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Detection of functional communities in networks of randomly coupled oscillators
using the dynamic-mode decomposition
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Dynamic-mode decomposition (DMD) is a versatile framework for model-free analysis of time series that are
generated by dynamical systems. We develop a DMD-based algorithm to investigate the formation of functional
communities in networks of coupled, heterogeneous Kuramoto oscillators. In these functional communities, the
oscillators in a network have similar dynamics. We consider two common random-graph models (Watts–Strogatz
networks and Barabási–Albert networks) with different amounts of heterogeneities among the oscillators. In
our computations, we find that membership in a functional community reflects the extent to which there is
establishment and sustainment of locking between oscillators. We construct forest graphs that illustrate the
complex ways in which the heterogeneous oscillators associate and disassociate with each other.
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I. INTRODUCTION

Researchers in myriad disciplines employ networks to
represent entities (i.e., nodes) that interact with each other
through their connections (which are encoded by edges) [1].
Network architecture, in turn, affects the dynamics of systems
that evolve on networks [2]. Network structure can profoundly
impact the spread of diseases [3] and information [4], the
collective behavior of coupled oscillators [5,6], and more.

The analysis of networks plays an increasingly important
role throughout the sciences and engineering, and this is very
prominent in the study of dynamical systems [1,7]. A key
question is how interacting entities in a network form col-
lective structures like communities, which can take the form
of either structural or functional communities. A structural
community is a dense set of nodes that is connected sparsely
to other dense sets of nodes [8,9]. A very large number of
approaches have been developed to algorithmically detect
structural communities in networks. By contrast, considerably
less effort has been devoted to the detection of functional
communities, which are based on the behaviors or dynamics
of the nodes. One way to detect functional communities is
by running a dynamical process on a network, constructing a
new network (a so-called “functional network”) based on the
time-series similarity of the outputs of the network’s nodes,
and then detecting structural communities in the functional
network [10,11]. One can also detect functional communi-
ties using time-series output of experiments. Whether the
time-series output comes from a model or experimental mea-
surements, the focus in functional-community detection is the
behavioral similarity of a network’s entities over time. These

*ccurtis@sdsu.edu

functional communities, whose name is inspired by studies
of functional brain networks in neuroscience [11], arise from
communities in a network in which the edges encode some
type of time-series similarity between the nodes of the net-
work. Another name for such communities is “behavioral
communities.” Functional communities were explored briefly
in [12] using methods from information theory and structural
community detection.

In the present study of functional communities, we con-
sider the setting of coupled oscillators on networks. A network
itself may have community structure (which is based on its
structural communities), which one can examine through one
or more of the myriad available methods for community
detection [9]. Additionally, by examining the dynamics of
coupled oscillators on a network and tracking phenomena
such as synchronization, one can also study the same system’s
functional community structure. This topic was explored by
Arenas et al. [10] in an investigation of coupled Kuramoto os-
cillators on networks. The fact that coupled Kuramoto models
have been studied so extensively [6] makes them an ideal test
case for studies of functional-community detection in coupled
oscillators, with a view towards extending such analysis to
other systems (including experimental ones, such as in the
analysis of neuroimaging data [11]). Although we study cou-
pled oscillators in our work, other types of dynamical systems
on networks can also have functional communities [13].

Arenas et al. [10] studied Kuramoto oscillators that are
coupled to each other on a network with a hierarchical com-
munity structure (with smaller, denser communities nested
inside larger, sparser ones) and they examined how the ar-
chitecture of structural communities affects the formation of
functional communities, as quantified by how long it takes the
oscillators to synchronize. They demonstrated that oscillators
in denser communities synchronize faster than oscillators in
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sparser ones. Variations of coupled Kuramoto oscillators on
networks have also been used to study the coalescence of
functional communities [14,15]. In these papers, the network
architecture was fixed and the researchers sought to partition
the networks based on the dynamics of the oscillators.

In our investigation of functional communities, we take a
different perspective from those in the aforementioned papers.
We seek to detect communities from output dynamics and we
consider both the formation and the disappearance in time
of functional communities. To do this, we use the modal-
decomposition technique that is known as the dynamic-mode
decomposition (DMD). For more information about DMD,
see [16–18] for comprehensive reviews and [19–21] for sur-
veys and discussions of recent extensions. The primary benefit
of the DMD is that it is a model-free data-processing tool that
allows one to generate modal decompositions from arbitrarily
complicated data sets over reasonably chosen time intervals.
Moreover, in contrast to other modal-decomposition methods
(such as principle-component analysis), DMD also gives a
convenient mechanism to generate models from measured
data alone, and it thereby gives a way to sidestep model devel-
opment in situations in which it is difficult or even impossible.

In the present paper, instead of examining synchronization
timescales as a way to partition a network of oscillators, we
generate output data from coupled Kuramoto oscillators on
networks (which we construct from random-graph models)
and identify functional communities using modes that are gen-
erated by the DMD. The flexibility of the DMD allows us to do
this in a time-dependent way, and it thereby makes it possible
to track the formation and disappearance of communities.

Our DMD-based approach provides a straightforward and
flexible way to generate functional communities from a time
series of the nodes of a network. In our study of coupled os-
cillators, the formation of such communities still relies on the
synchronization of subsets of the oscillators, but our approach
does not require the observation of any global attractors
(which do not manifest on the timescales that we examine).
This gives an effective method for identifying functional com-
munities in time series of coupled nonlinear oscillators. We
anticipate that our approach will be applicable to many classes
of time series in which community formation is of interest.
Our work complements the recent results of Kunert-Graf et al.
[22], who used unsupervised learning techniques to cluster
DMD modes to capture spatially and temporarily coherent
patterns in complex signals. Our code is available at [23].

Our paper proceeds as follows. In Sec. II, we give the nec-
essary background and definitions to understand both DMD
and how we generate our data. In Sec. III, we explain our algo-
rithm for the detection of functional communities. In Sec. IV,
we present the results of our numerical experiments. In Sec. V,
we summarize our results and discuss future work.

II. BACKGROUND AND DEFINITIONS

A. Dynamic-mode decomposition

Consider a nonlinear dynamical system of the form

dy
dt

= f (y, t ) , y(0) = x ∈ RNs . (1)

We define the associated flow of (1) by y(t ) = ϕ(t ; x). The
associated Hilbert space of observables is L2(RNs ,R, μ), for
which we use the shorthand notation L2(O), where a function
g : RNs −→ R satisfies g ∈ L2(O) if∫

RNs

|g(x)|2dμ(x) < ∞

for some appropriate measure μ.
One can gain considerable insight by examining the associ-

ated linear representation of the problem. This representation
is given by the infinite-dimensional Koopman operator

Kt : L2(O) → L2(O) .

For g ∈ L2(O), we have that

Kt g(x) = g(ϕ(t ; x)) .

The power of moving to a linear-operator framework is that
we capture the dynamics of the nonlinear system (1), as mea-
sured via observables, using the eigenvalues of Kt . We assume
that Kt has a discrete spectrum. If we can find a basis of
g ∈ L2(O) via the Koopman eigenfunctions h j , which satisfy

Kt h j = etλ j h j ,

then it follows for any other observable g that

g =
∞∑
j=1

c jh j , Kt g =
∞∑
j=1

etλ j c jh j . (2)

It is typically impossible to determine the modes of the
Koopman operator Kt in closed form. Therefore, scholars
have developed the DMD [16–18] and extended DMD [24,25]
for the practical numerical computation of a finite number of
Koopman modes.

To do DMD, we start by sampling the flow ϕ(t ; x) at
discrete times tn = ti + (n − 1)δt (with n = 1, . . . , NT + 1),
where ti is the initial time and δt is a time step, to gen-
erate a data set yn = ϕ(tn, x). If we select the set g =
{gl}M

l=1 of observables such that gl (xl ) = xl and M = Ns,
then the DMD approximates Kδt by computing the spectra
of the finite-dimensional operator K̃a that we obtain by solving
the optimization problem

Ka = arg minK‖Y+ − KY−‖2
F ,

where K is an Ns × Ns matrix and

Y− = [y1y2 · · · yNT ] , Y+ = [y2y3 · · · yNT +1] .

After obtaining the Ns × Ns matrix Ka, we compute its
singular-value decomposition Ka = U�V† [26], where each
factor is an Ns × Ns matrix, U and V are unitary, � is diagonal,
and the dagger denotes the Hermitian conjugate. Follow-
ing the standard convention, we order the diagonal entries
σ1, . . . , σNs (i.e., the singular values) of � so that

σ1 � σ2 � · · · � σNs � 0 .

We then define the diagonal matrix �̃ with diagonal entries

σ̃ j =
{
σ j , log10( σ j

σ1
) � tDMD

0 , log10( σ j

σ1
) < tDMD ,

(3)
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where we set the DMD threshold tDMD to remove singular
values that are more reflective of ill-conditioning in Ka than
of meaningful information. In practice, we take tDMD < 0.
We then work with the matrix K̃a = U�̃V†. See [27] for a
discussion of this DMD method and related approaches.

We let K̃a = �eδt��−1 and write

yn =
Ns∑
j=1

ξ je
n δt λ j h j (x) , h j (x) = (�−1x) j .

The real part of the eigenvalue λ j gives the amplitude of
the jth mode, and the imaginary part of λ j gives its oscilla-
tion frequency. We determine the evolution of the associated
eigenfunctions of the Koopman operator using the formula

h j (yn) = (�−1yn) j .

One measure of error is the extent to which the computed
modes h j (x) behave as Koopman eigenfunctions [21]. To
quantify this, we follow [28] and calculate

E j =
∑NT

n=1 |h j (yn+1) − eδtλ j h j (yn)|∑NT
n=1 |h j (yn)|

for each j ∈ {1, . . . , Ns}. The quantity E j gives a normalized
measure of how well the computed approximations to the
Koopman eigenfunctions and eigenvalues are able to linearize
the dynamics as in (2). We choose a tolerance εm and keep
only the modes that satisfy E j < εm. We denote the number
of the modes that we keep by Nr . We enforce how well
these Nr modes reconstruct the time series by choosing a
reconstruction-error parameter εrc so that

‖Y+ − H‖F

‖Y+‖F
< εrc ,

where H is the matrix with columns

hn =
Nr∑

l=1

ξ jl e
n δt λ jl h jl (x)

and jl indexes the subset of modes that satisfy the criterion
E j < εm.

There is an interplay between the choices of tDMD, εm, and
εrc. It takes effort (e.g., through trial and error) to balance
these parameters to produce meaningful results. For example,
if tDMD is too small (e.g., tDMD = −16, which corresponds
to machine precision on most desktop computers), then one
typically corrupts a DMD computation to the point that there
is no practical way to find reasonable choices of εm or εrc.
However, if tDMD is too large, only a very small number of
modes satisfy the E j < εm criterion, rendering it difficult to
make reasonable choices of εrc. Likewise, setting εm to a value
that is too small can produce excellent approximations to
Koopman modes, but it is hard for the modal reconstruction
to allow reasonable choices of εrc. In Sec. IV, we describe
parameter choices that reflect the necessary balancing.

B. Coupled oscillators on random graphs

We describe a graph (i.e., network) using an associated
adjacency matrix A with elements Ajk . We assume that each of
our graphs, which we assemble using random-graph models,

is undirected. Therefore, their associated adjacency matrices
are symmetric. We also assume that each graph has no self-
edges (so Aj j = 0 for all j) and no multiedges. Finally, we
assume that our graphs are unweighted, so all entries of each
matrix A are either 1 or 0.

To study dynamics on a graph, suppose that each node j ∈
{1, . . . , Ns} is associated with a Kuramoto oscillator [6]. This
yields the dynamical system

θ̇ j = ω j + K

Ns

Ns∑
k=1

Ajk sin(θk − θ j ) , ω j ∼ 1

γ
g̃

(
x

γ

)
, (4)

where θ j ∈ [0, 2π ) is the phase of the jth oscillator, ω j is
the natural frequency of the jth oscillator, K � 0 controls the
coupling strength between oscillators, and g̃(y) is a probability
distribution with mean 0 and width 1 (which constitutes a
variance of 1, provided the variance of the distribution g̃ is
well-defined). Because of our rescaling, the parameter γ is
the variance of the distribution; we obtain identical oscillators
in the limit γ → 0+.

We are interested in the extent to which the oscillators lock.
In the strongest sense, locking means phase locking, which is
defined as

lim
t→∞ θ j (t ) = θp , j ∈ {1, . . . , Ns} . (5)

We also consider frequency locking, which is defined as

lim
t→∞ θ̇ j (t ) = ω f , j ∈ {1, . . . , Ns} .

In typical scenarios, phase locking implies frequency locking
(although this need not be true in the presence of noise [29]),
but the converse is not true in general.

To measure the extent that the oscillators lock, we calculate
the order parameter

rp(t )eiψp(t ) = 1

Ns

Ns∑
j=1

eiθ j (t ) ,

and we note that 0 � rp(t ) � 1. If the oscillators are equally
spaced at time t , such that θ j = 2π ( j−1)

Ns
, then

rp(t )eiψp(t ) = 1

Ns

Ns∑
j=1

(e2π i/Ns )( j−1) = 0 ,

so a value of rp(t ) that is sufficiently close to 0 for finite Ns

indicates an absence of phase locking between the oscillators.
If we satisfy the phase-locking criterion (5), then rp(t ) → 1

and

rp(t )eiψp(t ) → eiθp as t → ∞ .

For frequency locking, it can be true that

θ j (t ) → ω f t + θ j,s as t → ∞ ,

where θ j,s is a phase shift. In this case,

rp(t )eiψp(t ) → eiω f t 1

Ns

Ns∑
j=1

eiθ j,s as t → ∞ . (6)
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Depending on the particular locations of the phase shifts θ j,s,
it is possible that rp(t ) is small in magnitude. However, as
one can see from Eq. (6), we also expect rp(t ) to be al-
most constant in time. We use practical criteria to determine
when oscillators are phase locked and/or frequency locked.
We understand a collection of oscillators as being close to a
phase-locked state when rp(t ) is close to 1 in magnitude and
does not vary much in time. We understand a collection of
oscillators as being close to a frequency-locked state if rp(t )
is not too close to 0 and does not vary much in time.

Because we are characterizing the closeness to locking in
an imprecise way, we do perturbation theory to facilitate the
interpretation of our later numerical results. We perturb with
respect to the mean 〈rp〉 of rp(t ) over the time interval [ti, t f ].
To compute this mean, we calculate

〈rp〉 = 1

t f − ti

∫ t f

ti

rp(t )dt .

For frequency locking, a natural condition for our perturba-
tions is to suppose as t becomes large that we can write each
phase θ j (t ) in the form

θ j (t ) = ω f t + θ̃ j (εt ) , 0 < ε 	 1 . (7)

The ansatz in Eq. (7) allows slow modulations around the
locking frequency, where we control the extent of the slow-
ness using the small positive parameter ε. We see that

rp(t ) =
∣∣∣∣∣ 1

Ns

Ns∑
j=1

eiθ j (t )

∣∣∣∣∣ =
∣∣∣∣∣ 1

Ns

Ns∑
j=1

eiθ̃ j (εt )

∣∣∣∣∣ ,
which demonstrates that rp(t ) varies slowly with respect to
time. We then write the order parameter as rp(t ) = r̃p(εt ),
where

r̃p(εt ) =
∣∣∣∣∣ 1

Ns

Ns∑
j=1

eiθ̃ j (εt )

∣∣∣∣∣ .
Making the reasonable assumption that r̃p(εt ) has a well-
defined derivative ˙̃rp(εt ), we then compare rp(t ) to its mean
value for t ∈ [ti, t f ] and write

rp(t ) − 〈rp〉 = 1

t f − ti

∫ t f

ti

[r̃p(εt ) − r̃p(εs)]ds

= 1

t f − ti

∫ t f

ti

[r̃p(εs + ε(t − s)) − r̃p(εs)]ds

= ε ˙̃rp(εχ )

t f − ti

∫ t f

ti

(t − s)ds [with χ ∈ (ti, t f )]

= ˙̃rp(εχ )
(
εt − ε

ti + t f

2

)
, (8)

where we have used the mean-value theorem for the penulti-
mate equality. This calculation shows that if oscillators vary
slowly around a frequency-locked state, then the variation of
the magnitude of the order parameter around the mean should
(i) also be slow and (ii) be bounded by the magnitude of
the derivative multiplied by the scaled difference between the
time and the midpoint of the time interval over which we

average. As our numerical results demonstrate (see Sec. IV),
frequency locking is more typical than phase locking in our
networks of heterogeneous oscillators. Therefore, throughout
the remainder of our paper, we interpret our results in the
context of Eq. (8).

Similarly, we claim that a reasonable perturbation around
a phase-locked state is

θ j (t ) = θp + εθ̃ j (t ) , 0 < ε 	 1 .

Using the Taylor-series expansion

eiεθ̃ j ≈ 1 + iεθ̃ j − ε2

2
θ̃2

j

yields

rp(t ) ≈
[

1 + ε2

(
m̃2(t ) − 1

Ns

Ns∑
j=1

θ̃2
j (t )

)]1/2

≈ 1 + ε2

2

(
m̃2(t ) − 1

Ns

Ns∑
j=1

θ̃2
j (t )

)

≈ 1 − ε2

2Ns

Ns∑
j=1

[θ̃ j (t ) − m̃(t )]2 , (9)

where

m̃(t ) = 1

Ns

Ns∑
j=1

θ̃ j (t ) .

In the second line of (9), we used the Taylor-series approxi-
mation

√
1 + x2 ≈ 1 + x2/2. From Eq. (9), we can now see

clearly how variances around the mean of the perturbations
of the locked phase θp reduce the magnitude of the order
parameter rp(t ) below 1 and introduce temporal variations.
We also anticipate that if the perturbations θ̃ j vary slowly, then
rp(t ) should also vary slowly.

The issues that arise from the above choice of order pa-
rameter have inspired efforts, such as the use of topological
data analysis [30], to apply data-analysis techniques to study
order parameters in complex systems. Moreover, in addition to
the global order parameter that we employ, one can calculate
other order parameters to examine localized locking in subsets
of oscillators [31–33]. Applying a DMD approach with these
alternative order parameters is worthwhile to explore in future
research efforts.

Additionally, as was shown in [34], one can derive ana-
lytical criteria that guarantee phase locking of some subset
of Kuramoto oscillators on a network. Specifically, in the
asymptotic limit of infinitely many oscillators and arbitrarily
long times, there is necessarily some locking of some subset
of the oscillators if

γ < γc , γc = πNsKg̃(0)σ A
max

2
,

where σ A
max is the largest eigenvalue of the adjacency matrix A.

However, the number of oscillators that lock (and the number
of communities of oscillators that lock) is not determined by
this criterion. Moreover, in the present paper, we consider
systems with a relatively small number of oscillators, so we
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are far away from the asymptotic regime that was studied in
[34].

III. ESTIMATION OF LOCKING AND
FUNCTIONAL-COMMUNITY DETECTION USING THE

DYNAMIC-MODE DECOMPOSITION

To measure the amount of locking among the oscillators
in the time interval [ti, t f ], we examine the collection {ξm}Nr

m=1
of Koopman modes. We define the overlap matrix Co with
elements

Co
jl =

∣∣∣∣∣
Nr∑

m=1

ξ̂m, j ξ̂
∗
m,l

∣∣∣∣∣ , ξ̂m = ξm

‖ξm‖2
.

Using the Cauchy–Schwarz inequality, we know that

0 � Co
jl � 1 .

We also see that Co is symmetric. Using a threshold Ccr ∈
(0, 1), we construct graphs of the strongest interactions by
generating an adjacency matrix A(md)(ti, t f ) with elements

A(md)
jl (ti, t f ) =

{
1 , Co

jl � Ccr

0 , Co
jl < Ccr .

Because Co is symmetric, it is also true that A(md)(ti, t f ) is
symmetric and thus that its associated graph is undirected. In
a given time interval, we say that subsets of the oscillators
belong to a community if they are a part of the same connected
component of this graph.

We expand on this notion of community to track the merg-
ing, splitting, formation, and dissolution of communities over
time. This adds to a growing body of literature on detect-
ing communities in time-varying networks; see, for example,
[11,35–37]. We separate a fixed time interval [ti, t f ] into nw

subintervals {I j}nw

j=1 of equal length. We also generate nw − 1

equally spaced intervals {Ĩ j}nw−1
j=1 that connect the midpoints

of the I j intervals. We order these intervals to give a total of
2nw − 1 intervals Ī j such that

Ī j =
{

I( j+1)/2 , 1 ≡ j mod 2
Ĩ j/2 , 0 ≡ j mod 2 .

With this construction, our collection of intervals overlaps
in time. We generate a sequence of communities using the
sequence

{A(md)(Ī j )}2nw−1
j=1

of adjacency matrices. We use overlapping time intervals to
help ensure some continuity of the communities from one
interval to the next. See [38] for further exploration of this
issue.

To study how communities evolve over time, we define a
time-dependent graph Gti,t f that tracks community relation-
ships across time. To generate this graph, for the first time
interval Ī1, we use A(md)(Ī1) to obtain communities {Ck (Ī1)}Nc,1

k=1
of oscillators in which each community corresponds to one
connected component of the graph that is associated with
A(md)(Ī1). Each of these communities corresponds to an in-
dividual node in Gti,t f . After initializing Gti,t f , we generate
successive graphs in a sequence using the following recursive

Algorithm 1. Thresholding algorithm for functional-community
detection.

Given a time series {yn}Ns
n=1 in the time interval [ti, t f ]

Require: Choose Ccr and nw . Separate the interval [ti, t f ]
into overlapping subintervals {Ī j}2nw−1

j=1 .
Output: Community-relationship graph Gti,t f

for j ∈ {1, . . . , 2nw − 1} do
1. Compute the DMD of the portion of the time series

that is in the interval Ī j .
2. Compute the overlap matrix Co and

its associated adjacency matrix A(md)(Ī j ) using
the threshold Ccr.

3. Compute the associated communities {Ck (Ī j )}Nc, j
k=1.

For each of the Nc, j communities, add a node to Gti,t f .
if j > 1 then

for k ∈ {1, . . . , Nc, j} do
for l ∈ {1, . . . , Nc, j−1} do

if Ck (Ī j ) ⊆ Cl (Ī j−1) then
Form an edge between the corresponding

nodes in Gti,t f .
Break

end if
end for

end for
end if

end for

process. Assuming that we have constructed Gti,t f up to the
jth interval, we place an edge between the kth community
Ck (Ī j ) from A(md)(Ī j ) and the lth community Cl (Ī j+1) from
A(md)(Ī j+1) if the nodes in Ck (Ī j ) are identical to or are a
subset of those in Cl (Ī j+1). Otherwise, if the nodes in Ck (Ī j )
are not contained within a community or have fractured into
smaller communities at the ( j + 1)th interval, then Ck (Ī j )
terminates at the jth interval. This process ensures that Gti,t f

is a forest that adaptively connects communities to each other
across time based on the relative overlaps of Koopman modes.
In our numerical computations (see Sec. IV), we observe
coalescence of communities when there is phase locking or
frequency locking. We summarize our community-detection
algorithm to generate community-relationship graphs Gti,t f in
Algorithm 1.

IV. NUMERICAL EXPERIMENTS

We now conduct a variety of numerical experiments to
examine how successfully DMD can detect functional com-
munities in networks of Kuramoto oscillators. Our networks
have Ns = 800 oscillators, and the coupling parameter is
K = 10. We examine networks with as many as Ns = 3200
oscillators and we obtain results (not shown) that are simi-
lar to the ones that we discuss below. We draw the natural
frequencies of the oscillators from a Gaussian distribution,
so γc = 4000

√
πσ A

max. Given this choice of distribution, we
expect that at least a subset of the oscillators will become at
least nearly locked because σ A

max > 1 in all of our experiments.
We use a second-order Runge–Kutta solver with a step size
of δt = 0.05 to integrate the Kuramoto model (4). We run
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all simulations up to t f = 800. From t = 760 to t f = 800,
we perform DMD on the circle around which the oscillators
move, so we use the coordinates (cos[θ j (t )], sin[θ j (t )]).

We set the DMD threshold in Eq. (3) to tDMD = −4, the
error threshold of the DMD modes to εm = 10−1, and the
reconstruction error to εrc = 10−1. As we described at the end
of Sec. II A, these parameter choices reflect a balance that we
obtain through trial and error. In our numerical experiments,
we report results for heterogeneity parameters γ = 0.1, γ =
1, and γ = 10. Although smaller values of γ (indicating more
homogeneous oscillators) allow wider viable ranges for the
three DMD parameters, our choices work well across the
two-decade range of the values of γ .

In our simulations, we use two classical random-graph
models (RGMs): the Barabási–Albert (BA) preferential-
attachment model [39] and the Watts–Strogatz (WS) small-
world model [40]. After specifying the parameter values of an
RGM, we generate a single network from the model. When
we simulate the Kuramoto oscillators on either network, we
initialize our dynamical system with Ns oscillators that we
space uniformly around a circle. In the following paragraphs,
we indicate the specific variants and parameter values that we
discuss for these models. We also examined other parameter
choices for these RGMS, and we obtained similar results.

For our BA network, we start with a seed network of n =
10 nodes with edges that we choose according to a G(n, p)
Erdős–Rényi model with an independent, uniform probability
of p = 0.75 for placing an edge between nodes. At each time
step, we add a new node to the network; this node has four
edges that we connect uniformly at random (without replace-
ment) to existing nodes. We grow our BA network until it
consists of Ns = 800 nodes.

Our WS network also has Ns = 800 nodes. We start with
a ring lattice in which each node is adjacent to Knbh = 20
nearest neighbors. We then rewire the network as follows.
Starting at the jth node n j , we consider half of its nearest-
neighbor nodes, where the specific neighbors nl are those with
the indices

l = l̃ mod Ns , j < l̃ � j + Knbh

2
.

For each nl , with probability β, we do the following:
(i) We choose a node nk uniformly at random from the

nodes that are not adjacent to nj .
(ii) We remove the edge e jl that connects n j to nl .
(iii) We add an undirected edge e jk to connect n j to nk .

As we iterate through the nearest neighbors of nj , we do
not allow rewiring to any nodes that currently or formerly
are nearest neighbors. However, such a nearest-neighbor con-
nection can arise again when we rewire connections from
other nodes after we have moved on from nj . Therefore, it is
possible for nearest-neighbor edges to be removed and added
back again, although this is not common. In our simulations,
we set the rewiring probability to β = 0.6. As discussed in [1],
the rewiring process drastically reduces the mean geodesic
distance between nodes from that of the initial ring lattice.

FIG. 1. Local clustering coefficient Ct ( j) of each node j in (a) a
Barabási–Albert network and (b) a Watts–Strogatz network. The
horizontal line indicates the mean value of Ct ( j). Neither of these
networks tends to have particularly large clustering coefficients,
although the mean local clustering coefficient is larger in the WS net-
work than in the BA network because of the nature of the associated
RGMs.

In each of our examples, we study the structure of the
largest connected component (LCC) of the graph1 that is
associated with the adjacency matrix A(md)([760, 800]). Our
method of detecting functional communities always generates
some output (regardless of whether it is interpretable). It is in-
structive to examine the details of the predominant community
that we obtain in the final examined time interval. We thereby
improve our understanding of the meaning of the communities
that we obtain using our approach. To help illustrate the struc-
ture of the LCC, we compare the local clustering coefficients
of the LCC to those in the original RGM. Note that all of our
subsequent calculations with the oscillators in the LCC use
the time-series output of our original simulation. This yields
our order parameters.2

For the jth node of a network, we calculate the local
clustering coefficient [1]

Ct ( j) = number of triangles through node j(d j

2

) ,

where
(d j

2

)
denotes the number of ways to choose 2 of d j

items and d j denotes the degree of node j. In Fig. 1, we plot
the local clustering coefficients of each node in networks that
we construct using the BA and WS models. For most nodes,
Ct ( j) is not particularly large for either RGM. Therefore, we
do not expect to observe particularly modular structural com-
munities in either RGM. In the WS model, the local clustering
coefficients tend to be small because the rewiring probability
is large.

To generate communities such as the LCC, we set the
threshold of the correlation graph to be Ccr = 0.99, except for
the WS network with heterogeneity parameter γ = 10, where

1For expository convenience, we typically describe these LCCs as
properties of the adjacency matrices themselves. We sometimes also
refer to these adjacency matrices as networks.

2We consider all of the oscillators when computing these order
parameters. In particular, we do not compute the order parameters
by simulating Kuramoto dynamics using only oscillators that are in
the LCC.
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we use Ccr = 0.98. We do this because the threshold Ccr =
0.99 only yields one or two oscillators in the LCC, which
makes it difficult to measure locking. Using a slightly smaller
value of Ccr in this case ameliorates this issue and yields more
intelligible results. Among the values of Ccr that we examine,
these parameter choices typically produce the best community
discrimination across the examined values of γ . Smaller val-
ues of Ccr generate fewer (and larger) communities. At large
values of γ , this can allow too much heterogeneity within
communities, and we then observe little to no locking. For
example, using Ccr = 0.95 yields very similar results as Ccr =
0.99 when γ = 0.1, but it yields communities with much less
locking than for Ccr = 0.99 when γ = 1 or γ = 10 in the
BA model. Our observations for the WS model are similar.
Arguably, it may be desirable to allow the value of Ccr to
change to adjust to the known heterogeneity (as quantified
by γ ) of the oscillators and produce communities with the
most locking, but this increases the difficulty of comparing the
functional communities that we obtain for different values of
γ . Therefore, we use the value Ccr = 0.99 for most of our case
studies to facilitate exposition and consistency in reporting
results.

Because we know about a key measurable aspect (which,
in our case, is the amount of locking of the oscillators) of
the underlying model, we are able to adjust our choices of
parameter values to account for it. We expect our approach
to be useful for problems in which the dynamics includes
a similarly recognizable and quantifiable feature. There are
many ways to define and identify such features in what one
can call the task of “coherent-structure identification.” (See
[41–43] for discussions of coherent structures in fluids and
other dynamical systems.) Without such features, our DMD
approach is likely to produce arbitrary results that are difficult
to analyze and verify, and we would not suggest using our
method in such situations.

It is also worth considering other RGMs and multiple
instances of an RGM with the same parameter values. We
performed calculations using stochastic block models [1] and
obtained results that are similar to those that we report in the
present paper. If one considers multiple instances of an RGM,
one can average over the Co matrices to obtain a consensus
matrix and then do community detection using the consensus
matrix. This is an interesting question that is worth exploring
in future work.

A. Weakly heterogeneous oscillators: γ = 0.1

We first consider oscillators that are only weakly hetero-
geneous by examining the case γ = 0.1. As one can see in
Figs. 2(a) and 2(b), in which we compare the distribution of
oscillator frequencies θ̇ j at t = 0 and t = t f = 800, the mostly
homogeneous natural frequencies of the oscillators tends to
yield frequency locking. In these figures, we also observe
differences that arise from the different network topologies
of WS and BA networks. There is only a small amount of
locking in the BA network, whereas the WS network is in
an almost fully locked state. The similarity in the dynamics
of the oscillators and the relatively long simulation times in
both networks results in a relatively modest number of DMD

FIG. 2. The (a,b) frequency distributions and (c,d) DMD spectra
for weakly heterogeneous Kuramoto oscillators (i.e., when γ = 0.1).
We show our results for (a,c) a BA network and (b,d) a WS network.
In (a) and (b), we plot the distributions of θ̇ j at t = 0 and t = t f .
Observe that the WS network clearly exhibits locking, whereas the
BA network does not have a significant shift in the initial distribution
of oscillator frequencies. In (c) and (d), we show the associated
DMDs of these networks. The BA network has a smaller frequency
range than the WS network, as one can see in the values of Im(λ).
Additionally, the larger range of Re(λ) values in the WS network
than in the BA network indicates that the former experiences larger
changes in DMD-mode amplitudes. In (a) and (b), “Osc.” stands for
“Oscillator.”

modes [see Figs. 2(c) and 2(d)], with only about ten modes in
each case.

In Figs. 3(a) and 3(b), we show the sizes of the communi-
ties that we generate with a given correlation-graph threshold.
In both the BA and WS networks, the LCC of A(md) is the
largest community by far and almost all other oscillators be-
long to their own single-oscillator communities. As expected
from the locking dynamics, the LCC is much smaller in the
BA network than in the WS network. In Figs. 3(c) and 3(d),
we see that the mean local clustering coefficient in the BA
network is smaller than that in the WS network. However, in
both networks, the values of the local clustering coefficient
are markedly larger in the LCC of A(md) than in the original
adjacency matrices of these networks. Compare Figs. 3(c) and
3(d) to Figs. 1(a) and 1(b).

In Fig. 4, we plot the order parameters both for the orig-
inal BA and WS networks and for the associated LCCs of
A(md). We see in Figs. 4(e) and 4(f) (which we obtain after
applying the thresholding from Algorithm 1) that the order-
parameter magnitude rp(t ) oscillates less around the mean
than in Figs. 4(a) and 4(b). By comparing the real parts of
the phases of the order parameters in Figs. 4(c) and 4(g), we
see that the LCC of the BA network has stronger frequency
locking than the original network. By contrast, given that the
original WS network is almost fully phase locked, its LCC
only exhibits a little bit more phase locking [see Figs. 4(d)
and 4(h)].
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FIG. 3. The (a,b) numbers of nodes in each connected compo-
nent of A(md) and the (c,d) local clustering coefficients of the nodes
in the LCC of A(md) of the BA and WS networks for oscillators with
γ = 0.1. The horizontal line in (c) and (d) indicates the mean value
of the local clustering coefficient. We show our results for (a,c) a BA
network and (b,d) a WS network. In both the BA network and the
WS network, the LCC is the largest community by far. Additionally,
in both networks, the local clustering coefficients of the nodes in
the LCC of A(md) are markedly larger than the baseline values in
the original networks in Fig. 1. In (a) and (b), “Comm.” stands for
“Community.”

B. Moderately heterogeneous oscillators: γ = 1

As we anticipated and confirmed in our numerical compu-
tations, the small variance in the distribution of frequencies ω j

when γ = 0.1 tends to result in locked states. The situation is
starkly different when γ = 1 and the natural frequencies of
the oscillators are thus much more heterogeneous. As we can
see in Figs. 5(a) and 5(b), the system does not appear to reach
a locked state on the same timescales that we observed when
γ = 0.1. Additionally, the DMD spectra in Figs. 5(c) and 5(d)
now have about 50 modes, indicating a far greater complexity
in the dynamics when γ = 1 than when γ = 0.1. This, in turn,
results in much smaller functional communities [see Figs. 6(a)
and 6(b)]. Nevertheless, for both γ = 0.1 and γ = 1, the local
clustering coefficients of the LCC of the A(md) networks are
much larger than those in the original networks.

This clear absence of locking is echoed in Figs. 7(a) and
7(b), which reveal that the order-parameter magnitudes rp(t )
are markedly more oscillatory when γ = 1 than they are when
γ = 0.1. Additionally, we do not observe steady oscillations
in cos[ψp(t )]; see Figs. 7(c) and 7(d). We see in Figs. 7(e) and
7(f) that in the LCC of A(md), the oscillations of rp(t ) around
the mean are slower than those in the original networks. Using
Eq. (8), we attribute this observation to the associated much
stronger frequency locking of the oscillators in the LCC.
The far steadier and more uniformly oscillating phases in
Figs. 7(g) and 7(h) than in Figs. 7(c) and 7(d) corroborate this
observation.

FIG. 4. The (a,b,e,f) order-parameter magnitude rp(t ) and
(c,d,g,h) real part cos[ψp(t )] of the order-parameter phase for the
BA and WS networks with weakly heterogeneous oscillators (i.e.,
when γ = 0.1). We show our results for (a,c,e,g) a BA network and
(b,d,f,h) a WS network. Our results for the original two networks are
in (a)–(d) and our results for the LCCs of A(md) of these networks
are in (e)–(h). The horizontal line in (a), (b), (e), and (f) indicates the
mean 〈rp(·)〉 of the order-parameter magnitude. In the BA network,
we observe stronger frequency locking in the LCC of A(md) than in
the original network because the former has slower variations in rp(t )
around the mean and a phase that behaves more regularly. In the
WS network, we see evidence that the LCC of A(md) has more phase
locking than in the original network.

C. Strongly heterogeneous oscillators: γ = 10

Finally, we examine strongly heterogeneous oscillators by
setting γ = 10. Recall that we use a threshold of Ccr = 0.99
for the BA model and a threshold of Ccr = 0.98 for the WS
model. We use a smaller threshold for the WS model to
ensure that there are enough oscillators in the LCC to obtain
meaningful measurements. Based on our previous results, we
anticipate that we are unlikely to observe locking in any sig-
nificant fraction of the oscillators on the timescales that we
examine. Our computations in Fig. 8 confirm this expectation.

In Figs. 8(a) and 8(b), we see that there is almost no change
in the frequency distributions during our simulations. This
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FIG. 5. The (a,b) frequency distributions and (c,d) DMD spec-
tra for moderately heterogeneous Kuramoto oscillators (i.e., when
γ = 1). We show our results for (a,c) a BA network and (b,d) a WS
network. We plot the distributions of θ̇ j at t = 0 and t = t f for (a) a
BA network and (b) a WS network. When γ = 1, the characteristics
of the networks from the two RGMs are much less distinguishable
than when γ = 0.1. However, the DMD spectra still have some
differences, such as how eigenvalues cluster on the imaginary axis.
In (a) and (b), “Osc.” stands for “Oscillator.”

FIG. 6. The (a,b) numbers of nodes in each connected compo-
nent of A(md) and the (c,d) local clustering coefficients of the nodes
in the LCC of A(md) of the BA and WS networks for oscillators with
γ = 1. The horizontal line in (c) and (d) indicates the mean value of
the local clustering coefficient. We show our results for (a,c) a BA
network and (b,d) a WS network. The LCCs are still markedly larger
than any other community, but they are much smaller than they are
when γ = 0.1. In both networks, the local clustering coefficients of
the nodes in the LCC of A(md) are again markedly larger than the
baseline values in the original networks in Fig. 1, although this is
now less extreme than when γ = 0.1. In (a) and (b), “Comm.” stands
for “Community.”

FIG. 7. The (a,b,e,f) order-parameter magnitude rp(t ) and
(c,d,g,h) real part cos[ψp(t )] of the order-parameter phase for the
BA and WS networks when γ = 1. We show our results for (a,c,e,g)
a BA network and (b,d,f,h) a WS network. Our results for the original
two networks are in (a)–(d) and our results for the LCCs of A(md)

of these networks are in (e)–(h). The horizontal line in (a), (b), (e),
and (f) indicates the mean 〈rp(·)〉 of the order-parameter magnitude.
In both the BA network and the WS network, the LCC of A(md)

has much stronger frequency locking (as one can see by the slow
variation in both rp(t ) and cos[ψp(t )]) than in the original networks.

yields a complicated DMD spectra, with approximately 340
eigenvalues for each network, in Figs. 8(c) and 8(d). The
community counts in Figs. 9(a) and 9(b) reveal that even the
LCCs of A(md) have only seven oscillators for each network.
However, as one can see in Figs. 9(c) and 9(d), these LCCs
still have larger local clustering coefficients than the original
networks.

In Fig. 10, we see that the functional community of oscil-
lators that consists of the LCC of A(md) is markedly closer
to frequency locking than is the case for those oscillators in
the original network. This arises from the larger, less oscil-
latory values of rp and less erratic dynamics of cos[ψp(t )]
in Figs. 10(e)–10(h) than in Figs. 10(a)–10(d). Therefore, al-
though few oscillators are in these communities when γ = 10
(with the vast majority of oscillators wandering incoherently),
these few oscillators are much closer to being locked than in
the original network.
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FIG. 8. The (a,b) frequency distributions and (c,d) DMD spectra
for strongly heterogeneous Kuramoto oscillators (i.e., when γ = 10).
We show our results for (a,c) a BA network and (b,d) a WS network.
We plot the distributions of θ̇ j at t = 0 and t = t f for (a) a BA
network and (b) a WS network. It is now difficult to distinguish
between the networks from the two models, although we still observe
slight differences in the DMD spectra. In (a) and (b), “Osc.” stands
for “Oscillator.”

FIG. 9. The (a,b) numbers of nodes in each connected compo-
nent of A(md) and the (c,d) local clustering coefficients of the nodes
in the LCC of A(md) of the BA and WS networks for oscillators with
γ = 10. The horizontal line in (c) and (d) indicates the mean value
of the local clustering coefficient. We show our results for (a,c) a
BA network and (b,d) a WS network. The large spread in oscillator
frequencies for these strongly heterogeneous oscillators prevents the
formation of large LCCs, and no community has more than a few
oscillators in it. Nevertheless, the local clustering coefficients of the
nodes in the LCC of A(md) are still larger than the baseline values in
the original networks in Fig. 1. In (a) and (b), “Comm.” stands for
“Community.”

FIG. 10. The (a,b,e,f) order-parameter magnitude rp(t ) and
(c,d,g,h) real part cos[ψp(t )] of the order-parameter phase for the
BA and WS networks when γ = 10. We show our results for (a,c,e,g)
a BA network and (b,d,f,h) a WS network. Our results for the original
two networks are in (a)–(d) and our results for the LCCs of A(md) of
these networks are in (e)–(h). The horizontal line in (a), (b), (e), and
(f) indicates the mean 〈rp(·)〉 of the order-parameter magnitude. The
networks from both models have more frequency locking in the LCC
of A(md) than in the original networks.

D. Community dynamics

Now that we have established our method of generating
functional communities of oscillators in a manner that is con-
sistent with their dynamics, we compare how communities
form when γ = 0.1 (i.e., the case of weakly heterogeneous
oscillators) in the two RGMs. In Fig. 11, we see that com-
munity formation occurs in starkly different ways in the
two models, as the BA network has a far weaker ten-
dency towards community coalescence than the WS network.
However, in both of these networks, we observe coalescing
communities that eventually cease to propagate. Our no-
tion of functional communities allows us to examine their
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FIG. 11. Community-relationship graphs Gti,t f for weakly het-
erogeneous oscillators (i.e., γ = 0.1) for (a) a BA network and
(b) a WS network for the time interval [600, 800] (so ti = 600 and
t f = 800) across overlapping intervals of 40 time units (i.e., with
nw = 5). Time runs from top to bottom. This plot illustrates how
functional communities, which consist of oscillators with similar
dynamics, evolve over time.

temporal evolution and thereby capture some details of the
dynamics of the coupled oscillators.

V. CONCLUSIONS AND DISCUSSION

Using dynamic-mode decomposition, we developed a ver-
satile approach for identifying functional communities of
heterogeneous coupled oscillators on networks. We examined
coupled Kuramoto oscillators on networks that we constructed
from random-graph models, and we identified functional com-
munities of oscillators based on how much they exhibit phase
locking and frequency locking. These functional communities
arise through clustering in graphs of community relation-
ships, and the clustering coefficients in these graphs are
larger than the clustering coefficients in the original networks.
Unsurprisingly, in concert with associated synchronization
properties, these functional communities are stronger for net-
works of weakly heterogeneous oscillators than they are for
networks of strongly coupled oscillators. The community-
relationship graphs, which take the form of forests, encode
the interactions between the oscillators and provide a way
to visualize their complicated dynamics over time. We ob-
served coalescence of communities when oscillators exhibit
phase locking or frequency locking. Additionally, from our
community-relationship graphs, we observed that BA net-
works and WS networks yield functional communities with
different community-coalescence properties.

Our results are promising, and it is important to test them
in increasingly challenging scenarios. The Kuramoto model
is very well-studied [6], so it useful to examine it as a start-
ing point for developing approaches like ours. However, it
is desirable to challenge our approach with other models of
coupled oscillators, other dynamical systems, and time-series
output of natural observations and laboratory experiments.
Additionally, we only examined coupled oscillators with un-
correlated natural frequencies, and it will be fascinating to
apply our approach to examine dynamics in the presence of
such correlations.
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