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In many studies, it is common to use binary (i.e., unweighted) edges to examine networks of entities that
are either adjacent or not adjacent. Researchers have generalized such binary networks to incorporate edge
weights, which allow one to encode node—node interactions with heterogeneous intensities or frequencies (e.g.,
in transportation networks, supply chains, and social networks). Most such studies have considered real-valued
weights, despite the fact that networks with complex weights arise in fields as diverse as quantum information,
quantum chemistry, electrodynamics, rheology, and machine learning. Many of the standard network-science
approaches in the study of classical systems rely on the real-valued nature of edge weights, so it is necessary
to generalize them if one seeks to use them to analyze networks with complex edge weights. In this paper, we
examine how standard network-analysis methods fail to capture structural features of networks with complex
edge weights. We then generalize several network measures to the complex domain and show that random-walk
centralities provide a useful approach to examine node importances in networks with complex weights.
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I. INTRODUCTION

Network analysis has provided useful insights into many
physical, biological, and social phenomena [1]. There has
been a wealth of research both about network structure and
about the effects of network structure on dynamical processes
(including opinions and social influence, the spread of infec-
tious diseases, and synchronization) [2]. If information about
the intensity of interactions (and hence about the coupling
strengths) between nodes is unavailable, unweighted networks
provide a reasonable starting point to study structural features
of systems in which one can describe nodes as either in contact
(or otherwise interacting) or not in contact. However, in many
applications, it is useful to use edge weights to account for the
intensities or frequencies of interactions between nodes. For
example, researchers have used weighted edges to describe
the contact frequencies between individuals in human social
networks [3], passenger flows in air-transportation networks
[4], interactions between different parts of a protein molecule
[5], and much more.

The vast majority of research on weighted networks has
focused on networks with real-valued edge weights [4,6—
9] and node weights [10]. However, networks with complex
weights arise in many scientific and engineering applications
(see Table I), and it is necessary to adapt and reformulate ex-
isting network-analysis methods to study them. In the present
paper, we extend ideas from the analysis of network structure
to networks with complex weights.
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In quantum physics [11-13], one defines wave functions
and their unitary evolution in complex vector spaces. Recent
experiments provide strong evidence that real-valued formu-
lations of the standard framework of quantum physics [14]
fail to capture physical reality [15-17]. In classical physics
(e.g., in fluid dynamics and electrodynamics), complex values
allow one to simplify mathematical descriptions of wave-like
phenomena. Additionally, researchers in machine learning,
neuroinformatics, and allied subjects have a long history of
exploiting complex-valued weights in the analysis and appli-
cation of artificial neural networks [18-20]. Researchers have
also examined the effects of complex weights in models of
biological neuronal dynamics [21,22].

Network analysis has yielded insights into individual quan-
tum systems, quantum networks that one can construct using
entangled states or physically interconnected systems, and
a variety of other quantum phenomena [70,71]. In quan-
tum physics, one can think of Hermitian matrices that are
associated with the Hamiltonian of an isolated quantum sys-
tem as an adjacency matrix with real-valued diagonal terms
(i.e., energy terms) and complex-valued off-diagonal terms,
which describe changes in amplitude during a transition from
one state to another state. The connection between modular-
ity maximization and node-occupation properties of random
walks has been used to identify communities in such networks
[72]. Complex weights also arise in interferometer networks
[73], Dirac equations on networks [74,75], quantum cellular
automata [76], and “Vdovichenko’s method” [77] to derive
random-walk—based solutions of the Ising model on a two-
dimensional (2D) lattice [78,79].

In electrodynamics, one can interpret a network with real-
valued edge weights as a network of resistors with weights
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TABLE I. Summary of a variety of application areas of networks with complex weights. For the indicated applications in electrostatics and
rheology (which we mark with *), one can use complex node weights to describe heterogeneous materials that are subject to heterogeneous
electromagnetic and force fields. All other listed applications primarily use edge weights. A v" indicates that a subject includes examples with
Hermitian weight matrices, and a X indicates that a subject includes examples with non-Hermitian weight matrices.

Subject Some applications W =wT References
Quantum information Description of quantum walks v [23-31]
Condensed-mater physics Ineractons bemeen clctrons and magnetic felds * [32-351
Mathematical chemistry Structural properties of molecules XV [36-38]
Impare s sion oeiints o s . 0.4
Electrostatics Complex permittivities and permeabilities* X [39]
Comples sorge i s ol . o
Computational social science Social-network analysis v [49,50]
Complex-valued neural networks;
Machine learning giigﬁ Islfglilr;l ngzve(irsl;i:g, XV [51-65]
Sparsification of magnetic Laplacians
Linear algebra Hermitian directed graphs v [66-69]

that encode resistance values. One can use complex weights
to describe impedance and admittance values in more general
transmission-line networks, such as in lumped-element mod-
els of coupled transmission lines that include resistors, coils,
and capacitors [40-47].

In applications of machine learning, allowing edge weights
to take complex values can substantially improve the per-
formance of artificial neural networks. In comparison to
their real-valued counterparts, complex-valued neural net-
works can have better accuracies, convergence properties, and
capacities to produce nonlinear decision boundaries (even
for small numbers of neurons) [58]." A variant of complex-
valued neural networks called “phasor neural networks” have
been used to construct associative memory [51-53], and a
complex-valued generalization of the original Hopfield net-
work [80-82] has been trained in image-retrieval tasks using
Hebbian learning [57]. To train complex-valued artificial
neural networks with gradient-based methods, researchers de-
veloped a version of the backpropagation algorithm that can
update complex-valued weights and biases [54,55].

In Table I, we indicate several application areas of net-
works with complex edge weights and/or complex node
weights. This table does not give a rigid classification; instead,
it illustrates a variety of areas in which networks with complex
weights arise. Because of the connection between complex ad-
jacency matrices and network descriptions of quantum trans-
port of charged particles [34,83], some researchers refer to a
complex adjacency matrix as a “magnetic adjacency matrix”

'For example, one can use a single layer with two complex-valued
neurons to represent conic sections (i.e., parabolas, ellipses, and
hyperbolas). A single layer with two real-valued neurons can only
represent linear functions [58,59].

in this context [84—-86]. One can use a complex adjacency
matrix to construct a “magnetic Laplacian”, which has been
used for applications such as graph visualization [87] and
has been integrated into graph neural networks to study node
classification and edge inference (i.e., “edge prediction”) in
directed networks [60,61]. Researchers have also examined
sparsification of magnetic Laplacians [65], and a recent study
[50] examined the spectral properties of magnetic Laplacians
that are associated with networks with complex weights.
Many of the works that we list in Table I focus on Hermitian
weight matrices W (i.e., weighted adjacency matrices that sat-
isfy W = W"). Complex weight matrices in electrodynamics,
electrostatics, and materials science may not be Hermitian,
as they describe heterogeneous materials or materials that
are subject to heterogeneous fields [39,48]. Non-Hermitian
weight matrices also arise in multi-agent control [88,89].

In the present paper, we examine several issues with the
application of standard network-analysis methods to networks
with complex weights. We also explore a variety of connec-
tions to physical systems that help us interpret the meaning of
complex weight matrices.

In Sec. II, we give a mathematical definition of net-
works with complex weights and we then discuss the
relationship between such networks and random walks and
opinion consensus [90]. As analogs of classical random walks
and DeGroot consensus dynamics, we show that Hermitian
complex weight matrices induce continuous-time quantum
walks (CTQWs) and phase-synchronization dynamics that are
related to the Schrodinger—Lohe model, which is a general-
ization of Kuramoto dynamics to non-Abelian oscillators and
quantum oscillators [91-95]. In Sec. III, we identify another
connection to phase synchronization by defining appropri-
ate local network measures [4], such as a complex-valued
node strength and a complex-valued weighted clustering
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coefficient. Importantly, although there exist connections be-
tween various dynamical systems and networks with complex
weights, the evolution of a dynamical system on a network
depends not only on an underlying weight matrix but also on
the specific interaction rules that characterize that system [2].
Nevertheless, as illustrated by several decades of research in
network analysis, analyzing the mathematical properties (e.g.,
the spectra) of adjacency matrices and weight matrices can
yield crucial insights into the stability and other properties of
networked dynamical systems [1,96].

In Sec. IV, we extend our discussion of walks on networks
with complex weights and explain that one can interpret walks
and their associated complex weights in terms of (1) interac-
tions between charged particles and a magnetic field [34] and
(2) exchange statistics of indistinguishable particles [97-101].
To mathematically characterize the structural differences be-
tween networks with binary, real, and complex edge weights,
we study how different weight matrices affect graph energy
(i.e., the sum of the absolute values of the eigenvalues of
W) in Sec. V. Graph energy is a common network measure
in mathematical chemistry because of its connection to -
electron energy in tight-binding models [102].

One cannot directly apply certain network notions (such
as eigenvector centrality and its generalizations) to networks
with complex edge weights, as one must first have a matrix—
either a weight matrix or some other matrix, such as a function
of a weight matrix—that satisfies the Perron—Frobenius theo-
rem [103,104], for which one seeks a real-valued and positive
matrix to ensure a leading eigenvector with strictly positive
entries. In Sec. VI, we discuss generalizations of the Perron—
Frobenius theorem [105,106] and eigenvector centrality. The
inability to fully order complex numbers forces one to ap-
propriately adapt other centrality measures if one desires to
employ them. This issue becomes apparent for concepts like
geodesic centrality measures, which are based on shortest
paths. Approaches to compute such measures with Dijkstra’s
algorithm (when edge weights are positive) or the Bellman—
Ford algorithm (when edge weights are either positive and
negative) rely on comparing ordered quantities [107,108].
In Sec. VII, we examine random-walk centrality measures
that allow both real-valued and complex-valued edge weights
[28,109]. We thereby work with appropriate notions of cen-
trality that allow us to avoid this issue. Finally, in Sec. VIII, we
discuss our results and indicate some future directions in the
study of networks with complex weights. Our code is publicly
available at [110].

II. COMPLEX WEIGHTS AND THEIR CONNECTION
TO RANDOM WALKS AND OPINION CONSENSUS

We consider networks in the form of weighted graphs
G = (V,E, w), where V is a set of nodes, E is a set of edges,
and the function w : E — C assigns a complex weight to
each edge. The number of nodes is N = |V|. We use both an
adjacency matrix A € {0, 1}V and a weight matrix (i.e., a
weighted adjacency matrix) W € CV*N to describe weighted
edges between nodes. The entries a;; of the matrix A are
equal to 1 if nodes i and j are adjacent and are equal to
0 if they are not adjacent. Unless we state otherwise, we
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complex weights
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FIG. 1. Examples of networks with real and complex edge
weights. Each of these networks is a closed and directed triad. (a) The
weight matrix W is stochastic. It induces random-walk dynamics
X(t) = —H.x(t), where H. =1 — W and x(¢) is a probability vec-
tor whose entries x;(¢) (with i € {1, 2, 3}) give the probabilities of
finding a random walker at each node i at time 7. (b) The weight
matrix W is Hermitian. It induces a continuous-time quantum walk
|V) = —iH, /), where |¢/) € C? and H, = —W.

do not consider self-edges or self-weights. (That is, we take
a;; = w; = 0.) To capture complex-valued relationships be-
tween nodes, we let the weight-matrix entries w;; = r;;e'%
be complex numbers with magnitude r;; and phase ¢;;. If a
network is undirected, then a;; = aj;, rij = rj;, and ¢;; = @j;.
If a;; =0, we set w;; = 0. In Fig. 1, we show examples of
networks with real and complex weights. Both of the depicted
networks are “closed” (i.e., all edges are present) and directed
triads. (A “triad” is a subgraph of a network that consists of
three nodes.)

A. Weighted networks and linear diffusion dynamics

For a strongly connected network with non-negative and
symmetric real weights w;; [see Fig. 1(a)], we can rescale
w;; by mapping w;; — w,‘j‘/(zl}lzl w; ;) to obtain a stochastic
weight matrix that induces the random-walk dynamics

dx(t)
dt

=W —1)x(1) = —Hcx(1), ey

where H, = 1 — W is the classical (as opposed to quantum)
random-walk Hamiltonian, 1 is the identity matrix, and X(¢) is
a probability vector with entries x;(¢) (with i € {1, ..., N}),
which give the probabilities of finding a random walker at
each node i at time . Under the aforementioned weight
rescaling, one can thus always interpret a strongly connected
network with non-negative and symmetric real weights in
terms of transition probabilities of a classical random walker.
In the present paper, we consider specific choices of H, that
are associated with left-stochastic and right-stochastic weight
matrices.

For the left-stochastic weight matrix W = AD~! in an
undirected network (i.e., a network with a;; = aj; for all i
and j), we obtain H, = LD™!, where L = D — A is the combi-
natorial graph Laplacian, D = diag(ky, ..., ky) is the degree
matrix, and k; = ). a; ; 1s the degree of node i (i.e., the num-
ber of neighbors of node 7). The stationary state of Eq. (1)
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for H, = LD~ yields an occupation-centrality measure that
is proportional to node degree [28,111].

The random-walk evolution (1) is equivalent to the
continuous-time DeGroot opinion-consensus model

N

Z aijlx;(t) — xi(0)] ©)

dxz(l )

if we replace H, = LD~ with H, = L [112,113]. In the DeG-
root model, we treat the underlying network as undirected and
x;(t) is the opinion of node i.

For the right-stochastic weight matrix W = D~!A in an
undirected network, we obtain

N

Z wij[x; (1) — xi(1)] 3)

dxz(t )

as a generalization of Eq. (2). As in the original continuous-
time DeGroot model (2), the nontrivial stationary state x* of
the weighted-network generalization (3) is a consensus state,
which entails that x} = x7 = x* for all nodes i and j. Unlike
in Eq. (2), the quantity Y, x;(¢) is, in general, not conserved in
Eq. (3) because a right-stochastic weight matrix is symmetric
only for regular graphs (i.e., for graphs in which each node
has the same degree).

One can also establish a connection between weighted
networks and linear diffusion dynamics for networks with
complex weights [114]. A Hermitian weight matrix W (i.e.,
a weight matrix that satisfies W = W) induces a CTQW that
evolves according to the Schrodinger equation

dly) _

5 = Ha¥) “4)

where |¢) € CV and Hy = —W [see Fig. 1(b)]. The Hamilto-
nian Hj is the generator of time translation of a CTQW.

We use bra—ket notation. In an N-dimensional Hilbert
space (e.g., CV equipped with the standard Hermitian inner
product), a “ket” |¢) is a column vector and a “bra” (V|
is the conjugate transpose of |¢). The elements of the row
vector (| are thus complex conjugates of the corresponding
elements of |y). As usual, (¥|¢) denotes the inner product
that is associated with |v), |¢) € CV. The norm of |y) is
¥ 1> = (¥|v), and the outer product of the vectors |v) and
|¢) is |¥) (¢]. In an N-dimensional vector space, the outer
product is an N x N matrix.

The infinite-time mean

1 T
mj = lim ?/0 (Jlo@®)1j)dt 5)

T—o00

of a CTQW gives an occupation-centrality measure for a
network with complex edge weights [111]. In Eq. (5), dt is
an infinitesimal time step, p(¢t) = |¥(¢)) (¥ (¢)| is a density
operator, and |j) € CV is an orthonormal basis vector and
hence satisfies

(ilj) = dij. (6)

B. Consensus dynamics, the Schriodinger—-Lohe model,
and synchronization

We obtain a quantum-mechanical analog of the DeGroot
consensus dynamics (2) by setting

N
(Hy)i =1 ailly)) (¥l —

j=1

Vi) (Y11 )

which yields
d |1/fz

Zal][hb]

Equation (8) preserves ||v;]|> = (;|v;) for each state |y;) €
C (see Appendix A) and synchronizes the relative phases
between the states |;) and [v;) (with i # j). It is the special
case of the Schrodinger—Lohe model [91,92] with the Hamil-
tonian (7). Other versions of the Schrodinger—Lohe model
include a Laplacian term in the Hamiltonian. These versions
include variants with an additional potential function [94] and
variants without one [93].

If a state |v;) satisfies ||y;]|> = 1, then |y;) = e %), After
the rescaling a;; — a;;K/(2N), the dynamical system (8) is
equivalent to the Kuramoto model

(Wilvi) )] ®)

ded(t) _kK Z“w sinl6;(1) — 6:(1)]. ©)

with a homogeneous coupling constant K and a rotating ref-
erence frame in which all oscillators have the same natural
frequency [115]. The continuous-time DeGroot model (2)
corresponds to the linearization of Eq. (9) for small phase
differences and K = N. Lohe’s generalization of Kuramoto
dynamics to non-Abelian oscillators and quantum oscillators
[91-95] is also related to recent work on Kuramoto dynamics
on high-dimensional spheres [116] and with complex phases
[117].

In a network with complex edge weights, we examine a
weighted variant of the Hamiltonian (7). This variant is

N
(Hq)i = iZ[wf-,- V) (Wil — wij 1Y) (W11 (10)
j=1

The Hamiltonian (Hy); in Eq. (10) is Hermitian if and only
if the weights w;; and wy; satisfy w;; = w;; (where the bar
denotes complex conjugati_on) for all 7 and j. Setting w;; =
Ke®/(2N) and w = Ke™*/(2N) for all i and j yields the
Sakaguchi— Kuramoto (SK) model?

N

do; (t) K
TN

isin[0;(t) — 0;(t) + ], (11)

*We use the term “Sakaguchi—-Kuramoto model” because
Ref. [118] lists Sakaguchi and Kuramoto as first and second authors,
respectively. Some researchers use the term “Kuramoto—Sakaguchi
model” to refer to this model.
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where « is a phase lag and |o| < /2 [118]. Analogously
to Eq. (9), we can interpret Eq. (11) as describing the evo-
lution of coupled Sakaguchi—Kuramoto oscillators with the
same natural frequencies in a rotating reference frame. Many
researchers have examined identical Kuramoto oscillators
and identical Sakaguchi—Kuramoto oscillators in a rotating
reference frame; see, e.g., Refs. [119-122]. The empirical
motivation of the phase-lag parameter « is that the common
frequency of strongly coupled oscillators typically deviates
from the mean of their natural frequencies [118]. The SK
model is relevant to various applications, such as the synchro-
nization of coupled electrical oscillators [123].

C. Quantifying classical and quantum consensus

For classical consensus dynamics like (2) and (3), we
quantify the amount of consensus by calculating the order
parameter

N
1 1
H=1——|x—x"1=1-— () — x|, (12
re(t) ol I 2F;uo x|, (12)
where I' = Nx* and x* = (x*, ..., x*)" is a consensus state.

For the unweighted DeGroot consensus model (2) with
SV x:(0) = 1, we have x* = 1/N (withi € {1, ..., N}) and
lim,_, o rc(t) = 1. At time ¢t = 0, the consensus r.(0) reaches
a minimum 1/N for

1, ifi="¢

%0) = {0, if i 7.

At this minimum of r.(0), the opinion of one node deviates
maximally from the opinions of the other nodes. For the
weighted DeGroot model (3), the stationary state is x* =
lim,_, o0 W ~17x(0).

For |y;) = e %@ the corresponding order parameter for
the quantum consensus dynamics (8) is

13)

1 1 )
2 _ a2 = [6;(®)—0;(1)]
[rg(0)] —1—2—]\,2;”1//1 il = - Zje
1
= 7 D coslO;() = 601, (14)
ij

80 rq(t) is equivalent to the order parameter of the Kuramoto
model [115].

In Fig. 2, we show the evolution of 7.(#) and ry(¢) for
classical and quantum consensus dynamics on one network
from a G(N, p) Erd6s—Rényi (ER) random-graph model with
N = 100 nodes and probability p = 0.2 for an edge to exist
between two nodes. For the weighted DeGroot model (3),
we set w;; = a;;/k;. Additionally, we set w;; = ¢~ "/* and
w; ;= ¢™/* for all i and j in the weighted Hamiltonian (10).
In Fig. 2, we observe that the unweighted consensus dynamics
reach values of r.(¢) and r4(¢) near 1 faster than their weighted
counterparts. We also observe that the weighted quantum con-
sensus dynamics achieves smaller consensus values than its
unweighted counterpart.

1.0 1.0 o
{ (@) {(b)
0.8 0.8
—~ 0.6 o ~ 0.6 -
2 &
? o
0.4 * 0.4
0.2 - 0.2 - m— unweighted
weighted
0.0 T 0.0 +—r——"T—T—TT"——1
1073 107! 10t 0.0 0.5 1.0
t t

FIG. 2. Classical and quantum consensus. The evolution of the
(a) classical consensus (12) and (b) quantum consensus (14). The un-
derlying network is one network from a G(N, p) Erd6s—Rényi (ER)
random-graph model with N = 100 nodes and connection probabil-
ity p = 0.2. The solid black curves indicate the amount of consensus
in the unweighted models, and the dashed orange curves indicate the
amount of consensus in the weighted models. For the weighted DeG-
root model (3), we set w;; = a;;/k;. Additionally, we set w;; = e~ /4
and wj; = ¢™/* for all i and j in the weighted Hamiltonian (10). In
panel (a), we compute X(¢) in r.(t) by evaluating ¢ ~1"x(0), where
x1(0) =1 and x;(0) = 0 for j € {2,..., N}. In panel (b), we use an
implicit unitary integrator to solve Eq. (4) with the Hamiltonian (10).
We normalize each initial wave-function component |1/;(0)) (with
iefl,...,N}) to 1, and we uniformly randomly distribute their
phases with mean 7 /3 and variance 25/3.

III. LOCAL NETWORK MEASURES

Because the entries w;; of W are complex-valued, the
strength (i.e., weighted degree)

N
si= ) wij (15)
j=1

of node i is also a complex-valued quantity. In contrast to sit-
uations with real-valued edge weights [4], s; does not provide
a measure of importance or centrality of node i because one
cannot fully order complex numbers.

To quantify the distribution of the complex weights of the
edges that are attached to node i, we define the normalized
strength of node i as
S D0 Wi

i Zj:l aij
How do different values of the amplitudes r;; and phases ¢;;
affect the value of 5;? To answer this question, we first suppose
that r;; = 1 for all i and j. For a;; = w;; =0 and r;; = 1, we
have

1 N
S = L i%ij
5= 5 ]E:] a;je?, )

SO

1 .
5il* = 2 Zaijailel((ﬂ'j_‘p”)
it

1
2 Zaijail cos(gij — @ir) - (18)
i il
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Equation (18) implies that |5;|> resembles the order parameter
of the Kuramoto model [see Eq. (14)]. Observe that |5,|* =
1 if ¢;; = ¢y whenever a;;a; > 0 (i.e., for all edges that are
attached to node i) and that 5; reaches its minimum value 0
if all phases are balanced around the unit circle (i.e., if they
are spread evenly or distributed in clusters that balance each
other).

If r;j =r, then 0 < 1512 < 2. Additionally, for general
distributions of r;; with rm.x = max; ;(r;;), the quantity I5:]2
satisfies 0 < [5;* < 12,

Generalizing the definition of weighted nearest-neighbor
degree from Ref. [4] to networks with complex edge weights
yields

1 N
nn,i = S_l Z wi./kj . (19)
j=1

One can separately track real and imaginary nearest-neighbor
degrees by calculating Re(ky, ;) and Im(ky; ;).

In a binary and undirected network, the local clustering
coefficient [124] of node i is

1
¢ = w1 %: ;A a (20)

when k; > 2. For k; = 0 and k; = 1, we set ¢; = 0. There are
a variety of ways to define local clustering coefficients in
weighted networks [4,7,8]. Drawing inspiration from Ref. [7],
we define the local weighted clustering coefficient of an undi-
rected network with complex weights as

1
&= oy L@ e
1 1 j,k

where ;; = w;;/ max; ; |w;;| is the normalized weight of the
edge between nodes i and j. We also use Eq. (21) for directed
networks in which the in-degree of each node is equal to its
out-degree. [For more general directed networks, it is neces-
sary to further generalize Eq. (21).] For w;; = ra;; withr > 0,
this weighted clustering coefficient equals the unweighted
clustering coefficient c;.

Instead of counting all triangles (i.e., closed triads, in
which all possible edges are present) that are associated with
a certain node in the same way, the weighted clustering co-
efficient ¢ accounts for differences in the edge weights.
For example, if a triangle connects nodes i, j, and k, then
the unweighted local clustering coefficient counts the corre-
sponding edges while ignoring their weights. However, if all
of the normalized weights ;; that are associated with that
triangle are close to 0, one may wish to weight the triangle
differently than other (more important) triangles with larger
edge weights. In networks with complex weights, it is possible
to account not only for positive and negative edges (which
arise, e.g., in correlation networks [125,126] and in subjects
such as international relations [127,128]), but also to quantify
directional and phase information (in addition to magnitudes).
In Fig. 3(a), we show an example of a closed and undirected
triad with edge weights ¢'. The local weighted clustering co-
efficient of node i is ¢}' = ¢'¢. In the triad in Fig. 3(b), we use
the edge weights e*¢ to encode directional information. The
corresponding local weighted clustering coefficient of node

@ (b)

FIG. 3. Examples of clustering coefficients in a network with
complex edge weights. (a) A closed and directed triad with complex
weights e!?. The weighted clustering coefficient of node i (in green)
is ¢ = €. (b) A closed and directed triad with complex weights
e*¥. The weighted clustering coefficient of node i (in green) is
¢} = cos(g).

i is ¢} = cos(p). This example illustrates that one can use
the weighted clustering coefficient ¢}" to characterize the local
arrangement of complex edge weights. If all weights have the
same magnitude but the phases that are associated with the
two cycles i - j — k — i and i - k — j — i have oppo-
site signs, then the imaginary part of ¢}" is 0.

IV. MATRIX POWERS AND WALKS

Given an adjacency matrix A, the entries a?';) of the matrix

powers AX (with k € {1, 2, ...}) correspond to the number of
walks of length k that start at node i and end at node j [129].
For a weight matrix W, the entry wg.‘) of the matrix power
W* is equal to the sum of the products of all weights that are
associated with each length-k walk from node i to node j. If
W is a right-stochastic matrix, the entries of wk correspond to
the probabilities of reaching certain nodes from other nodes.

One advantage of complex-valued weights over real-
valued weights is that using complex values allows one
to encode directional information. Consider the network in
Fig. 1(b). Clockwise and counterclockwise walks on this net-
work have negative and positives phases, respectively. One
can determine the “direction” of a walk on such a network
from the accumulated phase of the product of the weights
of the edges that a walker traverses. For example, the walks
1 -2 — land I — 2 — 3 have weight products of ¢!° and
€213, respectively. Therefore, their phases 0 and 27 /3 indi-
cate that the first walker traverses edges of opposite phase and
returns to its initial position and that the second walker moves
counterclockwise. In a quantum picture, one can interpret
the positive and negative phases that are associated with a
walk from i to j as Aharonov—Bohm phases that result from
interactions between a charged particle and a magnetic vector
potential A [34,83]. That is,

Qaij:-/ A'dX, (22)
C

ij

where ¢;; = —¢;; and C;; is a curve that starts at position X;
and ends at position x;. The amplitude r;; in w;; = r;;e'% is
equal to a;;. That is, r;; = 1 if the charged particle can move
from x; to x; and r;; = 0 if it cannot. The resulting weight
matrix is a discrete version of the magnetic Laplacian [34].
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The complex edge weights w;; = ¢/ = (1 4 iv/3)/2 and
wji = W;; = e"™/3 = (1 —iy/3)/2 in the triads in Fig. 1(b)
have useful properties for applications in network analysis
because both their product and their sum are equal to 1 (i.e.,
w;jwj; = 1 and w;; + wj; = 1) [68]. In the associated weight-
matrix powers, a walk i — j — i contributes 1 just as in
the corresponding adjacency-matrix powers. As an example,
we again consider the network in Fig. 1(b) and calculate the
squares of its weight matrix W and adjacency matrix A. We
obtain

2 efi2n/3 einr/3 2 1 1
W2 — ei27'r/3 2 e—i2rr/3 A2 =11 2 1
e—iZn/S eiZn/S 2 1 1 2

(23)

In this example, the diagonal entries of W2 and A are the
same because of the multiplicative and additive properties of
eET/3.

Complex weights with fractional phases such as ¢ = /3
arise in quantum-mechanical particle statistics. Exchanging
bosonic particles in a multiparticle wave function is asso-
ciated with the phase ¢ =0, and exchanging fermions is
associated with the phase ¢ = 7. One can realize fractional
phases ¢ = w/(2m + 1) (withm € N.o = {1, 2, ...}) that lie
between those of bosons and fermions using anyons, which
are quasiparticles that arise in 2D systems [97-101]. The
phase ¢ = /3 has been observed experimentally in anyon
systems [100,101]. In a network that represents anyon per-
mutations, one obtains the total phase that is associated with
a permutation by multiplying the complex weights ¢!/ in the
U (1) representation of the underlying braid group [130]. In an
anyon system with exchange phase ¢ = 7 /3, exchanging two
particles twice is associated with a total phase of ¢ = 27/3,
as one can see in some of the off-diagonal entries of W? in
Eq. (23).

V. GRAPH ENERGY

The energy of a graph is

N
E@G) =Y Inl, (24)
i=1

where A; is the ith eigenvalue of the weight matrix W [102].
To gain insight into the differences in the energy of binary
networks, networks with real edge weights, and networks with
complex edge weights, we compute graph energies for several
well-studied types of networks.

In Hiickel molecular-orbital (HMO) theory (i.e., tight-
binding molecular-orbital theory), one typically represents
conjugated hydrocarbon molecules by undirected and bi-
nary networks. The energy of m electrons in this HMO
approximation is equivalent to the energy in Eq. (24) [102].
Although most applications of network analysis in mathe-
matical chemistry have focused on undirected and binary
molecular networks, weight matrices with real and complex
entries have also been studied [38] (e.g., to examine cis and
trans isomers of molecules [36,37]).

One can obtain closed-form expressions for the graph en-
ergy of certain graphs [102]. For example, the energy of
almost every® G(N, p) ER network [102,131] is

8
E[G(N, p)] = N3/2<§\/p(1 -p)+ o(l)), (25)

where p is the connection probability and f(x) = o(1) means
that f(x)/c — 0O for any nonzero constant ¢ € R. There are
very few energy estimates for weighted networks, so in
particular there are few such estimates for networks with
complex edge weights [66]. We use graph energy to charac-
terize ER, stochastic-block-model (SBM) [1], Watts—Strogatz
(WS) [132], and Barabasi—Albert (BA) [133] networks with
binary, real, and complex weight distributions (see Fig. 4).
We study one two-block SBM with community structure and
one two-block SBM with core—periphery structure. In our
calculations, we distribute the complex weights uniformly at
random in the subset of the open unit disk in the first quadrant
of the complex plane [i.e., ¢;; ~ U[0,7/2) and r;; = NG
where ¢;; ~ U[0, 1) and U[a, b) denotes the uniform distribu-
tion on the half-open interval [a, b)] and distribute the real
weights uniformly at random in the interval [0, 4/3) [i.e.,
w;; ~ U[0, 4/3)]. We use the interval [0, 4/3) to ensure that
the mean value of the real weights is equal to the mean of the
absolute value of the complex weights. The examined weight
matrices are Hermitian. In Appendix B, we derive analogs of
Eq. (25) for ER networks with these two weight distributions.

In Fig. 4, we show sample means of the graph energy
E(G) for ER, SBM, WS, and BA networks as a function
of the parameters of these random-graph models. We show
the corresponding eigenvalue distributions in Appendix B.
For an ER network with binary edges [see Fig. 4(a)], the
maximum of graph energy as N — oo occurs when p = 0.5
[see Eq. (25)], whereas we observe that the examined real
and complex weight distributions have graph-energy max-
ima when p = 0.8. The largest difference in graph energy
between the examined ER networks with binary edges and
their counterparts with real and complex edge weights occurs
for p=1 (i.e., in a fully connected graph). A binary ER
network has a graph energy of E[G(N,p=1)]=2(N — 1)
(see Appendix C), whereas the corresponding weighted net-
works have larger values of graph energy for N = 1000 [see
Fig. 4(a)] and presumably also as N — oo. The graph ener-
gies of the examined SBM networks, in which we vary only
a single probability parameter, have similar qualitative behav-
ior as the ER networks [see Figs. 4(b) and 4(c)]. For small
interblock connection probabilities, one can approximate the
graph energy of an SBM network that consists of ER blocks
by the sum of the corresponding ER graph energies (25).

The mean graph energy of the WS networks is largely inde-
pendent of the rewiring probability g. In the BA networks, the
mean graph energy increases with m, which is the number of
new edges that one adds for each new node. For the examined
WS and BA networks, the mean graph energies that we obtain

3In the present paper, we say that “almost every” graph G in a
random-graph model G with N nodes has a certain property if the
probability that G satisfies that property approaches 1 as N — oo.
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FIG. 4. Graph energies for different networks with binary, real,
and complex edge weights. We show the graph energies E(G) [see
Eq. (24)] for five types of networks with binary, real, and complex
weight distributions: (a) a G(V, p) ER network, (b) a stochastic block
model (SBM) with two G(N, p) ER blocks and interblock connection
probability 1073, (c) an SBM with one G(N, p) ER block for general
p, one G(N, p) ER block with p = 1073, and interblock connection
probability 1073, (d) a G(N, k, ¢) Watts—Strogatz (WS) network in
which each node is adjacent to k = 4 nearest neighbors (where ¢
denotes the probability of rewiring each edge), and (e) a Barabasi—
Albert (BA) network. All of these networks have N = 1000 nodes.
In all simulations that involve weighted networks, we use Hermitian
weight matrices (i.e., W = W'). To construct the BA network, we
start with a star graph with 1 hub and m leaves, and we iteratively add
new nodes until there are 1000 nodes. Each new node has m edges
that connect to existing nodes using linear preferential attachment.
The orange disks indicate numerical results for binary weight matri-
ces (i.e., for W = A). The green triangles indicate numerical results
for networks with real-valued weight distributions, and the blue dia-
monds indicate numerical results for networks with complex-valued
weight distributions. The real weights are distributed uniformly in the
interval [0, 4/3), and the complex weights are distributed uniformly
in the subset of the open unit disk in the first quadrant of the complex
plane. All reported results are means of 100 independent instantia-
tions of the indicated random-graph models. For each instantiation,
we use the same network structure, but we change the weights (which
can be binary, real, or complex). The dashed gray curves in panels
(a)—(c) are based on the analytical solutions (25), (B4), and (BS),
which assume that N — oo.

for binary weights are larger than those for the examined
real and complex weights. Although the mean values of the
examined real weights equal the means of the absolute values
of the associated complex weights, the mean values of E(G)
for the ER networks with real weights are larger than those

of their counterparts with complex weights for p < 0.8. For
p % 0.8, the mean graph energy is larger for ER networks with
complex weights than for ER networks with real or binary
weights. In the WS and BA networks, the graph energies that
we obtain with real weights are about 5% and 8% larger,
respectively, than the energies that we obtain with complex
weights.

In summary, graph energy is qualitatively different in bi-
nary networks, networks with real edge weights, and networks
with complex edge weights. This is the case both for the
magnitude of the graph energy and for how it depends on
network connectivity properties (as quantified by the network
parameters p, g, and m). Given the described connections
between graph energy and energy estimates of conjugated
molecules, our results may be relevant to the modeling of
molecules with weighted networks.

VI. THE PERRON-FROBENIUS THEOREM
AND EIGENVECTOR CENTRALITY

According to the Perron—Frobenius theorem [103,104], the
weight matrix W = A of a binary, strongly connected network
is associated with a simple positive eigenvalue (the “Perron
eigenvalue”) that is strictly larger than all other eigenvalues.
The Perron eigenvalue is equal to p(W) = max;eq1,..ny 1Al
the spectral radius of W, where {A;}ic(1,..n) is the set of
eigenvalues (i.e., the spectrum) of W. The corresponding Per-
ron eigenvector (i.e., the leading eigenvector) is a centrality
measure [1].

The Perron—Frobenius theorem does not hold for matrices
with complex weights, so we cannot find a Perron eigen-
value of W and a corresponding eigenvector to use as a
centrality measure. However, generalizations of the Perron—
Frobenius theorem [105,106] provide a possible approach
to define eigenvector centrality (and generalizations of it,
such as PageRank) for networks with certain types of com-
plex weight matrices. A complex weight matrix W has the
“strong Perron—Frobenius property” if it (1) has a simple
positive eigenvalue X that satisfies Ay = p(W) > |A;| (with
ie€f2,...,N}) and (2) has a corresponding right eigenvec-
tor v; with positive entries. The eigenvector v, is called
the “right Perron—Frobenius eigenvector”. For further details
about generalizations of the Perron—Frobenius theorem to
complex matrices, see Ref. [106].

An example of a weight matrix with the strong Perron—
Frobenius property is

0 adn 0
W = | be'? 0 ce' |, (26)
0 de'¥t 0

with a=b=c=1,d=-1/2, ¢, =0, ¢, =7/6, ¢ =
37 /2, and ¢; = . Inserting these parameter values gives

0 1 0
W=|7 o —il. Q7
0 1/2 0

The largest eigenvalue of W is </3/4, and its corresponding
eigenvector is v; = (2, J12, 1)T. What is the meaning of
the right Perron—Frobenius eigenvector v; for the eigenvector
centralities that are associated with a complex weight matrix?
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In this example, nodes 1, 2, and 3 have eigenvector centralities
of 2, /12, and 1, respectively. The most central nodes of the
associated network are thus nodes 1 and 2, whereas node 3
(which has a single out-edge with weight 1/2) is the least
central node. In this example, the eigenvector centralities that
we obtain using the complex weight matrix W coincide with
the eigenvector centralities that we obtain using Re(W).

In Appendix D, we show that any Hermitian two-node
network with complex edges weights with nonzero imaginary
parts cannot satisfy the strong Perron—Frobenius property.

VII. BETWEENNESS AND CLOSENESS CENTRALITIES

The geodesic betweenness centrality cg (i) of a node i quan-
tifies the number of shortest paths that traverse that node, and
the closeness centrality c(i) of a node i quantifies the mean
distance between that node and other nodes [1]. Mathemati-
cally, the normalized geodesic betweenness centrality of node
i in a directed network is

oji(i)

1 >
N = DN =2) iz O

cg(i) = (28)

where the numerator o is the total number of shortest paths
between nodes j and k and the denominator o (i) is the num-
ber of those shortest paths that traverse node i. The closeness
centrality of node i is

N -1
Zj;éi dij 7

where d;; is the geodesic (i.e., shortest-path) distance between
nodes i and j.

Because complex numbers are not fully ordered, one
cannot use geodesic betweenness and closeness centrality
measures that are based on shortest paths on networks with
complex weights. Except in degenerate situations, one cannot
order path lengths in networks with complex edge weights. As
in the above examples for occupation and eigenvector central-
ities (see Secs. II and VI), one has to appropriately generalize
geodesic betweenness and closeness centralities. One way
to quantify node importances in a network with a complex
weight matrix is to use quantum random-walk centrality mea-
sures [28]. In Eq. (5), we presented an occupation-centrality
measure that is based on a quantum random walk with Hamil-
tonian Hy = —W and Hermitian W. In Appendix E, we
describe corresponding generalizations of betweenness and
closeness that are based on absorbing random walks and can
take complex weight matrices as inputs.

We first apply these centrality measures to a network with
three nodes (see Fig. 5) and weight matrix

c(i) = (29)

Q A
W=le¥ 0 0. (30)
e 0 0

In the associated unweighted (i.e., binary) analog of this net-
work, the geodesic betweenness centralities of nodes 1, 2, and
3 are 1, 0, and 0, respectively. The corresponding quantum
random-walk betweenness centralities that are associated with
the Hamiltonian Hy; = —W with ¢ = /3 are 1, 0.65, and
0.65. (We normalize the betweenness values so that the maxi-

node
e7iv e7iP 1 2 3

betweenness 1 0 0

closeness 1 2/3 2/3

FIG. 5. Betweenness and closeness centralities of a network with
three nodes and the weight matrix (30). In the table, we show the
geodesic betweenness and closeness centralities of nodes 1, 2, and
3 that are associated with the unweighted (i.e., binary) analog of the
depicted network.

mum is 1.) The ranking of the nodes is the same for geodesic
betweenness centrality. To calculate a quantum random-walk
version of closeness centrality (see Appendix E), we first
calculate the mean return time (i.e., the inverse of the oc-
cupation probability). We calculate quantum random-walk
occupation centrality 7r; (with j € {1, 2, 3}) by evaluating the
infinite-time mean (5), where | (1)) = e~ H! |1/(0)). We set
|¥(0)) = (1,1, 1)T /+/3 and find that the infinite-time mean
is w = (0.5,0.25,0.25)". In this example, the occupation
centrality of node 1 is twice as large as those of nodes 2
and 3. The corresponding quantum random-walk closeness
values are 1, 0.9, and 0.9. (We normalize these values so that
the maximum is 1.) As we saw with betweenness centrality,
quantum random-walk closeness yields the same node ranking
as geodesic closeness.

We now compare geodesic and quantum random-walk cen-
tralities for ER and BA networks with N = 1000 nodes and
complex edge weights that (as in our examination of graph
energy) we distribute uniformly at random in the subset of the
open unit disk in the first quadrant of the complex plane. We
again consider the evolution operator Hy = —W [see Eq. (4)].
In Fig. 6, we show scatter plots to compare the geodesic and
quantum random-walk centralities. In the examined ER and
BA networks, both betweenness and closeness have Pearson
correlation coefficients that range from 0.36 to 1.00. Our
results suggest that quantum random-walk closeness and be-
tweenness centralities are able to rank node importances in
networks with complex weights in a manner that is similar to
their corresponding geodesic centralities.

VIII. CONCLUSIONS AND DISCUSSION

Networks with complex-valued edge weights arise in a
variety of situations. However, most studies of weighted
networks have focused on networks with real-valued edge
weights.

In the present paper, we examined network-analysis meth-
ods that are useful to study the structure of networks with
complex edge weights. To physically interpret such networks
and the underlying directional information that is encoded in
the phases of the complex weights, we discussed connections
between complex weight matrices and salient physical sys-
tems. For example, perhaps the phases that are associated with
a walk on a network with complex edge weights arise from
interactions between a charged particle (which traverses the
edges) and a vector potential. Moreover, akin to the interpre-
tation of stochastic weight matrices as generators of linear
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FIG. 6. Quantum random-walk versus geodesic betweenness and
closeness centralities. We illustrate the correlations between quantum
random-walk (qw) and geodesic centralities for (a, b) betweenness
and (c, d) closeness. In panels (a) and (c), we show scatter plots
for a G(N, p) ER network with p = 0.1. In panels (b) and (d), we
show scatter plots for a BA network that we construct from an initial
star graph with 1 hub and 2 leaves by iteratively adding new nodes
until there are N = 1000 nodes. Each new node has m = 2 edges that
connect to existing nodes using linear preferential attachment. Both
networks have 1000 nodes. The Pearson correlation coefficients are
(a) 0.89, (b) 0.81, (c) 1.00, and (d) 0.36. We calculate the geodesic
centralities for binary networks. To calculate the quantum random-
walk centralities, we use Hy = —W [see Eq. (4)] as the evolution
operator. We suppose that W is Hermitian, so W = WT. Aside from
the Hermiticity constraint, we distribute the weights uniformly at
random in the subset of the open unit disk in the first quadrant of
the complex plane.

diffusion dynamics (i.e., random walks), we showed that
one can interpret Hermitian weight matrices with complex
entries as generators of time translation in continuous-time
quantum walks. We also generalized the DeGroot model of
consensus dynamics to networks with complex edge weights.
Finally, we characterized the structural features of networks
with complex edge weights using a variety of measures
(specifically, graph energy, common centrality measures,
and generalizations of node strength and a local clustering
coefficient).

Given the diverse variety of applications of networks with
complex weights (see Table 1), there are many interesting di-
rections for future work. We mention a few of them in passing.
A recent paper examined random walks and structural balance
in networks with complex edge weights [50], and there are
many exciting directions to pursue to build on it. Another
potentially valuable area is investigating the properties of
electrical networks of resistors, coils, and capacitors [41-47]
using network analysis. In such networks, one can use com-
plex weights to describe complex impedances and reflection
coefficients. Another avenue for future research is analytical
investigations of graph energy in networks with both real

and complex weights. Such efforts can build fruitfully on
random-matrix-theory analyses of weighted networks [134].
Furthermore, given the importance of the Perron—Frobenius
theorem for dynamical processes and centrality measures in
networks with real weights, it is worthwhile to identify phys-
ical systems with associated complex weight matrices that
satisfy the strong Perron-Frobenius property. Studies of such
systems may help further guide the development of suit-
able centralities, spectral clustering methods [135], and other
network measures to study physical systems with complex
weight matrices. Additionally, given the relevance of motifs
in the study of both unweighted and weighted networks, it
seems worthwhile to examine motifs in networks with com-
plex edge weights, such as by generalizing walk-based motifs
from classical contexts [136] to quantum ones.

Our code is publicly available at [110].
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APPENDIX A: QUANTUM SYNCHRONIZATION

The quantum-state evolution (8) conserves the L, norm
that is associated with |y;). That is, 9 ||v;]1> = (8, ¥:|v:) +
(Y10, ;) = 0 because

N
Wildys) =Y a[(lyry) — (Wil

J=1

N
@Wil) =Y ai (1) — (Wilyr))].

j=1

(AD)

APPENDIX B: EIGENVALUE DISTRIBUTIONS

In Fig. 7, we show the eigenvalue distributions of W for the
networks that we studied in Sec. V. The analytical results in
Fig. 7(a) (see the solid gray curves) are based on a connection
between the examined weight matrices and Wigner matrices
[137]. A Wigner matrix Xy is a real symmetric matrix with
entries x;; (with 7, j € {I,..., N}) that have the following
properties [102]:

(1) The entries x;; are independent random variables with
Xij = Xji-

(2) The diagonal entries x;; are distributed according to a
distribution Fj, and the off-diagonal entries x;; (with i # j)
are distributed according to a distribution F;.

(3) The distribution F; has finite variance Var(x;;) = 022 <
0.

As N — oo, the eigenvalue distribution of a normalized
Wigner matrix Xy /N converges almost surely to the Wigner
semicircle distribution

1 /
¢(X) = 27_[0_2 4022 _lelx\<2zrg s

2

(BI)

where 15 denotes the indicator function on the set S.

024314-10



COMPLEX NETWORKS WITH COMPLEX WEIGHTS

PHYSICAL REVIEW E 109, 024314 (2024)

0.10 0.15
:'(a) Erd8s-Rényi 1 (b) SBM (community)
—uy .
Jrvee., =, .,
008 Iy
- o,
i 0.10 = "‘J,n
e 0.06 = -1 'l%
&) . T %
A b T .
0.04 . . )
] e 0.05 = -
- 1 : i 'llu
0.02 = binary o . L
1 - real Il . _ |':
: == complex = — 1:
- .
0.00 TTTT T T T[T T I ITTT 0.00 ||||||||||‘||‘|||||||
(0] 5 10 15 20 6] 5 10 15 20
0.8 0.8
1 (c) SBM (core—periph.) :F(d) Watts—Strogatz
i 0.4 J s
N -1 el
0.6 = - e T
. ] .
. I
| . W
0.0 LN I B I B N I
o -
A 0.4 — ] 1 2 3
[a9 -
44 0.6 1
4% 'r‘: = _(e) Barabasi—Albert
0.2 = f:..;_ g 5
- N 0.3 = a
. = “'1
i ‘h.WFﬂF”'ﬂqq - T
T
0.0 T T T T T 0.0 T T T T =
I I I I I I I
0 1 2 3 4 5 0 1 2 3 4 5
A A

FIG. 7. Eigenvalue distributions for different networks with bi-
nary, real, and complex edge weights. We show the eigenvalue
distributions for five types of networks with binary, real, and complex
weight distributions: (a) a G(N, p) ER network with p = 1/9 (where
p is the connection probability), (b) an SBM with two G(N, p) ER
blocks with p = 1/9 and interblock connection probability 1073,
(c) an SBM with one G(N, p) ER block with p = 1/9, one G(N, p)
ER block with p = 1073, and interblock connection probability 1073,
(d) a G(N, k, g) WS network in which ¢ = 1/9 and each node is
adjacent to k = 4 nearest neighbors (where ¢ is the probability of
rewiring each edge), and (e) a BA network. All of these networks
have N = 1000 nodes. In all simulations with weighted networks,
we use Hermitian weight matrices (i.e., W = W). To construct the
BA network, we start with a star graph with 1 hub and 2 leaves and
iteratively add new nodes until there are N = 1000 nodes. Each new
node has m = 2 edges that connect to existing nodes using linear
preferential attachment. The solid orange curves indicate numerical
results for binary weight matrices (i.e., for W = A). The dotted green
curves indicate numerical results for real-valued weight distributions,
and the dashed blue curves indicate numerical results for networks
with complex-valued weight distributions. We distribute the real
weights uniformly at random in the interval [0, 4/3), and we dis-
tribute the complex weights uniformly at random in the subset of
the open unit disk in the first quadrant of the complex plane. Each
result is a mean of 100 independent instantiations of the indicated
random-graph models. For each instantiation, we use the same net-
work structure, but we change the weights (which can be binary,
real, or complex). The solid gray curves in panel (a) indicate the
analytical solution (B1) for o} = p(1 — p), 07 = 4(4 — 3p)p/27,
and 022 =p/2 — 32p2/(9712) [see Eqgs. (B3)—-(B5)].

For the G(N, p) ER random-graph model with binary edge

weights, the variance is 022 = p(1 — p), which yields the

/p(1 — p) term in Eq. (25).

The weights w;; (with i # j) of the G(N, p) ER networks
with real-valued weight matrices that we studied in Sec. V are

~_ . _ Jxj, with probability p
Wij = wji = {0, with probability 1 — p, (B2
where x;; ~ Ula, b) and Ula, b) denotes the uniform distribu-
tion on the interval [a, b). The corresponding variance is

2 p
% :b—a

b 2 2
b
f Xdx — paTo (a:— )

1 2 v 2
= SPl4@ +ab+b) =3@+b7pl.  (B3)

For x;; ~ U[0,4/3) (with i # j), the energy of almost every
G(N, p) ER network with real-valued weights (see Sec. V) is

E[G(N, p)] = N*/? (i‘/w + o(l)). (B4)
3 27

For a G(N, p) ER network with complex-valued weights, a
similar calculation yields

8 32p2
E[G(N. p)] = NW(g,/g - sz + o(l)), (BS)

which we obtain using the relations Var(Z) = Var(Re(Z)) +
Var(Im(Z)) and Var(XY) = (6% + u3)(of + u}) — uiul,
where 11y and o7 denote the mean and variance of the random
variable X. Initially, Wigner derived the semicircle law (B1)
for real symmetric matrices [137]. Subsequently, researchers
have examined generalizations to complex-valued Hermitian
matrices (see, e.g., Ref. [138]).

APPENDIX C: ERDOS-RENYI GRAPH ENERGY
WITHp =1

As p — 1, a binary G(N, p) Erdés-Rényi (ER) network
approaches a complete graph, which has the adjacency matrix

A=uun' —1, (C1)

where u € RV denotes a vector whose entries are all equal to
1 and 1 denotes the N x N identity matrix. We calculate the
eigenvalues of A by distinguishing two cases of the eigenvalue
equation Av = (u, v)u — v = Av. For the N — 1 eigenvectors
that are orthogonal to u, we have (u, v) = 0. The correspond-
ing eigenvalue (of multiplicity N — 1) is —1. The remaining
eigenvector v = u is associated with the eigenvalue N — 1.

As p — 1, the energy of a binary G(V, p) ER network
approaches the energy of a complete graph, which is

N
Yol =20V - 1). (C2)

i=1
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APPENDIX D: ABSENCE OF THE STRONG
PERRON-FROBENIUS PROPERTY IN HERMITIAN
TWO-NODE NETWORKS WITH COMPLEX EDGE
WEIGHTS WITH NONZERO IMAGINARY PARTS

Consider a two-node network with complex edge weights
and the Hermitian weight matrix

a bel®
W= (be_i‘/’ c ) ’

where a, b, c € Ry and ¢ € [0, 27). Equation (D1) allows
self-weights. The largest eigenvalue of W is

(DD

s(a+cyf(a—c)* +4b), (D2)
and the corresponding eigenvector is
e¥(a—c++/(a—c) +4b?) !
5 1] . (D3)

The imaginary part of the off-diagonal components of W is
0 for ¢ =0 and ¢ = . However, for the eigenvector (D3)
to be positive, the phase ¢ must be either O or . Therefore,
the imaginary parts of the off-diagonal entries of W [see
Eq. (D1)] are 0. Consequently, it is not possible for a two-node
network with a Hermitian weight matrix to have off-diagonal
matrix entries with nonzero imaginary parts and also satisfy
the strong Perron—Frobenius property [106].

APPENDIX E: QUANTUM RANDOM-WALK
BETWEENNESS AND CLOSENESS CENTRALITIES

In Section IT A, we used the infinite-time mean (5) of a
CTQW [see Eq. (4)] to define the occupation centralities of
the nodes of a network with a Hermitian weight matrix W. To
characterize the betweenness and closeness centralities of the
nodes of a network with complex weights, we first define the
absorbing quantum random-walk Hamiltonian

[(Hz)g]ij = {E)},Iq)ij’

with absorbing node £. The basic idea that underlies the use
of an absorbing Hamiltonian is that we wish to track the
number of times that a quantum random walker traverses a

if j £ ¢
ifj=1¢, (ED

node if its final destination is £ [28,109]. Taking a mean
over all absorbing nodes yields a measure of random-walk
betweenness centrality. The operator (Hg)f1 is non-Hermitian.
To evaluate its infinite-time mean (5), we treat the upper-
triangular part of (H,)j as equal to the conjugate transpose of
its lower-triangular part. To do so, we use eigenvalue-problem
solvers such as scipy.linalg.eigh (SCIPY version 1.9.1)
and numpy .linalg.eigh (NUMPY version 1.23), which treat
non-Hermitian matrices as Hermitian matrices. We denote the
corresponding Hermitian version of (H, )g by (H )g.

The quantum random-walk betweenness centrality of node
jis

3 (e [v ©) (v @)]e;)
s+i(ay — 1)

< (jle)e]j).  (B2)

where |y (0)) =(1,..., 1)T/\/ﬁ and equ) and Afrf), respec-
tively, are the orthonormal eigenvectors and corresponding
eigenvalues of the Hamiltonian (H, )g [28]. That is,

7j = lim ———
TTSONN - &

m,n

(H)lely) =ael) . (e]el”) = S - (E3)

We use the regularization parameter s in Eq. (E2) to prevent
the denominator from equaling 0 when A() = A(Y). In all of
our numerical experiments, we set s = 1071,

The quantum random-walk closeness centrality of node ¢
is equal to the inverse of the mean first-passage time A, of a
walker that starts at any node and stops when it arrives at node
£. The mean first-passage time is

1 1
he=~— izjm),-j + e (E4)

where (7;);; denotes the expected number of times that a
random walker that starts at node i with final destination £
traverses node j at any time. As in Eq. (E2), we do not sum
over all initial nodes i; instead, we consider a uniform initial
walker state [ (0)) = (1, ..., 1)T/«/N and compute Zj('[g)j
in terms of Eq. (E2) by replacing the sum over £ with a sum
over j. The quantity 7, Uis the inverse of the occupation
probability (5) (i.e., the mean return time).

For more information about classical and quantum
random-walk centrality measures and their generalizations to
multilayer networks, see Refs. [28,109].
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