain an asymptotic approximation of nanopteron solutions in a singularly perturbed
woodpile chain. In section 3.4, we compare the results of this approximation with numerical
computations. We obtain strong agreement between the asymptotic and numerical results.
In sections 4.1--4.3, we perform a similar exponential asymptotic analysis on a singularly
perturbed diatomic Hertzian chain. In section 4.4, we compare our asymptotic and numerical
results for the diatomic Hertzian chain. From this comparison, we see that the employed
exponential asymptotic method is useful for approximating the solution behavior for a wide
range of mass ratios. However, it fails to detect some important features that arise from the
interference between oscillatory contributions. In section 5, we summarize and further discuss
our results.

2. Exponential asymptotics. We aim to determine the asymptotic behavior of the expo-
nentially small oscillations in the wake of leading-order solitary waves in singularly perturbed
variants of a Hertzian chain. We use \eta to denote the associated small parameter, which is
related to mass ratio and satisfies \eta 2 = m2/m1. It is impossible to determine the form of these
oscillations using only classical asymptotic power series because the oscillation amplitude is
exponentially small in the asymptotic limit \eta \rightarrow 0. In particular, the amplitude is smaller
than any algebraic power of \eta . Therefore, we use an exponential asymptotic approach to
study the exponentially small oscillations.

Consider a singularly perturbed differential equation of the form

(2.1) F (x, g(x), g\prime (x), g\prime \prime (x), . . . ; \eta ) = 0 ,

where \eta is a small parameter. To find an asymptotic solution of (2.1), we typically expand
a solution about some leading-order approximation as a power series in the perturbation
parameter \eta . Once we have obtained this leading-order solution, we analytically continue it
into the complex plane. Typically, this solution is singular at some set of points, which are the
end points of Stokes curves [89]. Stokes curves play an important role in the present study:
as a Stokes curve is crossed, the amplitude of the exponentially small contribution undergoes
a smooth but rapid change in value. In the present work, we require the exponentially small
contributions to vanish on one side of the Stokes curve; that is, they ``switch on"" as the Stokes
curves are crossed.D
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2420 GUO DENG, CHRISTOPHER J. LUSTRI, AND MASON A. PORTER

In general, an asymptotic power series of the solution of a singularly perturbed system is
divergent [24]. Nevertheless, one can truncate a divergent asymptotic series to approximate
the solution [16]. If one chooses the truncation point to minimize the difference between the
approximation and the exact solution, the approximation error is typically exponentially small
in the asymptotic limit [15]. This is called ``optimal truncation,"" and we use N\mathrm{o}\mathrm{p}\mathrm{t} to denote
the number of terms in an optimally truncated series. We express the solution of a singularly
perturbed system as the sum of an optimally truncated power series and an exponentially
small contribution. Substituting this sum into (2.1) produces an equation that describes the
behavior of the exponentially small contribution.

Early works that used this idea include [7, 8], in which Berry analyzed the Stokes phenome-
non in several important special functions. The analysis in [8] demonstrated that the switching
behavior depends predictably on the manner in which the asymptotic power series diverges.
Subsequent work established techniques known as ``hyperasymptotics"" to further reduce the
exponentially small error that is generated by truncating asymptotic power series [10]. See [9]
for a summary and discussion of the results in [8, 10].

In the present study, we apply an exponential asymptotic method that was developed
in [17, 75]. We express the solution g of the governing equation as an asymptotic power series

(2.2) g \sim 
\infty \sum 
j=0

\eta rjgj as \eta \rightarrow 0 ,

where r is the number of times that one needs to differentiate gj - 1 to obtain gj .
We first substitute the series (2.2) into the governing equations (2.1), and we then asymp-

totically match terms in the subsequent expression to obtain a recursion relation for gj . In
a singularly perturbed problem, obtaining gj using the recursion relation typically requires
differentiating earlier terms in the series. If the series terms have singular points, this repeated
differentiation ensures that the series terms diverge in a predictable fashion that is called a
``factorial-over-power divergence"" [24]. As j becomes large, behavior of this form dominates
the series terms.

To capture the factorial-over-power divergence, we write an ansatz for the behavior of
gj in the limit j \rightarrow \infty . This yields the so-called ``late-order terms"" of an asymptotic series.
As j \rightarrow \infty , factorial-over-power divergent behavior dominates the series terms. Motivated
by this pattern, Chapman, King, and Adams [17] proposed applying a late-order ansatz to
approximate the form of the late-order terms; this approach is helpful even when computing
earlier terms in a series is challenging or intractable. This ansatz is a sum of terms of the
form

(2.3) gj \sim 
G\Gamma (rj + \gamma )

\chi rj+\gamma 
as j \rightarrow \infty ,

where the parameter \gamma is constant and the functions G and \chi are independent of j. The
function \chi is known as the ``singulant"" and is equal to 0 at one or more singularities of the
leading-order solution g0. This ensures that the late-order ansatz for gj is singular at the
same location(s) as the leading order, with a singularity strength that grows as j increases.
Substituting (2.3) into the differential equation (2.1) and matching orders of j allows us toD
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determine the functional forms of \chi and G. We determine \gamma by requiring the late-order
behavior to be consistent with the local behavior of the leading order in the neighborhood of
singular points.

We optimally truncate the power series (2.2) using the late-order ansatz (2.3). Optimal
truncation points typically occur after an asymptotically large number of terms, so we apply
the late-order ansatz (2.3) to obtain a simplified expression using the heuristic that was
described in [15]. This heuristic requires truncating the series after the value of N\mathrm{o}\mathrm{p}\mathrm{t} for
which the term \eta N\mathrm{o}\mathrm{p}\mathrm{t}gN\mathrm{o}\mathrm{p}\mathrm{t} has the smallest magnitude.

We write the solution of (2.1) as the sum of an optimally truncated series and an expo-
nentially small error term:

(2.4) g =

N\mathrm{o}\mathrm{p}\mathrm{t} - 1\sum 
j=0

\eta rjgj + g\mathrm{e}\mathrm{x}\mathrm{p} ,

where g\mathrm{e}\mathrm{x}\mathrm{p} denotes the exponentially small error term and N\mathrm{o}\mathrm{p}\mathrm{t} is the optimal truncation
point that we calculate using the late-order ansatz (2.3).

Substituting the truncated series expression (2.4) into the differential equation (2.1) pro-
duces an equation for the exponentially small remainder term [75]. Away from Stokes curves,
one can determine this remainder using a straightforward application of the WKB method [38].
In the neighborhood of the Stokes curves, we apply an exponential ansatz for the exponentially
small term g\mathrm{e}\mathrm{x}\mathrm{p} and write

(2.5) g\mathrm{e}\mathrm{x}\mathrm{p} \sim \scrS Ge - \chi /\eta as \eta \rightarrow 0 ,

where \scrS is a function that is known as the ``Stokes multiplier."" The Stokes multiplier is
approximately constant except in the neighborhood of Stokes curves, where it varies rapidly
in a neighborhood of width \scrO (

\surd 
\eta ) as \eta \rightarrow 0. This behavior is known as ``Stokes switching.""

The locations of Stokes curves are determined completely by the form of the singulant \chi . As
was shown in [10], Stokes curves occur only in locations where \chi is real and positive. We
use exponential asymptotics to directly calculate the exponentially small contributions to the
asymptotic behavior of solutions that appear as the Stokes curves are crossed. One cannot
express these contributions using classical asymptotic power series.

It is often the case that this exponential asymptotic approach requires the explicit cal-
culation of only the leading-order solution in (2.2) to determine the exponentially small con-
tributions. This is convenient because it can be complicated or even intractable to compute
series terms beyond a leading-order expression in nonlinear problems. See [14, 15] for more
details about exponential asymptotics and their applications to nonlocal solitary waves, [8, 9]
for examples of other studies of exponential asymptotics, and [17, 75] for more details about
the particular methodology that we apply in the present paper.

3. A singularly perturbed woodpile chain. We consider a precompressed woodpile chain,
such as the one in Figure 2(a). We model it by a particle chain; each particle has mass m1

and is connected to an outside particle of mass m2 by a linear spring with spring constant k.D
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2422 GUO DENG, CHRISTOPHER J. LUSTRI, AND MASON A. PORTER

The governing equations of this idealized model, which we illustrated in Figure 2(b), are

m1\"u(n, t) = [\delta 0 + u(n - 1, t) - u(n, t)]\alpha +(3.1)

 - [\delta 0 + u(n, t) - u(n+ 1, t)]\alpha +  - k[u(n, t) - v(n, t)] ,

m2\"v(n, t) = k[u(n, t) - v(n, t)] ,(3.2)

where \delta 0 is the precompression parameter and u(n, t) and v(n, t), respectively, denote the
displacements of the nth particle of massm1 andm2 at time t. The choice \alpha = 3/2 corresponds
to a classical Hertzian chain. Our analysis in this section is valid for any choice of \alpha for which
one can approximate the leading-order solution by a soliton solution of the KdV equation. In
practice, this entails that \alpha > 1 [30]. The subscript + of a bracket indicates that we evaluate
the expression in brackets only if it is positive; the bracketed term is equal to 0 when the
expression is negative. That is, we only have Hertzian interactions between particles that are
in physical contact with each other.

We scale the system (3.1)--(3.2) using u = m
1/(\alpha  - 1)
1 \^u and v = m

1/(\alpha  - 1)
1 \^v, and we rewrite

the governing equations in terms of \^\delta = \delta 0/m
1/(\alpha  - 1)
1 and \^k = k/m1. Setting \eta 2 = m2/m1

gives the following scaled governing equations:

\"\^u(n, t) = [\^\delta + \^u(n - 1, t) - \^u(n, t)]\alpha +(3.3)

 - [\^\delta + \^u(n, t) - \^u(n+ 1, t)]\alpha +  - \^k[\^u(n, t) - \^v(n, t)] ,

\eta 2\"\^v(n, t) = \^k[\^u(n, t) - \^v(n, t)] .(3.4)

In our study, we assume that the heavy particles always maintain physical contact with neigh-
boring particles. Therefore, the expressions in brackets with + subscripts are always nonnega-
tive, so we omit the subscript + in our subsequent analysis. One can validate this assumption
by checking the solution behavior directly. For convenience, we perform our analysis on the
scaled system (3.3)--(3.4); in our subsequent notation, we omit the hats that indicate this
scaling.

We are interested in the asymptotic behavior of traveling-wave solutions of (3.3)--(3.4)
when 0 < \eta \ll 1. These solutions consist of a localized wave core, which we generate using
an asymptotic power series in \eta , and exponentially small but nondecaying oscillations that we
compute using exponential asymptotic techniques.

3.1. Leading-order solution. We expand u(x, t) and v(x, t) as asymptotic power series in
\eta 2 in the limit \eta \rightarrow 0 and write

u(n, t) \sim 
\infty \sum 
j=0

\eta 2juj(n, t) , v(n, t) \sim 
\infty \sum 
j=0

\eta 2jvj(n, t) .(3.5)

To find a leading-order solitary wave, which is the first step in constructing a nanopteron
solution of (3.3)--(3.4), we insert the series expansions (3.5) into (3.4) and match at leading
order in the limit \eta \rightarrow 0 to obtain

u0(n, t) = v0(n, t) .(3.6)D
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Inserting the relation (3.6) into (3.3) gives

\"u0(n, t) = [\delta + u0(n - 1, t) - u0(n, t)]
\alpha  - [\delta + u0(n, t) - u0(n+ 1, t)]\alpha .(3.7)

One can obtain an approximation to the leading-order behavior by following the analysis
in [71]. Assume that the deformation in the chain is sufficiently small such that | u0(n - 1, t) - 
u0(n, t)| \ll \delta . We expand (3.7) as

\"u0(n, t) = \alpha \delta \alpha  - 1[u0(n - 1, t) - 2u0(n, t) + u0(n+ 1, t)](3.8)

+
\alpha (\alpha  - 1)

2
\delta \alpha  - 2[(u0(n - 1, t) - u0(n, t))

2  - (u0(n, t) - u0(n+ 1, t))2]

+\scrO ((| u0(n - 1, t) - u0(n, t)| /\delta )3) .

This expansion has only a single nonlinear term in the retained orders, so we refer to the
physical regime in which this expansion is valid as a ``weakly nonlinear regime.""

In the long-wavelength limit, in which the characteristic size L of a wave is large in
comparison to the particle radius R, we write

(3.9) u0(n, t) = u(x, t) , x = 2Rn , u0(n\pm 1) = e\pm 2R \partial 
\partial xu0(n) .

Substituting (3.9) into (3.8) and neglecting terms of order \scrO (u\delta \alpha  - 1(R/L)5[(R/L) + (u/\delta )])
yields

(3.10) utt = c20uxx + 2c0\gamma uxxxx  - \sigma uxuxx ,

where

(3.11) c0 = 2R
\surd 
\alpha \delta \alpha  - 1 , \gamma =

c0R
2

6
, \sigma = 2(\alpha  - 1)

c20R

\delta 
.

Introducing the transformations \tau = c30t and \xi = x - c0t and neglecting the higher-order term
u\tau \tau gives the KdV equation

(3.12) c30w\tau + \gamma w\xi \xi \xi +
\sigma 

2c0
ww\xi = 0 ,

where w =  - u\xi .
We use solutions of (3.12) to approximate the leading-order behavior of u(x, t) and then

obtain the leading-order behavior of v(x, t) using (3.6). We are particularly interested in
solutions that are perturbations of a leading-order solitary wave, and we thus select w(\xi , \tau )
in (3.12) to be the KdV traveling-wave solution

(3.13) w(\xi , \tau ) = A sech2
\biggl[ \sqrt{} 

\sigma A

24c0\gamma 

\biggl( 
\xi  - \sigma 

6c40
A\tau 

\biggr) \biggr] 
.

Integrating (3.13) and transforming \xi , \tau into n, t yields the leading-order behavior

u0(n, t) =  - \delta \epsilon 

\alpha  - 1
tanh (\epsilon (n - c\epsilon t)) +\scrO (\epsilon 3/2) ,(3.14)D
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2424 GUO DENG, CHRISTOPHER J. LUSTRI, AND MASON A. PORTER

where

(3.15) \epsilon =
2R

L
, c\epsilon = \delta (\alpha  - 1)/2\surd \alpha +

\surd 
\alpha 

6
\epsilon 2\delta (\alpha  - 1)/2 , L =

\sqrt{} 
24c0\gamma 

\sigma A
.

The long-wavelength limit corresponds to \epsilon \rightarrow 0, and we thus refer to \epsilon as the ``long-wavelength
parameter.""

Motivated by (3.14), we use the comoving frame \xi = n  - c\epsilon t. In terms of \xi , the leading-
order behavior is

u0(\xi ) =  - \delta \epsilon 

\alpha  - 1
tanh (\epsilon \xi ) +\scrO (\epsilon 3/2) as \epsilon \rightarrow 0 ,(3.16)

v0(\xi ) = u0(\xi ) .(3.17)

The leading-order behavior has singularities at \xi p\pm = \pm i(2p + 1)\pi /2\epsilon for p \in \BbbZ . The
singularities that are closest to the real axis occur at \xi 0\pm = \pm i\pi /2\epsilon and are associated with
singulants with the smallest values of | \chi | when evaluated at real \xi . Consequently, these terms
dominate the late-order behavior as n \rightarrow \infty . Near these singularities, we calculate that

v0(\xi ) \sim  - \delta (\alpha  - 1) - 1

\xi  - \xi 0\pm 
as \xi \rightarrow \xi 0\pm (3.18)

and that u0 has the same behavior as v0 in the neighborhood of the singularity.

3.2. Late-order terms. Writing the governing equations (3.3)--(3.4) in terms of \xi and
matching at each order of \eta gives

c2\epsilon u
\prime \prime 
j (\xi ) = \alpha [uj(\xi  - 1) - uj(\xi )][\delta + u0(\xi  - 1) - u0(\xi )]

\alpha  - 1(3.19)

 - \alpha [uj(\xi ) - uj(\xi + 1)][\delta + u0(\xi ) - u0(\xi + 1)]\alpha  - 1

 - k[uj(\xi ) - vj(\xi )] + \cdot \cdot \cdot ,
c2\epsilon v

\prime \prime 
j - 1(\xi ) = k[uj(\xi ) - vj(\xi )] ,(3.20)

where we omit the terms that are products that include uj - k with k > 1. These terms are
subdominant in comparison to the terms that we retain in the limit j \rightarrow \infty . We retain all
terms that include uj , vj , and derivatives of uj and vj - 1. Given the general form of the
factorial-over-power ansatz (2.3), we conclude that the omitted terms do not contribute to
the behavior of the asymptotic solution in our subsequent analysis. We will confirm this claim
explicitly once we obtain the form of the late-order ansatz (3.21).

In principle, one can apply (3.19) and (3.20) recursively to obtain terms in the series (3.5)
up to arbitrarily large values of j. This process is challenging technically because it requires
solving the differential--difference equation (3.19) at each order. Fortunately, this is not neces-
sary for our analysis. Additionally, obtaining terms up to arbitrary order does not reveal the
presence of oscillations in the far field, where \xi \rightarrow  - \infty , because the oscillations are exponen-
tially small in the singularly perturbed limit \eta \rightarrow 0. Instead, we obtain the asymptotic form
of the late-order terms as part of the exponential asymptotic process that we use to calculate
the behavior of these oscillations.D
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The terms in the late-order ansatz take the forms

(3.21) uj \sim 
U(\xi )\Gamma (2j + \beta 1)

\chi (\xi )2j+\beta 1
, vj \sim 

V (\xi )\Gamma (2j + \beta 2)

\chi (\xi )2j+\beta 2
as j \rightarrow \infty .

To ensure that late-order terms have singularities at the same locations as the leading-order
solution, we set \chi = 0 at a particular choice of \xi = \xi 0\pm . The full expression for a late-order
term is then the sum of the late-order contributions from each of the singularities.

For sufficiently large j, the terms of the asymptotic series (3.21) diverge in a factorial-
over-power fashion, which confirms that uj \gg uj - k and vj \gg vj - k as j \rightarrow \infty for k > 0.
Additionally, inserting the late-order ansatz (3.21) into (3.19) shows that only \beta 1 + 2 = \beta 2
produces a nontrivial asymptotic balance, implying that uj = \scrO (vj - 1) as j \rightarrow \infty and hence
that vj \gg uj as j \rightarrow \infty .

Inserting the late-order ansatz (3.21) into (3.20) gives

c2\epsilon (\chi 
\prime (\xi ))2V (\xi )\Gamma (2j + \beta 2)

\chi (\xi )2j+\beta 2
 - 2c2\epsilon \chi 

\prime (\xi )V \prime (\xi )\Gamma (2j + \beta 2  - 1)

\chi (\xi )2j+\beta 2 - 1
(3.22)

 - c2\epsilon \chi 
\prime \prime (\xi )V (\xi )\Gamma (2j + \beta 2  - 1)

\chi (\xi )2j+\beta 2 - 1
+ \cdot \cdot \cdot = - kV (\xi )\Gamma (2j + \beta 2)

\chi (\xi )2j+\beta 2
+ \cdot \cdot \cdot ,

where the omitted terms are no larger than \scrO (vj - 1) in the limit j \rightarrow \infty .
Matching terms at \scrO (vj) in the limit j \rightarrow \infty gives the equation c2\epsilon (\chi 

\prime (\xi ))2 =  - k for the
singulant. This implies that \chi \prime (\xi ) = \pm i

\surd 
k/c\epsilon , which we integrate to obtain

(3.23) \chi (\xi ) = \pm i
\surd 
k(\xi  - \xi 0\pm )

c\epsilon 
.

Stokes switching can occur only if Re(\chi ) > 0, which corresponds to the positive sign choice for
\xi 0+ and the negative sign choice for \xi 0 - . Consequently, we retain these solutions and ignore
the solutions that are associated with the remaining sign choices, as those can never appear
in the asymptotic solution.

Matching terms at \scrO (v\prime j - 1) gives the prefactor equation 2V \prime (\xi )\chi \prime (\xi ) = 0, so V is a con-
stant, with a value that depends on the choice of singularity. For clarity, we subsequently
use \Lambda \pm to denote the constant prefactor that is associated with a singularity at \xi = \xi 0\pm . For
the singular late-order behavior to be consistent with the local behavior of the leading-order
solution (3.18), we calculate that \beta 2 = 1. In Appendix A.1, we perform a local expansion of
the solutions u(\xi ) and v(\xi ) in a neighborhood of size \scrO (\epsilon ) near the singularity, and we use
asymptotic matching to obtain

(3.24) \Lambda + =  - i\delta 
\surd 
k

(\alpha  - 1)c\epsilon 
.

We thereby fully determine the asymptotic behavior of vj in the limit j \rightarrow \infty .
In section 3.3, we give a detailed calculation of the exponentially small oscillations that

are associated with the singularity at \xi = \xi 0+. At the conclusion of our analysis in section 3.3,
we state the corresponding contribution that arises from the singularity at \xi = \xi 0 - ; this
contribution is the complex conjugate of the contribution from \xi = \xi 0+.
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3.3. Stokes switching. We truncate the asymptotic series after N terms to obtain

(3.25) u(\xi ) =
N - 1\sum 
j=0

\eta 2juj(\xi ) + SN (\xi ) , v(\xi ) =
N - 1\sum 
j=0

\eta 2jvj(\xi ) +RN (\xi ) ,

where SN and RN are the remainder terms that we obtain by truncating the series. These
remainder terms are exponentially small if we optimally truncate the series; we again denote
the optimal truncation point by N\mathrm{o}\mathrm{p}\mathrm{t}.

To optimally truncate the power series (3.5), we follow the heuristic approach of [15].
This approach requires truncating the series at the smallest term of the series. See [15] for a
detailed discussion of the validity of this approach. We locate the smallest term by taking the
derivative of the term \eta 2NvN (\xi ) with respect to N to obtain

(3.26)
\partial 

\partial N

\bigm| \bigm| \eta 2NvN
\bigm| \bigm| \sim 2\eta 2N

| V | \Gamma (2N + 1)

| \chi | 2N+1
(log \eta  - log | \chi (\xi )| + log(2N + 1)) ,

where log(z) denotes the natural logarithm of z. The smallest term occurs at the point at
which the derivative term in (3.26) is equal to 0. This requires that

(3.27) log(2N + 1) \sim log | \chi |  - log \eta .

We thus obtain

(3.28) N\mathrm{o}\mathrm{p}\mathrm{t} = | \chi | /2\eta + \omega ,

where we choose \omega \in [0, 1) such that N\mathrm{o}\mathrm{p}\mathrm{t} is an integer.
Inserting (3.25) into the governing equations (3.3)--(3.4) yields

c2\epsilon S
\prime \prime (\xi ) \sim  - kRN (\xi ) ,(3.29)

\eta 2c2\epsilon R
\prime \prime (\xi ) + \eta 2Nc2\epsilon v

\prime \prime 
N - 1(\xi ) \sim  - kRN (\xi ) as \eta \rightarrow 0 ,(3.30)

where the omitted terms are smaller than those that we retain in the limit \eta \rightarrow 0. Equation
(3.30) decouples from (3.29), so we can study it independently. Applying the late-order ansatz
and rearranging (3.30) gives

(3.31) \eta 2c2\epsilon R
\prime \prime 
N + kRN \sim  - \Lambda \eta 2N (\chi \prime )2\Gamma (2N + 1)

\chi 2N+1
as \eta \rightarrow 0 .

The right-hand side of (3.31) is exponentially small except in a neighborhood of the Stokes
curve. Away from the Stokes curve, we use the WKB method to obtain

RN \sim Ce - \chi /\eta as \eta \rightarrow 0 ,(3.32)

where C is a constant that we need to determine.
To capture the variation in the neighborhood of a Stokes curve, we adapt the form of (3.32)

to include a Stokes-switching parameter A(\xi ), which is constant except in the neighborhood
of the Stokes curve. In such a neighborhood, RN takes the form

(3.33) RN (\xi ) \sim A(\xi )e - \chi /\eta as \eta \rightarrow 0 .D
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Inserting (3.33) into (3.31) and rearranging yields

(3.34)
dA

d\xi 
\sim \Lambda \chi \prime \eta 2N - 1\Gamma (2N + 1)

2\chi 2N+1
e\chi /\eta as \eta \rightarrow 0 .

Writing N\mathrm{o}\mathrm{p}\mathrm{t} in terms of \chi , expanding the gamma function \Gamma using Stirling's formula, and
transforming to make \chi the independent variable gives

(3.35)
dA

d\chi 
\sim \Lambda 

\surd 
\pi \eta | \chi | /\eta +2\omega  - 1(| \chi | /\eta )| \chi | /\eta +2\omega  - 1/2e - | \chi | /\eta 

\surd 
2\chi | \chi | /\eta +2\omega +1

e\chi /\eta as \eta \rightarrow 0 .

We transform (3.35) into polar coordinates using \chi = \rho e\mathrm{i}\theta and consider variations in the
angular direction. After some simplification, we obtain

(3.36)
dA

d\theta 
\sim i\Lambda 

\sqrt{} 
\pi \rho 

2\eta 3
exp

\biggl( 
\rho 

\eta 
(e\mathrm{i}\theta  - 1) - i\theta \rho 

\eta 
 - 2i\omega \theta 

\biggr) 
as \eta \rightarrow 0 .

The right-hand side of (3.36) is exponentially small in \eta except in the neighborhood of \theta = 0.
Defining an inner region \theta = \eta 1/2\=\theta , we find that

dA

d\=\theta 
\sim i\Lambda 

\eta 

\sqrt{} 
\pi \rho 

2
e - \rho \=\theta 2/2 .(3.37)

By integrating (3.37), we see that the behavior of A as the Stokes curve is crossed is

A \sim i\Lambda 

\eta 

\sqrt{} 
\pi 

2

\int \surd 
\rho \=\theta 

 - \infty 
e - s2/2 ds as \eta \rightarrow 0 .(3.38)

We evaluate the integral in (3.38) and find that the difference between the values of A on the
two sides of the Stokes curve is

(3.39) [A]+ - \sim i\pi \Lambda 

\eta 
as \eta \rightarrow 0 ,

where [A]+ - denotes the change in A as the Stokes curve is crossed from \theta < 0 to \theta > 0.
Recalling (3.24) and (3.33), we find that the exponentially small contribution from \xi = \xi 0+ is

(3.40) [RN ]+ - \sim \delta \pi 
\surd 
k

(\alpha  - 1)c\epsilon \eta 
e - \mathrm{i}

\surd 
k(\xi  - \mathrm{i}\pi /2\epsilon )/c\epsilon \eta as \eta \rightarrow 0 .

The exponentially small contribution from \xi = \xi 0 - is given by the complex conjugate of (3.40).
Therefore, the total exponentially small contribution is

(3.41) [RN ]+ - \sim \delta \pi 
\surd 
k

(\alpha  - 1)c\epsilon \eta 
e - \mathrm{i}

\surd 
k(\xi  - \mathrm{i}\pi /2\epsilon )/c\epsilon \eta + c.c. as \eta \rightarrow 0 ,

where c.c. denotes the complex conjugate. We express (3.41) in terms of trigonometric func-
tions and thus write

(3.42) [RN ]+ - \sim 2\delta \pi 
\surd 
k

(\alpha  - 1)\eta c\epsilon 
exp

\Biggl( 
 - \pi 

\surd 
k

2c\epsilon \epsilon \eta 

\Biggr) 
cos

\Biggl( 
\xi 
\surd 
k

c\epsilon \eta 

\Biggr) 
as \eta \rightarrow 0 .D
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We are considering one-sided nanoptera with RN = 0 in the undisturbed region ahead of the
leading-order solitary wave. This corresponds to requiring that RN = 0 for \theta < 0 and thus
that RN \sim [RN ]+ - for \theta > 0. If we were studying symmetric two-sided nanoptera, we would
instead set RN \sim  - 1

2 [RN ]+ - for \theta < 0 and RN \sim 1
2 [RN ]+ - for \theta > 0. This is consistent with

the jump in (3.42), and it yields an oscillation amplitude that is half of the amplitude of the
small oscillations in the corresponding one-sided nanopteron.

3.4. Comparison of our asymptotic and computational results. We compare the
oscillation amplitudes that we predict using our asymptotic analysis to those from numer-
ical simulations. We employ a symplectic integrator in the form of a velocity Verlet algo-
rithm [2, 96], which is convenient for studying a chain of particles. This algorithm conserves
the energy of the system; this is not the case for many common numerical methods, such as
Runge--Kutta algorithms. The velocity Verlet algorithm uses the discretization

(3.43) \bfitx n+1 = \bfitx n + \bfitv n\Delta t+
1

2
\bfita n(\Delta t)2 , \bfitv n+1 = \bfitv n +

1

2
(\bfita n + \bfita n+1)\Delta t ,

where \Delta t is the size of the time step and \bfitx n, \bfitv n, and \bfita n are vector quantities that encode
the displacements, velocities, and accelerations of the particles at time t = tn. In a woodpile
chain, we obtain the acceleration vector \bfita n as an algebraic function of the displacement vector
\bfitx n using (3.3)--(3.4).

We truncate the domain and impose periodic boundary conditions. Instead of directly
computing the absolute displacements and velocities of the particles, we perform our com-
putations using the relative displacements and velocities, which we compute by calculating
the differences in the positions and velocities of adjacent particles. This is convenient for our
computations because the far-field behavior of the leading-order solitary wave approaches 0
in both directions in these coordinates. The relative displacements of the heavy particles and
light particles are r1 and r2, respectively, where

(3.44) r1(n, t) = u(n+ 1, t) - u(n, t) , r2(n, t) = v(n+ 1, t) - v(n, t) .

In relative coordinates, the governing equations are

\"r1(n, t) = 2[\delta  - r1(n, t)]
\alpha 
+  - [\delta  - r1(n - 1, t)]\alpha +(3.45)

 - [\delta  - r1(n+ 1, t)]\alpha +  - k[r1(n, t) - r2(n, t)] ,

\eta 2 \"r2(n, t) = k[r1(n, t) - r2(n, t)] .(3.46)

The truncated domain hasM = 210 particles, whose indices are n \in \{  - M/2+1, . . . ,M/2\} .
The initial condition is the leading-order solitary-wave solution (3.16)--(3.17). To avoid inter-
actions between the far-field oscillations and the leading-order solitary wave in the periodic
domain, we apply a window function to the solution, as in [31, 56], at each iteration. We
obtain a window (which is comoving with the wave) by multiplying r(n, t) and \.r(n, t) by a
function W (n - n\mathrm{m}\mathrm{a}\mathrm{x} +M/8), where

(3.47) W (k) =

\left\{       
1 , | K| \leq 5M

16

1 - 8
M

\bigl( 
| K|  - 5M

16

\bigr) 
, 5M

16 < | K| \leq 7M
16

0 , 7M
16 < | K| \leq M

2
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Undisturbed
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Exponentially small oscillations

Figure 4. A numerical calculation of the relative displacement of a single light particle at some index
n in a woodpile chain with an interaction exponent of \alpha = 1.5. The mass-ratio parameter is \eta = 0.4, the
precompression parameter is \delta = 5, and the long-wavelength parameter is \epsilon = 0.3.

and n\mathrm{m}\mathrm{a}\mathrm{x} denotes the location of the maximum of the leading-order solution.
In [31], it was argued that a window of this form cannot affect the behavior of the main

wave or trailing oscillations in simulations of FPUT systems, as any disturbances that are as-
sociated with the windowing must travel more slowly than the leading-order solitary wave and
hence more slowly than the window itself (see [29]). We do not perform a comparable analysis
for a woodpile chain, but we do not observe any discernible differences in the amplitudes of
the trailing oscillations as a result of our windowing.

In Figure 4, we show a numerically calculated profile of one particle in a woodpile chain. In
this simulation, we use an interaction exponent of \alpha = 1.5, a mass-ratio parameter of \eta = 0.4, a
precompression parameter of \delta = 5, and a long-wavelength parameter of \epsilon = 0.3. The curve in
the figure shows the relative displacement of a single light particle over a range of times t. The
particle is initially at rest before the leading-order solitary wave reaches the particle, causing
it to become displaced. Once this solitary wave has passed the particle, the particle continues
to oscillate with an exponentially small amplitude. In Figure 5, we measure this oscillation
amplitude from numerical simulations and compare it to our asymptotic approximations for
a range of parameter choices.

In our numerical simulations, we calculate the amplitude of the far-field waves for inter-
action exponents of \alpha = 1.5, \alpha = 2, and \alpha = 2.5. For each value of \alpha , we show simulations
with precompression parameters of \delta = 5, \delta = 7.5, \delta = 10, and \delta = 15. For each value of \delta ,
we set the long-wavelength parameters to be \epsilon = 0.2, \epsilon = 0.25, and \epsilon = 0.3. We choose the
values of \eta so that the far-field waves are large enough to be detected numerically but small
enough that our small-\eta asymptotic approximation accurately describes the behavior of the
solutions. We run each of our simulations long enough to ensure that any time variation inD
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Figure 5. Comparison of oscillation amplitudes in the far field (i.e., as \xi \rightarrow  - \infty ) of our asymptotic
approximations and numerical simulations of nanoptera in woodpile chains with interaction exponents of (a)
\alpha = 1.5, (b) \alpha = 2, and (c) \alpha = 2.5. For each value of \alpha , we show simulations for precompression parameters
of \delta = 5, \delta = 7.5, \delta = 10, and \delta = 15. For each value of \delta , we consider long-wavelength parameters of \epsilon = 0.2,
\epsilon = 0.25, and \epsilon = 0.3. The accuracy of our asymptotic approximation improves for progressively smaller
values of the mass-ratio parameter \eta , as expected for an \eta \rightarrow 0 asymptotic approximation. Additionally, the
approximation improves as we increase \delta . This is a consequence of using a leading-order approximation for the
weakly nonlinear regime; decreasing \delta approaches a configuration that needs to be treated as strongly nonlinear.
Our approximation also improves as we increase \alpha , although the reason for this improvement is not apparent.

the far-field oscillation amplitude is not visible in the solutions. We show the results of these
simulations, which we compare to the asymptotic results from (3.42), in Figure 5.

It is apparent from Figure 5 that our asymptotic approximation captures the far-field
wave amplitude effectively for a wide range of the parameters and that the approximation
error decreases as \eta \rightarrow 0, as we expect from the asymptotic nature of the approximation. For
a fixed \epsilon , our asymptotic approximation becomes progressively more accurate for progressively
larger \delta . However, for progressively smaller \delta , the system approaches the strongly nonlinear
regime and the long-wavelength approximation becomes less accurate, which in turn causes the
late-order approximation to become less accurate. Our asymptotic approximation also appearsD
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to become more accurate for progressively larger \alpha , but the reason for this improvement is
not apparent from our analysis.

By comparing our numerical computations and our asymptotic results, we conclude that
we can explain the oscillations that appear in woodpile chains as a consequence of the Stokes
phenomenon and that the employed exponential asymptotic analysis is a useful technique for
studying nanoptera in these chains.

4. A singularly perturbed diatomic Hertzian chain. We now consider a singularly per-
turbed diatomic Hertzian chain. This system is related to the woodpile chain that we ana-
lyzed in section 3. Once we derive a leading-order solution for a traveling wave in a diatomic
Hertzian chain, we can perform a similar exponential asymptotic analysis. Obtaining the
singulant equation for a diatomic Hertzian chain requires solving a complicated integral ex-
pression; this is significantly more complicated than the corresponding step in our analysis of
woodpile chains.

We denote the masses in a diatomic Hertzian chain by m(j) = m1 for even j and by
m(j) = m2 for odd j. We consider a small ratio between the masses of the two types
of particles. This choice amounts to a precompressed Hertzian analogue of the diatomic
Toda and FPUT chains that were studied in [56, 57]. Those previous studies used far-field
asymptotic behavior to identify an orthogonality condition, which yields values of the mass-
ratio parameter \eta that cause the far-field waves to cancel and produce a genuine solitary
wave.

We derive an asymptotic approximation in a diatomic Hertzian chain to identify an or-
thogonality condition that finds some (but not all) values of \eta that produce solitary waves.
Specifically, our asymptotic approach systematically fails to identify every second value of \eta 
that causes the far-field oscillations to cancel.

Much of our analysis in this section is similar to that in section 3 and [56, 57]. Therefore,
we present only an outline of our calculations.

The governing equations for a diatomic chain of particles are

m1\"u(2n, t) = [\delta 0 + v(2n - 1, t) - u(2n, t)]\alpha +  - [\delta 0 + u(2n, t) - v(2n+ 1, t)]\alpha + ,(4.1)

m2\"v(2n+ 1, t) = [\delta 0 + u(2n, t) - v(2n+ 1, t)]\alpha +  - [\delta 0 + v(2n+ 1, t) - u(2n+ 2, t)]\alpha + ,(4.2)

where u and v, respectively, represent the displacement of even and odd particles, the +
subscript has the same meaning as in (3.3)--(3.4), and we set \alpha = 3/2 so that we are considering
Hertzian interactions.3 We apply the same scalings as we did for woodpile chains, so we let
u = m2

1\^u and v = m2
1\^v. We rewrite (4.1)--(4.2) in terms of our scaled variables and a scaled

precompression parameter \^\delta = \delta 0/m
2
1. Setting \eta 2 = m2/m1 yields the scaled system

\"\^u(2n, t) = [\^\delta + \^v(2n - 1, t) - \^u(2n, t)]
3/2
+  - [\^\delta + \^u(2n, t) - \^v(2n+ 1, t)]

3/2
+ ,(4.3)

\eta 2\"\^v(2n+ 1, t) = [\^\delta + \^u(2n, t) - \^v(2n+ 1, t)]
3/2
+  - [\^\delta + \^v(2n+ 1, t) - \^u(2n+ 2, t)]

3/2
+ .(4.4)

3For diatomic Hertzian chains, the form of the singulant depends on the value of \alpha . By contrast, for
woodpile chains, the singulant is independent of \alpha . Therefore, in section 3, we permitted \alpha to take any value
that produces leading-order solitary waves, as it did not change our subsequent analysis. For diatomic chains,
we must pick a specific value of \alpha . Therefore, we restrict our attention to Hertzian interactions, which are the
most common case in existing laboratory experiments.
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As in the woodpile chains, we assume that the precompression is sufficiently strong that the
particles remain in contact and thus that the expressions in the square brackets in (4.3)--(4.4)
are never negative. Therefore, we omit the + subscript in our subsequent notation. In our
analysis of the scaled system (4.3)--(4.4), we also omit the hats from the variables and the
parameters for notational convenience.

As in the woodpile chains of section 3, we study traveling-wave solutions of (4.3)--(4.4)
when the mass-ratio parameter \eta is small. Specifically, we consider 0 < \eta \ll 1. As before, the
solution consists of a localized wave core and exponentially small, nondecaying oscillations.
We again use exponential asymptotic methods to study these oscillations.

4.1. Leading-order solution. The first step in constructing a nanopteron solution of (4.3)--
(4.4) is to obtain a leading-order solitary wave. Therefore, we begin by expanding the functions
u(x, t) and v(x, t) using asymptotic power series in \eta 2 in the limit \eta \rightarrow 0. This yields

u(n, t) \sim 
\infty \sum 
j=0

\eta 2juj(n, t) , v(n, t) \sim 
\infty \sum 
j=0

\eta 2jvj(n, t) .(4.5)

Inserting the series expansions (4.5) into (4.4) and matching at leading order in the limit
\eta \rightarrow 0 gives

v0(2n+ 1, t) = 1
2 [u0(2n, t) + u0(2n+ 2, t)] .(4.6)

Inserting (4.6) into (4.3) yields

\"u0(2n, t) =

\biggl( 
\delta +

u0(2n - 2, t) - u0(2n, t)

2

\biggr) 3/2

 - 
\biggl( 
\delta +

u0(2n, t) - u0(2n+ 2, t)

2

\biggr) 3/2

.(4.7)

Using analysis that is similar to that in section 3.1, we obtain an approximation to the
leading-order solution by assuming that the displacement of a particle is small in comparison
to the precompression parameter \delta and that the characteristic length scale of the leading-
order wave is large in comparison to the radius of the spherical particles. We again define a
long-wavelength parameter \epsilon . The leading-order solution is approximately

u0(\xi ) =  - 4\delta \epsilon tanh (\epsilon \xi /2) +\scrO (\epsilon 3/2) , v0(\xi ) =
1
2(u0(\xi + 1) + u0(\xi  - 1)) ,(4.8)

where the variable \xi defines the comoving frame

\xi = n - c\epsilon t , c\epsilon = \delta 1/4
\surd 
3 +

\delta 1/4\epsilon 2

2
\surd 
3

.(4.9)

We now extend the leading-order solution (4.8) into the complex plane. We see that v0(\xi )
is singular at \xi = \xi p\pm in the complex plane, where

\xi p\pm =
(2p - 1)\pi i

\epsilon 
\pm 1 , p \in \BbbZ .(4.10)

The behavior near the singularities is

v0(\xi ) \sim  - 4\delta (\xi  - \xi p\pm )
 - 1 as \xi \rightarrow \xi p\pm .(4.11)D
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Re(ξ)

Im(ξ)

ξ1− = iπ
ε − 1 ξ1+ = iπ
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ε + 1

Figure 6. Singularities of v0(\xi ) in (4.10) that contribute to the asymptotic form of the far-field oscillations
of (4.36). We give a detailed discussion of the analysis of the oscillations that arise from the singularity at
\xi = \xi 1 - . We then state the contributions from the other three singularities.

As with woodpile chains, the dominant contribution to the late-order behavior arises from the
singularities that are closest to the real axis; this occurs when p = 0 and p = 1 in (4.10). We
illustrate the positions of these singularities in Figure 6. In our subsequent analysis, we show
the details for calculating the contribution from the singularity at \xi = \xi 1 - . We then state
the analogous results for the contributions from the singularities at \xi = \xi 1+, \xi = \xi 0 - , and
\xi = \xi 0+.

4.2. Terms in the late-order series. Inserting the series (4.5) into the system (4.3)--(4.4)
and matching at each order of \eta gives a recurrence relation for j \geq 2. The recurrence relation
is

c2\epsilon u
\prime \prime 
j (\xi ) =

3
2(vj(\xi  - 1) - uj(\xi ))(\delta + v0(\xi  - 1) - u0(\xi ))

1/2(4.12)

 - 3
2(uj(\xi ) - vj(\xi + 1))(\delta + u0(\xi ) - v0(\xi + 1))1/2

+ 3
4(vj - 1(\xi  - 1) - uj - 1(\xi ))(v1(\xi  - 1) - u1(\xi ))[\delta + (v0(\xi  - 1) - u0(\xi ))]

 - 1/2

 - 3
4(uj - 1(\xi ) - vj - 1(\xi + 1))(u1(\xi ) - v1(\xi + 1))[\delta + (u0(\xi ) - v0(\xi + 1))] - 1/2

+ \cdot \cdot \cdot ,

c2\epsilon v
\prime \prime 
j - 1(\xi ) =

3
2(uj(\xi  - 1) - vj(\xi ))(\delta + u0(\xi  - 1) - v0(\xi ))

1/2

(4.13)

 - 3
2(vj(\xi ) - uj(\xi + 1))(\delta + v0(\xi ) - u0(\xi + 1))1/2

+ 3
4(uj - 1(\xi  - 1) - vj - 1(\xi ))(u1(\xi  - 1) - v1(\xi ))[\delta + (u0(\xi  - 1) - v0(\xi ))]

 - 1/2

 - 3
4(vj - 1(\xi ) - uj - 1(\xi + 1))(v1(\xi ) - u1(\xi + 1))[\delta + (v0(\xi ) - u0(\xi + 1))] - 1/2

+ \cdot \cdot \cdot ,

where we omit the terms that are products that include both uj - k and vj - k with k > 1. The
terms that we retain are those that include uj - 1, vj - 1, uj , and vj . All of the omitted terms
are subdominant in comparison to the retained terms as j \rightarrow \infty .

We again use a factorial-over-power ansatz to approximate the late-order terms, so weD
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write

(4.14) uj \sim 
U(\xi )\Gamma (2j + \beta 1)

\chi (\xi )2j+\beta 1
, vj \sim 

V (\xi )\Gamma (2j + \beta 2)

\chi (\xi )2j+\beta 2
as j \rightarrow \infty ,

where \beta 1 and \beta 2 are constants. Inserting the late-order ansatz (4.14) into (4.12) shows that
only \beta 1 = \beta 2  - 2 produces a nontrivial asymptotic balance.

4.2.1. Calculating \bfitchi . Inserting the ansatz (4.14) into the recurrence relation (4.12)--(4.13)
and matching at \scrO (vj) as j \rightarrow \infty gives

(4.15) c2\epsilon (\chi 
\prime )2 =  - 3

\biggl( 
\delta +

u0(\xi  - 1) - u0(\xi + 1)

2

\biggr) 1/2

.

We integrate (4.15) and recall that \chi = 0 at the singularity location \xi = \xi 1 - to obtain

(4.16) \chi = \pm 
\surd 
3i

c\epsilon 

\int 
\scrC 

\biggl( 
\delta +

(u0(s - 1) - u0(s+ 1))

2

\biggr) 1/4

ds ,

where \scrC is a contour from \xi 1 - to \xi . Although one can select any contour, it is convenient to
divide the contour into a vertical component \scrC 1 and a horizontal component \scrC 2. We show our
contour in Figure 7.

The contribution to the integral in (4.16) from \scrC 1 has both real and imaginary components,
but the contribution to the integral from \scrC 2 is purely imaginary. The real and imaginary parts
of \chi are

Re(\chi ) = \pm Re

\biggl\{ \surd 
3i

c\epsilon 

\int 
\scrC 1

\biggl( 
\delta +

u0(s - 1) - u0(s+ 1)

2

\biggr) 1/4

ds

\biggr\} 
,(4.17)

Im(\chi ) = \pm Im

\biggl\{ \surd 
3i

c\epsilon 

\int 
\scrC 1

\biggl( 
\delta +

u0(s - 1) - u0(s+ 1)

2

\biggr) 1/4

ds

\biggr\} 
(4.18)

\pm 
\surd 
3i

c\epsilon 

\int 
\scrC 2

\biggl( 
\delta +

u0(s - 1) - u0(s+ 1)

2

\biggr) 1/4

ds ,

where the sign choices are either all positive or all negative. We see that Re(\chi ) is constant
for real-valued \xi , so the far-field oscillations have a constant amplitude. Because | u0(\xi  - 1) - 
u0(\xi + 1)| \rightarrow 0 as | \xi | \rightarrow \infty , we also see that \chi \prime (\xi ) tends to a constant value and that Im(\chi )
depends linearly on \xi in this limit. Consequently, the associated far-field oscillations tend to
a constant wavelength.

Stokes switching can occur only if Re(\chi ) > 0, which corresponds to the positive signs for
\xi 1 - in both (4.17) and (4.18). Therefore, we restrict our analysis to this choice of signs. For
our analysis, it is helpful to have an asymptotic expression for the local behavior of \chi near
the singular point \xi 1 - . From a direct calculation using local expressions for u0(\xi + 1) and
u0(\xi  - 1), which we give explicitly in (A.15)--(A.17), we obtain

c2\epsilon (\chi 
\prime )2 \sim  - 6

\surd 
\delta (\xi  - \xi 1 - )

 - 1/2 as \xi \rightarrow \xi 1 - .(4.19)D
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−1
Re(s)

Im(s)

ξ1− = iπ
ε − 1

ξ

C1

C2

Figure 7. The contour of integration for (4.16) that connects the singularity at s = \xi 1 - with the point
s = \xi . We indicate the location of the singularity using a cross, and we show the contour using a thick black
curve. We divide the contour into a vertical component \scrC 1 and a horizontal component \scrC 2. The contribution to
the contour integral from \scrC 1 has both real and imaginary components, whereas the contribution to the integral
from \scrC 2 is purely imaginary. This implies that Re(\chi ) is constant for real-valued \xi .

We rearrange this local expression and write

\chi \prime \sim \pm 
\surd 
6\delta 1/4i

c\epsilon 
(\xi  - \xi 1 - )

 - 1/4 as \xi \rightarrow \xi 1 - .(4.20)

We choose the positive sign to be consistent with the full expression for \chi , and we integrate
to obtain

\chi \sim 4
\surd 
6\delta 1/4i

3c\epsilon 
(\xi  - \xi 1 - )

3/4 as \xi \rightarrow \xi 1 - .(4.21)

4.2.2. Calculating \bfitV and \bfitbeta \bftwo . Matching (4.12)--(4.13) at order \scrO (v\prime j - 1) as j \rightarrow \infty gives

V =
\Lambda 1 - \sqrt{} 
\chi \prime (\xi )

,(4.22)

where \Lambda 1 - is a constant that we can determine by taking an inner expansion of the solution
in the neighborhood of \xi = \xi 1 - and matching the outer limit of this expansion with the inner
limit of the late-order ansatz (4.14). We need to determine the value of \beta 2 in (4.14) to perform
this inner analysis.

To determine \beta 2, we combine (4.20) and (4.22) to obtain a local expression for V . This
expression is

V \sim \Lambda 1 - c
1/2
\epsilon 

61/4\delta 1/8
\surd 
i
(\xi  - \xi 1 - )

1/8 as \xi \rightarrow \xi 1 - .(4.23)

Substituting (4.21) and (4.23) into (4.14) yields a local expression for the late-order ansatz:

vj(\xi ) \sim 
\Lambda 1 - c

1/2
\epsilon (\xi  - \xi 1 - )

1/8\Gamma (2j + \beta 2)

61/4\delta 1/8
\surd 
i(4

\surd 
6\delta 1/4i(\xi  - \xi 1 - )3/4/3c\epsilon )2j+\beta 2

.(4.24)
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The leading-order solution v0 (4.8) has a singularity of order 1 at \xi = \xi 1 - . For (4.24) to
be consistent with repeated differentiation of the leading-order behavior, we require that
3\beta 2/4 - 1/8 = 1, which implies that \beta 2 = 3/2.

Finally, we need to determine \Lambda 1 - . The late-order expansion (4.14) breaks down in the
neighborhood of \xi = \xi 1 - . In this neighborhood, we determine a local expansion of vj(\xi ).
We obtain \Lambda 1 - by matching the inner limit of the late-order behavior (which is given by
(4.24)) with the outer limit of the local expansion. We show the computational portion of
this procedure in Appendix A.2 and obtain c2\epsilon \Lambda 1 - /\delta 

3/2 \approx 38.41.

4.3. Calculations of the remainders. As in section 3, we truncate the asymptotic series
after N terms. This yields

u(\xi ) =
N - 1\sum 
j=0

\eta 2juj(\xi ) + SN (\xi ) , v(\xi ) =
N - 1\sum 
j=0

\eta 2jvj(\xi ) +RN (\xi ) ,(4.25)

where SN and RN are the remainder terms that we obtain by truncating the series. The
optimal truncation point (which we find using the same method as in section 3.3) is N\mathrm{o}\mathrm{p}\mathrm{t} =
| \chi | /2\eta +\omega , where we choose \omega \in [0, 1) to ensure that N\mathrm{o}\mathrm{p}\mathrm{t} is an integer. Note that N\mathrm{o}\mathrm{p}\mathrm{t} \rightarrow \infty 
as \eta \rightarrow 0.

We insert the truncated series expressions from (4.25) into the governing equation (4.4).
Using the recursion relation (4.13) and the late-order ansatz (4.14), we obtain

c2\epsilon \eta 
2R\prime \prime 

N (\xi ) - c2\epsilon \chi 
\prime (\xi )2RN (\xi ) \sim  - \eta 2N\chi \prime (\xi )2V (\xi )\Gamma (2N + 3/2)

\chi (\xi )2N+3/2
as \eta \rightarrow 0(4.26)

after some algebra.
The right-hand side of (4.26) is exponentially small and one can neglect it except in the

neighborhood of the curve Im(\chi ) = 0; this is the Stokes curve. To capture the behavior of
the remainder RN near the Stokes curve, we write it using the same adapted WKB ansatz as
in (3.33). That is,

(4.27) RN (\xi ) \sim A(\xi )e - \chi /\eta as \eta \rightarrow 0 ,

where A(\xi ) is a Stokes-switching parameter, which varies rapidly near the Stokes curve and
is constant outside the rapidly varying neighborhood. Inserting (4.27) into (4.26) yields

 - 2A\prime \chi \prime e - \chi /\eta \sim  - \eta 2N - 1(\chi \prime )2\Gamma (2N + 3/2)

\chi 2N+3/2
.(4.28)

We transform (4.28) to treat \chi as the independent variable and write \chi = rei\theta in polar
coordinates. We fix r, and we consider only variations in the angular direction. Using the
optimal truncation N = N\mathrm{o}\mathrm{p}\mathrm{t} and simplifying using Stirling's formula gives

dA

d\theta 
\sim i

\eta 2

\sqrt{} 
\pi \rho 

2
exp

\biggl( 
\rho 

\eta 

\Bigl( 
e\mathrm{i}\theta  - 1

\Bigr) 
 - i\theta r

\eta 
 - i\theta (1/2 + 2\omega )

\biggr) 
.(4.29)D
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The right-hand side of (4.29) is exponentially small in \eta except in the neighborhood of \theta = 0.
Defining an inner region \theta = \eta 1/2\=\theta , we find that

dA

d\=\theta 
\sim i

\sqrt{} 
\pi \rho 

2\eta 3
e - r\=\theta 2/2 .(4.30)

By integrating (4.30), we see that the behavior of A as the Stokes curve is crossed is

A \sim i

\sqrt{} 
\pi 

2\eta 3

\int \surd 
\rho \=\theta 

 - \infty 
e - s2/2 ds .(4.31)

Evaluating the integral in (4.31) and using the form of RN from (4.27), we find that the
exponentially small contribution from \xi 1 - is

(4.32) [RN ]+ - \sim i\pi \Lambda 

\eta 3/2
\surd 
\chi \prime e

 - \chi /\eta .

To capture the change across the Stokes curve, we also need to include the contribution from
\xi 0 - that is conjugate to \xi 1 - ; this contribution is given by the complex conjugate of (4.32).
Adding (4.32) and its complex conjugate, we find that the change in the exponentially small
contribution as the Stokes curve is crossed from left to right is

(4.33) [RN ]+ - \sim i\pi \Lambda 

\eta 3/2
\surd 
\chi \prime e

 - \chi /\eta + c.c. ,

where the complex conjugate c.c. indicates the contribution from the singularity at \xi 0 - .
The overall exponentially small contribution to the asymptotic behavior of v(\xi ) in the

wake of the leading-order solitary wave is given by the sum of the contributions from each of
the four singularities (see Figure 6). In the limit \eta \rightarrow 0, the exponentially small terms have
the asymptotic expression

v\mathrm{e}\mathrm{x}\mathrm{p} \sim i\pi 

\eta 3/2
e - \mathrm{R}\mathrm{e}(\chi 1 - (\xi ))/\eta \Lambda 1 - e

 - \mathrm{i}\mathrm{I}\mathrm{m}(\chi 1 - (\xi ))/\eta \sqrt{} 
\chi \prime 
1 - (\xi )

(4.34)

+
i\pi 

\eta 3/2
e - \mathrm{R}\mathrm{e}(\chi 1+(\xi ))/\eta \Lambda 1+e

 - \mathrm{i}\mathrm{I}\mathrm{m}(\chi 1+(\xi ))/\eta \sqrt{} 
\chi \prime 
1+(\xi )

+ c.c ,

where \chi 1 - is the singulant that is associated with \xi = \xi 1 - and \chi 1+ is the singulant that is
associated with \xi = \xi 1+. Using the relation Re(\chi 1+) = Re(\chi 1 - ) from (4.17), the asymptotic
expression (4.34) becomes

(4.35) v\mathrm{e}\mathrm{x}\mathrm{p} \sim i\pi 

\eta 3/2
e - \mathrm{R}\mathrm{e}(\chi 1 - (\xi ))/\eta 

\left[  \Lambda 1 - e
 - \mathrm{i}\mathrm{I}\mathrm{m}(\chi 1 - (\xi ))/\eta \sqrt{} 
\chi \prime 
1 - (\xi )

+
\Lambda 1+e

 - \mathrm{i}\mathrm{I}\mathrm{m}(\chi 1+(\xi ))/\eta \sqrt{} 
\chi \prime 
1+(\xi )

\right]  + c.c .

In Appendix A.2, we show that \Lambda 1+ = i\Lambda 1 - . Far behind the central solitary wave, | u0(\xi  - 
1) - u0(\xi + 1)| \rightarrow 0 because the leading-order wave is exponentially localized. Consequently,D
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\chi \prime 
1\pm (\xi ) \sim i

\surd 
3\delta 1/4/c\epsilon in the limit \xi \rightarrow  - \infty , as indicated in (4.15). This yields a convenient

trigonometric simplification:

v\mathrm{e}\mathrm{x}\mathrm{p} \sim 4\pi \Lambda 1 - 

\eta 3/2
\sqrt{} 

\chi \prime 
1 - (\xi )

e - \mathrm{R}\mathrm{e}(\chi 1 - (\xi ))/\eta cos

\biggl( 
Im(\chi 1 - (\xi ) - \chi 1+(\xi ))

2\eta 
+

\pi 

4

\biggr) 
(4.36)

\times cos

\biggl( 
Im(\chi 1+(\xi ) + \chi 1 - (\xi ))

2\eta 
 - \pi 

4

\biggr) 
.

From the integral expression (4.16) for the singulant \chi , we see that Re(\chi 1\pm ) and Im(\chi 1 - )  - 
Im(\chi 1+) do not depend on \xi . Consequently, we write the amplitude of the far-field waves as

(4.37) v\mathrm{a}\mathrm{m}\mathrm{p} \sim 4\pi c
1/2
\epsilon \Lambda 1 - 

31/4\delta 1/8\eta 3/2
e - \mathrm{R}\mathrm{e}(\chi 1 - (\xi ))/\eta cos

\biggl( 
Im(\chi 1 - (\xi ) - \chi 1+(\xi ))

2\eta 
+

\pi 

4

\biggr) 
as \eta \rightarrow 0 .

4.4. Comparison of our asymptotic and computational results. As in section 3.4, we
compare our asymptotic results for the far-field amplitude to numerical simulations. We
again use the velocity Verlet algorithm and again simulate the equations of motion on a
large periodic domain with relative coordinates. For diatomic Hertzian chains, the relative
coordinate system is given in terms of r(n, t), where

r(2n, t) = v(2n+ 1, t) - u(2n, t) , r(2n+ 1, t) = u(2n+ 2, t) - v(2n+ 1, t) .(4.38)

In this coordinate system, the equations of motion (4.3)--(4.4) become

\"r(2n, t) =

\biggl( 
1 +

1

\eta 2

\biggr) 
[\delta  - r(2n, t)]

3/2
+

 - [\delta  - r(2n - 1, t)]
3/2
+  - 1

\eta 2
[\delta  - r(2n+ 1, t)]

3/2
+ ,

\"r(2n+ 1, t) =

\biggl( 
1 +

1

\eta 2

\biggr) 
[\delta  - r(2n+ 1, t)]

3/2
+

 - 1

\eta 2
[\delta  - r(2n, t)]

3/2
+  - [\delta  - r(2n+ 2, t)]

3/2
+ .

As with the woodpile chain, the domain includesM = 210 particles, with indices n \in \{  - M/2+
1, . . . ,M/2\} . At each time step, we multiply the solution by the window function (3.47). The
initial condition is given by the leading-order solitary-wave solution (4.8).

We calculate the amplitudes of the far-field waves for precompression parameters of \delta = 5,
\delta = 7.5, \delta = 10, and \delta = 15 with long-wavelength parameters of \epsilon = 0.4, \epsilon = 0.5, and
\epsilon = 0.6 for a range of values of the mass-ratio parameter \eta . As with woodpile chains, we run
each simulation for a sufficiently long time so that the amplitude of the far-field oscillations
appears to reach a constant value. In Figure 8, we present the results of our computations
and compare them to our asymptotic results from (4.37).

We make two observations from Figure 8. First, our asymptotic approximation accurately
predicts the amplitude of the far-field waves for a wide range of values of \eta . Second, ourD
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Figure 8. Comparison of the far-field oscillation amplitudes from asymptotic approximations and numerical
simulations of nanoptera in a diatomic Hertzian chain with precompression parameters of (a) \delta = 3, (b) \delta = 5,
(c) \delta = 10, and (d) \delta = 15. For each value of \delta , we show our computations for long-wavelength parameters of
\epsilon = 0.4, \epsilon = 0.5, and \epsilon = 0.6. Our asymptotic approximation of the far-field amplitude is accurate for a wide
range of values of the mass-ratio parameter \eta , with certain important exceptions. For fixed values of \delta and
\epsilon , two oscillatory wave trains interfere destructively for specific values of \eta . Our asymptotic approximation is
capable of predicting the destructive interference that occurs for \eta \approx 0.32 and \eta \approx 0.22, and the accuracy of our
approximation becomes progressively better for progressively smaller values of \eta . However, the approximation
does not predict the destructive interference that occurs for \eta \approx 0.25 and \eta \approx 0.19. Our approximation for the
antiresonance conditions becomes less accurate for progressively smaller \epsilon .

asymptotic calculation does not always identify the values of \eta for which destructive inter-
ference causes the far-field oscillations to vanish. In each panel of Figure 8, we observe four
values of \eta (these are \eta \approx 0.32, \eta \approx 0.25, \eta \approx 0.22, and \eta \approx 0.19) at which the far-field waves
in our numerical computations vanish; these values have associated localized solitary-wave
solutions. From (4.37), our asymptotic analysis predicts that these values are solutions of

(4.39) cos

\biggl( 
Im(\chi 1 - (\xi ) - \chi 1+(\xi ))

2\eta 
+

\pi 

4

\biggr) 
= 0 ,

which simplifies to solving

2\pi \eta 

\biggl( 
K +

1

4

\biggr) 
=

\surd 
3i

c\epsilon 

\int \xi 1+

\xi 1 - 

\biggl( 
\delta +

(u0(\xi  - 1) - u0(\xi + 1))

2

\biggr) 1/4

ds(4.40)

for integer values of K. The expression (4.40) is an orthogonality condition [1, 44, 56, 57, 93].
Values of \eta that satisfy (4.40) correspond to dips in the asymptotically predicted amplitudeD
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in Figure 8. These values yield localized solitary waves. We see that the condition (4.40)
is capable of predicting the localized solitary waves that arise for \eta \approx 0.32 and \eta \approx 0.22.
However, it fails to predict the localized solitary waves that arise for \eta \approx 0.25 and \eta \approx 0.19.
In fact, our exponential asymptotic analysis appears to systematically miss every second
point (i.e., if it captures one point, then it misses the next point, and vice versa) at which
the oscillations vanish. Additionally, for progressively smaller values of \epsilon , the orthogonality
condition (4.40) becomes progressively less accurate at predicting the values of \eta that give
localized solitary waves.

Systematically missing half of these solitary-wave solutions appears to be a limitation
of the method that we used to obtain our asymptotic expressions. There are several ap-
proximations in our analysis. Notably, we analytically continued the long-wavelength KdV
approximation from the real axis into the complex plane. The orthogonality condition (4.40)
depends on the behavior of u0(\xi ) on a contour that connects the singularities at \xi 1 - and
\xi 1+ (see Figure 6). These singularities are far from the real axis, and their distance from
the real axis increases as the long-wavelength parameter \epsilon decreases. Consequently, it is pos-
sible that errors in this approximation---and, in particular, in the locations of the singular
points---become progressively larger for progressively smaller \epsilon .

Detecting destructive interference involves determining configurations for which two os-
cillations with very short wavelengths precisely cancel each other. The individual Stokes
contributions have wavelengths that are of size \scrO (\eta ) as \eta \rightarrow 0. Errors in the positions of
the singularities on this very short scale are capable of significantly changing the values of \eta 
for which cancellation occurs. It is possible that approximation errors in the leading-order
solution lead to shifts in the singularities in the analytically continued solution. This may dis-
rupt the precise cancellation that is necessary for the manifestation of localized solitary-wave
solutions, causing our asymptotic approximation to miss some of them.

A recent study [56] of a diatomic FPUT chain employed a similar long-wavelength ap-
proximation to approximate that system's leading-order solution, which was then analytically
continued into the complex plane. This analysis yielded asymptotic approximations of all
solitary-wave solutions. It is not apparent why this approach worked effectively for a diatomic
FPUT chain but failed to identify analogous behavior in our diatomic Hertzian chain. This
is an interesting open question that merits further study.

5. Conclusions and discussion. We derived asymptotic approximations for traveling waves
in two particle chains that are singular perturbations of a monoatomic particle chain with pre-
compression. Specifically, we considered a woodpile chain and a diatomic Hertzian chain with
a small ratio between the masses of its two types of particles. The traveling-wave solutions
of these systems are nanoptera, which consist of a solitary wave along with nondecaying
oscillations of exponentially small amplitude.

A monoatomic Hertzian chain supports traveling solitary-wave solutions, which one can
approximate as soliton solutions of the KdV equation under suitable assumptions. We used
this monoatomic solitary wave as the leading-order behavior in both woodpile chains and
diatomic Hertzian chains. In both systems, we found that nondecaying oscillations appear in
the wake of a primary traveling wave. These oscillations arise from the Stokes phenomenon,
in which exponentially small contributions to an analytically continued solution switch on orD
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off as a Stokes curve is crossed in the complex plane.
By employing exponential asymptotic analysis, we obtained an asymptotic form for these

exponentially small contributions, and we used this form to determine the amplitude of the
nondecaying far-field waves that appear behind the leading-order wave. For woodpile chains,
the solution has one Stokes curve, which produces exponentially small oscillations in the re-
gion behind the wave front. We determined an asymptotic approximation of this behavior,
and we compared our asymptotic results with numerical computations. We saw that the as-
ymptotic prediction accurately approximates the wave behavior in the far field. However, the
asymptotic approximation of the far-field wave amplitude becomes progressively less accurate
for progressively smaller values of the precompression parameter \delta . It is possible that this
is a consequence of the inadequacy of examining a weakly nonlinear regime of the woodpile
chain as nonlinear effects become more significant, which causes errors in the description of
exponentially small effects. It would be interesting to study woodpile chains without pre-
compression to investigate whether or not it is possible to analyze the behavior of far-field
oscillations in the strongly nonlinear regime of woodpile systems using exponential asymptotic
methods. We discuss the feasibility of such a study at the end of this section.

We also used exponential asymptotic analysis to study nanoptera in a diatomic Hertzian
chain in which the mass ratio between light and heavy particles is small. We found that there
are two Stokes curves in the analytically continued traveling-wave solution. These produce
two exponentially small oscillations---which have identical amplitude but different phases---
behind the wave front. There exists a set of values of the mass-ratio parameter \eta at which
the oscillations interfere destructively to produce a localized solitary wave.

Our comparison of our asymptotic results and numerical computations in a diatomic
Hertzian chain shows that our exponential asymptotic analysis accurately approximates the
amplitude of the far-field waves for a wide range of values of \eta . However, our computations
also reveal that our asymptotic analysis is unable to detect the wave cancellation that occurs
for several values of \eta . Furthermore, the predicted mass-ratio values that produce wave
cancellation are less accurate than those in analyses of other particle chains (such as the
exponential asymptotic calculations in [56, 57]), particularly for small values of the long-
wavelength parameter \epsilon . It is possible that this inaccuracy arises from our use of a long-
wavelength approximation for the leading-order solution; this approximation may deviate
from the exact solution away from the real axis. This is an important question, as the Stokes
phenomenon depends on the behavior of singularities in the analytically continued solution.
It is worthwhile to study whether using an alternative method of approximating the leading-
order solution can capture all of the values of \eta that cause the oscillations to cancel.

Our work also opens the following interesting questions. In the present study, we used
an asymptotic approach that is similar to the one in [56, 57] and evaluated our asymptotic
approximations by comparing them to numerical computations. It would be interesting to
develop a rigorous existence proof of nanopteron solutions in both diatomic Hertzian chains
and woodpile chains. One possible approach for attempting this is by adapting the Beale-
ansatz method of [26, 40].

As we discussed in section 1, one-sided nanopteron solutions in both woodpile and diatomic
Hertzian chains are metastable because the oscillations slowly draw energy away from the wave
front. This indicates that the wave cannot persist indefinitely; instead, it must eventuallyD
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decay. This decay is not present in the leading-order approximation, nor is it apparent in the
exponentially small oscillations either in the present study or in [56, 57]. The long-time decay
must arise from interactions between the leading-order traveling wave and the exponentially
small oscillations. It would be useful to determine (1) how the leading-order wave and the
exponentially small oscillations interact and (2) whether or not one can detect such interactions
by using an appropriate long-time rescaling or by calculating higher-order corrections to the
oscillatory wave train.

In our analysis, we considered a weakly nonlinear regime for both woodpile and diatomic
Hertzian chains. In principle, one can apply the exponential asymptotic method that was
developed in [17] with a few additional complications to study strongly nonlinear systems,
such as a singularly perturbed Hertzian system without precompression. However, there are
two significant challenges that need to be overcome to undertake such an analysis. The first is
that one no longer has access to a closed-form leading-order solution to analytically continue
in a straightforward fashion. Perhaps it is possible to use the leading-order approximation
that was derived in [83], but it is not apparent whether this approximation is valid if it is
analytically continued away from the real axis. This is an important point to clarify because
the Stokes phenomenon is caused by singularities in the complex plane. The second challenge
relates to the form of the potential (1.2). This potential is not smooth at any point at which
the expression in the brackets is 0. In the present study, the equilibrium displacement \delta 0 from
precompression is at least as large as the difference in the displacement from equilibrium of
any two adjacent particles, so the expression in brackets is always nonnegative and the poten-
tial (1.2) is smooth. Without precompression, however, the expression in brackets can switch
between positive and negative signs, so the potential is not smooth everywhere. An important
direction for future studies is to explore the effects of such a nonsmooth potential on exponen-
tial asymptotic analysis. If these challenges are overcome, it would be useful to compare the
ensuing results with those of uncompressed woodpile [98] and diatomic Hertzian [44] chains.

Appendix A. Determining the prefactor constants. We determine the prefactor constants
for both the woodpile chain and the diatomic Hertzian chain. Assuming that the power series
diverges in a factorial-over-power fashion, it must cease to be asymptotic in small regions near
singularities in the complex plane. Inside this region, the earlier terms in the series are
not larger asymptotically than the later series terms in the limit \eta \rightarrow 0. Describing the
solution behavior near one of these singularities requires obtaining a local expansion of the
solution near the singular point. Once we have obtained this local expansion, we calculate
the prefactor constants in the late-order terms using asymptotic matching to ensure that the
local expansions are consistent with the power-series behavior.

A.1. Woodpile chain. To determine the value of \Lambda +, we match the late-order expansion
in the outer region with the local solution in an inner region near the singularity at \xi = \xi 0+
by using Van Dyke's matching principle.D
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As \xi \rightarrow \xi 0+, we find that

u0(\xi ) \sim  - 1

\alpha  - 1

\delta 

\xi  - \xi 0+
+\scrO (\xi  - \xi 0+) ,(A.1)

u0(\xi + 1) \sim \delta \epsilon 

\alpha  - 1
coth(\epsilon ) +\scrO (\xi  - \xi 0+) ,(A.2)

u0(\xi  - 1) \sim  - \delta \epsilon 

\alpha  - 1
coth(\epsilon ) +\scrO (\xi  - \xi 0+) ,(A.3)

v0(\xi ) \sim  - 1

\alpha  - 1

\delta 

\xi  - \xi 0+
+\scrO (\xi  - \xi 0+) .(A.4)

To locate the relevant inner region, we need to determine where the validity of the late-
order term ansatz breaks down. From the form of the late-order ansatz (3.21), we see that
this occurs for \eta 2\chi  - 2 = \scrO (1) as \eta \rightarrow 0. That is, it occurs for \eta 2(\xi  - \xi 0+)

 - 2 = \scrO (1); this
corresponds to the inner scaling \xi  - \xi 0+ = \eta \xi . From asymptotic balancing, the appropriate
rescaled inner variables are

u(\xi ) =  - 1

\alpha  - 1

\delta 

\eta \xi 
+ \^u(\xi ) ,(A.5)

u(\xi + 1) = \^u(\xi + \eta  - 1) ,(A.6)

u(\xi  - 1) = \^u(\xi  - \eta  - 1) ,(A.7)

v(\xi ) =  - 1

\alpha  - 1

\delta 

\eta \xi 
+

\^v(\xi )

\eta 
.(A.8)

Retaining the leading-order terms as \eta \rightarrow 0, the rescaled inner equation gives

(A.9)  - 1

\alpha  - 1

2\delta 

\xi 
3 +

d2\^v(\xi )

d\xi 
2 =  - k

c2\epsilon 
\^v(\xi ) .

We express \^v as a power series

(A.10) \^v(\xi ) \sim 
\infty \sum 
j=1

vn

\xi 
2j+1

as \xi \rightarrow 0 ,

and we note that we include the leading-order singularity as part of the rescaling process
(A.8). Substituting (A.10) into (A.9) yields

(A.11)  - 1

\alpha  - 1

2\delta 

\xi 
3 +

\infty \sum 
j=1

(2j + 1)(2j + 2)vj

\xi 
2j+3

=  - k

c2\epsilon 

\infty \sum 
j=1

vj

\xi 
2j+1

.

By matching orders of \xi , we obtain the recurrence relation

(A.12) v1 = 2\delta c2\epsilon /(k(\alpha  - 1)) , (2j + 2)(2j + 1)c2\epsilon vj =  - kvj+1 .

Solving the recurrence relation (A.12) gives

(A.13) vj =
1

\alpha  - 1
\delta ( - 1)j+1

\biggl( 
c2\epsilon 
k

\biggr) j

\Gamma (2j + 1) .D
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By comparing the series expression (A.13) with the inner limit of the late-order ansatz, we
obtain

(A.14) \Lambda + = lim
j\rightarrow \infty 

vj(i
\surd 
k/c\epsilon )

2j+1

\Gamma (2j + 1)
=  - 1

\alpha  - 1

i\delta 
\surd 
k

c\epsilon 
.

A.2. Diatomic Hertzian chain. To determine \Lambda 1 - , we match the late-order expansion
in the outer region with a local expansion in an inner region near \xi = \xi 1 - . We perform
this analysis in the neighborhood of \xi = \xi 1 - . From (4.14), we see that the factorial-over-
power ansatz breaks down when \eta 2\chi  - 2 = \scrO (1) as \eta \rightarrow 0. We introduce an inner scaling
\xi  - \xi 1 - = \eta 4/3\=\xi , which gives the rescaled inner variables

u(\xi + 1) =  - 8\delta 

\eta 4/3\=\xi 
+ \^u(\=\xi + \eta  - 4/3) ,(A.15)

u(\xi  - 1) = \^u(\=\xi  - \eta  - 4/3) ,(A.16)

v(\xi ) =  - 4\delta 

\eta 4/3\=\xi 
+

\^v(\=\xi )

\eta 4/3
.(A.17)

Retaining the leading-order terms as \eta \rightarrow 0, the rescaled inner equation gives

 - 8\delta 
\=\xi 3

+
d2\^v(\=\xi )

d\=\xi 2
=

1

c2\epsilon 

\Biggl[ \biggl( 
4\delta 
\=\xi 
 - \^v(\xi )

\biggr) 3/2

 - 
\biggl( 
4\delta 
\=\xi 
+ \^v(\xi )

\biggr) 3/2
\Biggr] 
.(A.18)

We express \^v in terms of the power series

\^v(\=\xi ) \sim 
\infty \sum 
j=1

aj

\=\xi 
3j
2
+1

as \=\xi \rightarrow 0 .(A.19)

Matching the inner expansion (A.19) with the outer ansatz (4.24) yields

\Lambda 1 - = lim
j\rightarrow \infty 

aj i
2j+225j+4\delta j/2+1/2

3j+1/2c2j+2
\epsilon \Gamma (2j + 3/2)

.(A.20)

We numerically compute values for aj by substituting the series expression (A.19) into (A.18)
and solving a recurrence relation for aj in terms of the previous series coefficients. We obtain
an approximation \Lambda \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x} for \Lambda 1 - by evaluating the right-hand side of (A.20) for large values
of j. When we take j to be sufficiently large, we obtain an accurate approximation of the
exact value of \Lambda 1 - .

In Figure 9, we show the behavior of \Lambda \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x} as we increase j; we observe that our ap-
proximation is converging. For sufficiently large values of j, we compute that

(A.21) \Lambda 1 - = 38.41 \delta 3/2/c2\epsilon .

Following the same approach as above yields

(A.22) \Lambda 1+ = i\Lambda 1 - .D
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c2εΛapprox/δ
3/2

j

40

38.41

39.5
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38
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Figure 9. Determining \Lambda \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x} using (A.20) for progressively larger values of j. The dashed line indicates
the value to which the rescaled \Lambda \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x} appears to converge as we increase j.
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