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a b s t r a c t

We formulate a mathematical model for the daily activities of a cow (eating, lying down, and standing) in
terms of a piecewise linear dynamical system.We analyze the properties of this bovine dynamical system
representing the single animal and develop an exact integrative form as a discrete-time mapping. We
then couple multiple cow ‘‘oscillators’’ together to study synchrony and cooperation in cattle herds. We
comment on the relevant biology anddiscuss extensions of ourmodel.With this abstract approach,wenot
only investigate equationswith interesting dynamics but also develop biological predictions. In particular,
our model illustrates that it is possible for cows to synchronize lesswhen the coupling is increased.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The study of collective behavior—whether of animals, mechan-
ical systems, or simply abstract oscillators—has fascinated a large
number of researchers fromobservational zoologists to puremath-
ematicians [1,2]. In animals, for example, the study of phenomena
such as flocking and herding now involves close collaboration be-
tween biologists, mathematicians, physicists, computer scientists,
and others [3–6]. This has led to a large number of fundamen-
tal insights—for example, bacterial colonies exhibit cooperative
growth patterns [7], schools of fish can make collective deci-
sions [8], intrinsic stochasticity can facilitate coherence in insect
swarms [9], human beings coordinate in consensus decision mak-
ing [10], and more. It has also led to interesting applications,
including stabilization strategies for collective motion [11] and
multi-vehicle flocking [12].

Grazing animals such as antelope, cattle, and sheep derive pro-
tection from predators by living in herds [13,14]. By synchroniz-
ing their behavior (i.e., by tending to eat and lie down at the
same time), it is easier for the animals to remain together as a
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herd [15,16]. When out at pasture, cattle are strongly synchro-
nized in their behavior [17], but when housed indoors during the
winter, increased competition for limited resources can lead to in-
creased aggression [13,18,19], interrupted feeding or lying [20],
and a breakdown of synchrony [21]. There is a growing body of
evidence that such disruptions to synchrony (in particular, dis-
ruptions to lying down) can have significant effects on cattle
production (i.e., growth rate) and cattle welfare [21–27]. Indeed,
synchrony has been proposed as a useful measure of positive wel-
fare in cattle [27,28], and the European Union regulations stipulate
that cattle housed in groups should be given sufficient space so that
they can all lie down simultaneously [29]. In thewinter, cattle have
to be housed indoors; space for both lying and feeding is thus lim-
ited, and welfare problems can potentially arise because such cir-
cumstances interfere with the inherent individual oscillations of
cows.

Although cattle synchronize their behavior if space and
resources allow, the mechanism by which they do this is not fully
understood [16,28]. In this paper, we examine interacting cattle
using a mathematical setting to try to gain an understanding of
possible mechanisms. Viable approaches to studying interacting
cows include agent-basedmodels as well as further abstraction via
the development and analysis of appropriate dynamical systems
to model the cattle behavior. In a recent dissertation [30], Franz
modified the animal behavior model of Ref. [31] to develop
an agent-based model of beef cattle and conduct a preliminary
investigation of its synchronization properties. Given the extreme
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difficulty of actually understanding the mechanisms that produce
the observed dynamics in suchmodels, we have decided instead to
take a more abstract approach using dynamical systems.

Cattle are ruminants, so it is biologically plausible to view
them as oscillators. They ingest plant food, swallow it and then
regurgitate it at some later stage, and then chew it again. During
the first stage (standing/feeding), they stand up to graze, but they
strongly prefer to lie down and ‘ruminate’ or chew the cud for the
second stage (lying/ruminating). They thus oscillate between two
stages. Both stages are necessary for complete digestion, although
the duration of each stage depends on factors such as the nutrient
content of the food and themetabolic state of the animal [32].2 We
thus suppose that each cow is an oscillator, and we choose each
oscillator to be a piecewise linear dynamical system in order to
incorporate the requisite state-switching behavior in the simplest
possible fashion. Evenwith this simplemodel, each individual cow
exhibits very interesting dynamics, which is unsurprising given
the known complexities of modeling piecewise smooth dynamical
systems [33–35]. Piecewise smooth systems have been employed
successfully in numerous applications—especially in engineering
but occasionally also in other subjects, including biology [36,37]. To
our knowledge, however, this paper presents the first application
of piecewise smooth dynamical systems to animal behavior.

Our contributions in this paper include the development
of a piecewise linear dynamical system that models a cow’s
eating, lying down, and standing cycles; an in-depth analysis
of the mathematical properties of this model; investigation of
synchronization in models (which we call herd models) produced
by coupling multiple copies of the single-cow model in a
biologically motivated manner; and a discussion of the biological
consequences of our results. Although our approach is abstract,
the present paper is not merely an investigation of equations
with interesting dynamics, as we have also developed biological
predictions.

The rest of this paper is organized as follows. In Section 2, we
discuss the dynamical system that we use to describe the behavior
of a single cow. We present, in turn, the equations of motion,
conditions that describe switching between different states
(eating, lying down, and standing), and a discrete representation
using a Poincaré section. In Section 3, we analyze this single-
cow model by studying its equilibrium point, periodic orbits,
and bifurcations. We examine interacting cows in Section 4. We
present the coupling scheme that we use to construct our herd
equations, introduce the measure of synchrony that we employ,
and examine herd synchrony numerically first for a pair of cows
and then for larger networks of cows. In Section 5, we comment
on our results and briefly discuss variant herd models that can be
constructed with different types of coupling. We then conclude in
Section 6 and provide details of the construction and analysis of
the Poincaré sections and Poincaré maps in the Appendix.

2. The single-cowmodel

2.1. Equations of motion

Weconstruct a caricature of each cowby separately considering
the observable state of the cow (eating, lying down, or standing)
and its unobservable level of hunger or desire to lie down, which
can each vary between 0 and 1. We also need a mechanism to
switch between different states when the level of hunger or desire

2 This oscillating approach to eating is one of the things that made cattle suitable
for domestication, as they can eat during the day and then be locked up safely at
night to ruminate.
to lie down exceeds some threshold. We therefore model each
individual cow as a piecewise smooth dynamical system [33].

We model the biological status of a single cow by

w = (x, y; θ) ∈ [0, 1] × [0, 1] ×Θ. (1)

The real variables x and y represent, respectively, the extent of
desire to eat and lie down of the cow, and

θ ∈ Θ = {E,R, S} (2)

is a discrete variable that represents the state of the cow (see the
equations below for descriptions of the states). Throughout this
paper, we will refer to θ as a symbolic variable or a state variable.
One can think of the symbolic variable θ as describing a switch that
triggers different time-evolution rules for the other two variables
x and y.

Wemodel the dynamics of a single cow in different states using

(E ) Eating state:

ẋ = −α2x,
ẏ = β1y.

(3)

(R) Resting state:

ẋ = α1x,
ẏ = −β2y.

(4)

(S) Standing state:

ẋ = α1x,
ẏ = β1y,

(5)

where the calligraphic letters inside parentheses indicate the
corresponding values of θ . For biological reasons, the parameters
α1, α2, β1, and β2 must all be positive real numbers. They can be
interpreted as follows:
α1 : rate of increase of hunger,
α2 : decay rate of hunger,
β1 : rate of increase of desire to lie down,
β2 : decay rate of desire to lie down.

The monotonicity in each state (growth versus decay) is the
salient feature of the dynamics, and we choose to use a linear
function for the right-hand side in each state to facilitate analytical
treatment. The dynamical system describing an individual cow is
thus a piecewise linear dynamical system [33]. As we shall see in the
following sections, this simple model is already mathematically
interesting.3

Additionally, note that we could have added an additional
positive parameter ϵ ≪ 1 to each equation to prevent the
degeneracy of the (x, y) = (0, 0) equilibrium point that occurs
for all three equations. This degeneracy can also be conveniently
avoided by restricting the dynamics of x and y to a region that
excludes the point (0, 0). We opt for the latter choice (see
Section 2.2 for details).

2.2. Switching conditions

The dynamics within each state does not fully specify the
equations governing a single cow. To close the bovine equations,
we also need switching conditions that determine how the state
variable θ changes. We illustrate these switching conditions in
Fig. 1 and describe them in terms of equations as follows:

θ →


E if θ ∈ {R, S} and x = 1,
R if θ ∈ {E, S} and x < 1, y = 1,
S if θ ∈ {E,R} and x < 1, y = δ (or x = δ, y < 1).

(6)

3 Any differential equation whose flow is monotonic in both x and y in all of the
states can be treated similarly using the method that we describe in Section 2.3
through an appropriate Poincaré section. It is expected to produce qualitatively
similar results, as the detailed flow between state transitions is irrelevant once the
intersections with the Poincaré section have been determined.
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Fig. 1. (Color online) Switching conditions for the single-cow model. In the left
panel, we project the set [δ, 1] × [δ, 1] × Θ onto R2 , where edges of the square
correspond to the borders at which switching occurs. In the right panel, we show
the detailed switching situations; an arrow from one edge to another indicates the
change of θ at that edge from one state to the other. (The arrows with solid curves
are the ones that leave state R, those with dashed curves are the ones that leave
state E , and those with dotted curves are the ones that leave state S.)

The positive number δ < 1 allows the point (x, y) = (0, 0)
to be excluded from the domain, so that the degenerate
equilibrium at that point becomes a so-called virtual equilibrium
point (i.e., an equilibrium point that is never actually reached by
the system) [33].

Eqs. (3)–(6) form a complete set of equations describing
our single-cow model. This bovine model is a piecewise smooth
dynamical system, to which some important elements of the
traditional theory for smooth dynamical systems do not apply (as
discussed in depth in the recent book [33]).

2.3. Discrete representation

Although it is straightforward to solve Eqs. (3)–(5) for a fixed
state θ , it is onerous to use such a formula to obtain analytical
expressions when the flow involves discontinuous changes in θ
(as specified by the switching conditions). Therefore, we study
the dynamics on the boundaries as discrete maps rather than the
flow on the whole domain. We accomplish this by appropriately
defining a Poincaré section [38] as the surface

Σ ≡ {(x, y; θ)|x = 1, δ ≤ y ≤ 1, θ = E}

∪ {(x, y; θ)|δ ≤ x < 1, y = 1, θ = R}

= ∂E ∪ ∂R, (7)

which is transverse to the flow of Eqs. (3)–(5) as long as α1,2 and
β1,2 are positive. (See the Appendix for the proof.) Furthermore,
any flow for which all four of these parameters are positive
intersectsΣ recurrently (again see the Appendix).

Although Σ itself is sufficient for constructing a Poincaré map
(we will use f to represent this map on Σ), it is convenient to
consider the discrete dynamics on an extended Poincaré section
Σ ′, which we define by adding the other two boundaries of the
projected square toΣ to obtain

Σ ′
≡ Σ ∪ {(x, y; θ)|x = δ, δ ≤ y < 1}

∪ {(x, y; θ)|δ ≤ x < 1, y = δ}

= ∂E ∪ ∂R ∪ ∂Sy ∪ ∂Sx, (8)

where ∂Sx and ∂Sy are used to represent the sets {(x, y; θ)|x =

δ, δ ≤ y < 1} and {(x, y; θ)|δ ≤ x < 1, y = δ}, respectively. We
illustrate the extended Poincaré section in the left panel of Fig. 1.

The Poincaré map on Σ ′ is given by the discrete dynamics
g : Σ ′

→ Σ ′ derived by solving Eqs. (3)–(5) with respect to
appropriate initial conditions. As we show in the Appendix, this
map is given explicitly by
Fig. 2. (Color online) All of the possible rules for determining the discrete dynamics
on the Poincaré sectionΣ ′ that are derived from the original system. For example,
from θ = E , the flow is going to either hit the horizontal line y = 1, which triggers
the state θ → R [case (a)], or hit the vertical line x = δ, resulting in the transition
θ → S [case (b)]. The other three panels similarly demonstrate the other switching
possibilities for the variable θ .

g(x = 1, δ ≤ y ≤ 1; E) =(y
α2
β1 , 1; R), if y ≥ δ

β1
α2 , case (a);

(δ, δ
−
β1
α2 y; S), if y < δ

β1
α2 , case (b);

g(δ ≤ x < 1, y = 1; R) =
(1, x

β2
α1 ; E), if x ≥ δ

α1
β2 , case (c);

(δ
−
α1
β2 x, δ; S), if x < δ

α1
β2 , case (d);

g(x = δ, δ ≤ y < 1; S) =(1, δ−
β1
α1 y; E), if y ≤ δ

β1
α1 , case (e);

(y−
α1
β1 δ, 1; R), if y > δ

β1
α1 , case (f );

g(δ < x < 1, y = δ; S) =
(1, x−

β1
α1 δ; E), if x ≥ δ

α1
β1 , case (g);

(δ
−
α1
β1 x, 1; R), if x < δ

α1
β1 , case (h).

(9)

In Fig. 2, we show all possible mappings on Σ ′ and, in particular,
enumerate all of the possible cases in (9). The Poincaré map
f : Σ → Σ can be obtained from g (see the discussion in the
Appendix).

3. Analysis of the single-cowmodel

In this section, we summarize a few properties of the single-
cow model in terms of the discrete dynamics f on Σ . Specifically,
we give analytical results for the emergence and stability of the
fixed point (which is unique) and the period-2 orbits on Σ . We
include detailed derivations of these results in the Appendix. We
summarize these results in Table 1.

For convenience, we assume that the cow is initially in the state
E with x = 1 and δ ≤ y ≤ 1. If the cow were to start in other
parts of the phase space, it would eventually come to this region.
Furthermore, we have chosen to assign the state value θ = S to
the point (x, y) = (1, 1) as a tie-breaker. Additionally, θ = E at
(x, y) = (1, δ) and θ = R at (x, y) = (δ, 1), in accordance with
Eq. (6).

3.1. The fixed point

The only possible fixedpoint onΣ is the corner point (x, y; θ) =

(1, 1; E). This fixed point is asymptotically stable if and only if the
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Table 1
Summary of low-period orbits (up to period 2) and their stability for the single-cow dynamics restricted to the
Poincaré section Σ . All orbits except for the first one are period-2 orbits on Σ . In the ‘Stability’ column, we use
‘a.s.’ as an abbreviation for ‘asymptotically stable’.

Parameters Orbit Condition on y0 Stability
α2
α1

·
β2
β1
< 1 {(1, 1; E)} none a.s.

α2
α1

·
β2
β1

= 1 {(1, y0; E), (y
α2
β1
0 , 1; R)} max(δ, δ

β1
α2 ) < y0 < 1 stable

α2
α1

·
β2
β1
> 1, α2 < β1 {(1, y0; E), (y

α2
β1
0 , 1; R)} y0 = δ

1+
β1
β2

1+
α2
α1 a.s. iff α2 < α1

α2

α1
·
β2

β1
> 1, α2 > β1;

1
α1

+
1
α2

≥
1
β1

+
1
β2

{(1, y0; E), (y
α2
β1
0 , 1; R)} y0 = δ

1+
β1
β2

1+
α2
α1 a.s. iff α2 < α1


α2

α1
·
β2

β1
> 1, α2 > β1;

1
α1

+
1
α2

<
1
β1

+
1
β2

{(1, y0; E), (δ, δ
−
β1
α2 y0; R)} y0 = δ

1
α1

+
1
α2

1
β1

+
1
β2 a.s. iff β2 < β1


α2

α1
·
β2

β1
> 1, α2 > β1;

1
α1

+
1
α2

=
1
β1

+
1
β2

{(1, y0; E), (δ
1+ α1

α2 y
−
α1
β1

0 , 1; R)} δ < y0 < δ
β1
α2 stable
Fig. 3. (Color online) Illustration of all of the possible period-2 orbits onΣ .

parameters satisfy

α2

α1
·
β2

β1
< 1. (10)

Additionally (when the above condition holds), simulations
indicate that the basin of attraction of this fixed point seems to be
the entire domain.

3.2. Period-2 orbits

The next simplest kinds of orbits for the discrete map have
period 2 and correspond to cycles of the flow. A period-2 orbit
on Σ must contain points for which θ = E and θ = R appear
alternatively. This can occur in a fewdifferent situations (see Fig. 3),
which we summarize in the following subsections. We include
further details in the Appendix. Note that some of the period-2
orbits correspond to higher-period orbits of the discrete dynamics
on Σ ′. For convenience, we represent such orbits on Σ ′, with the
understanding that when restricted to Σ (i.e., when points with
symbolic variable S are excluded), they all have period 2.

3.2.1. Case A: (x0, y0; E) → (x1, y1; R) → (x0, y0; E) → · · ·

The existence of such an orbit requires the parameters to satisfy

α2

α1
·
β2

β1
= 1. (11)
When this condition holds, there are infinitelymany stable period-
2 orbits that are not asymptotically stable. The initial value (x0, y0)
of such an orbit is in the state θ = E , and it satisfies x0 = 1 and

max

δ, δ

β1
α2 = δ

β2
α1


< y0 < 1. (12)

If y0 is outside of this range, then one can see using numerical
simulations that the orbit will necessarily contain a point in this
range that becomes a stable period-2 orbit.

3.2.2. Case B: (x0, y0; E) → (x1, y1; R) → (x2, y2; S)
→ (x0, y0; E) → · · ·

The parameters need to satisfy

α2

α1
·
β2

β1
> 1 (13)

or else any trajectory either converges to a fixed point or a stable
period-2 orbit (as discussed above). It is also necessary that

1
α1

+
1
α2

≥
1
β1

+
1
β2

if β1 < α2. (14)

There is only one period-2 orbit of this type if the above two
conditions hold. This implies that x0 = 1 and

y0 = δ
1+β1/β2
1+α2/α1 . (15)

This periodic orbit is asymptotically stable if and only if

α2 < α1. (16)

That is, the orbit is asymptotically stable if and only if the rate at
which a cow becomes sated while it is eating is slower than the
rate at which it becomes hungrier when it is not eating.

3.2.3. Case C: (x0, y0; E) → (x1, y1; S) → (x2, y2; R)
→ (x0, y0; E) → · · ·

Again, we first need

α2

α1
·
β2

β1
> 1. (17)

Additionally,

1
α1

+
1
α2
<

1
β1

+
1
β2

and β1 < α2. (18)
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There is also only one period-2 orbit of this type; it has x0 = 1 and

y0 = δ
1/α1+1/α2
1/β1+1/β2 . (19)

This orbit is asymptotically stable if and only if

β2 < β1. (20)

This case is analogous to case B, except that the roles of lying
down and eating have been reversed. Hence, this period-2 orbit is
asymptotically stable if and only if the rate at which a cow desires
to get up when it is lying down is slower than the rate at which it
increases its desire to lie down when it is not lying down.

3.2.4. Case D: (x0, y0; E) → (x1, y1; S) → (x2, y2; R)
→ (x3, y3; S) → (x0, y0; E) → · · ·

The appearance of this orbit requires the following conditions
to be satisfied:
α2

α1
·
β2

β1
> 1,

1
α1

+
1
α2

=
1
β1

+
1
β2
, and β1 < α2. (21)

There are infinitely many such orbits, which satisfy x0 = 1 and

δ < y0 < δ
β1
α2 . (22)

All of these orbits are stable but not asymptotically stable.

3.2.5. Summary
We summarize the emergence of low-period orbits (up to

period 2) of f : Σ → Σ in different parameter ranges in Table 1.

3.3. Grazing bifurcations

We remark that the single-cow equations cannot exhibit
grazing bifurcations.4

3.4. Higher-period orbits and the bifurcation diagram

Although one could proceed to analyze more complicated
orbits, this is not the main topic of this paper. Instead, we simply
illustrate the existence of more complicated (possibly chaotic)
orbits through a bifurcation diagram (see Fig. 4) by varying one of
the parameters in numerical computation. This parameter, which
we choose to be α2, seems to be transverse to the unfolding of the
bifurcation and reveals rich dynamics in our model. Qualitatively
similar bifurcation patterns have also been observed in other types
of non-smooth dynamical systems [39,40], and they should arise in
a wide variety of systems.

For a wide range of parameters, there always seems to be a
subset of nonzero measure (for a fixed set of parameters) of the
domain that attracts ‘‘typical’’ (in the sense of full measure) initial
conditions. We show one of these (likely chaotic) orbits in Fig. 5.
We connect the dots by straight lines in order to illustrate the end
points of the flow touching the boundaries, although the actual
trajectories between points on the boundaries are convex curves.
We remark that one can think of the discrete dynamics on Σ ′ as
a billiard-like problem (see Refs. [41,42] and references therein
for discussions of billiards) with nontrivial bouncing rules on the
boundary and nonlinear potentials that determine the trajectories
of particles between collisions with the boundary.

4 In the theory of piecewise smooth dynamical systems, a grazing bifurcation
is said to occur when a limit cycle of a flow becomes tangent to a discontinuity
boundary [33,34].
1 2 3 4 5
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0.25
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1
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1.5
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2

q=α
2
/α

1

ξ

Fig. 4. (Color online) Bifurcation diagram for the discrete dynamics f onΣ . We fix
the parameter values α1 = 0.05, β1 = 0.05, β2 = 0.125, and δ = 0.25. The vertical
axis is ξ = y+ (1− x), corresponding to the points (x, y) onΣ . In the top panel, we
show the diagram for which q ≡

α2
α1

ranges from 0 to 5; dashed and dotted curves
give theoretical results, which we summarize in Table 1. In the bottom panel, we
show the diagram for q from 0 to 15. If we further increase q, the two large finger-
like bands on the right of the diagram retain their shape and become progressively
closer. Numerical simulations suggest that the distance between them tends to 0 as
q → ∞.

0.5 0.75 10.25
0.25

0.5

0.75

1

Fig. 5. (Color online) A typical discrete orbit (thin solid lines) on Σ for the
parameters α1 = 0.05, α2 = 0.1, β1 = 0.05, β2 = 0.125, and δ = 0.25. We
depict the case corresponding to q = 2 from Fig. 4. The dashed lines show transient
dynamics.Wehighlight the boundaries using thick solid lines. For aesthetic reasons,
we join successive points onΣ with straight lines, and we note that the actual flow
that connects these points consists of the union of piecewise convex curves.

4. Coupled cows and synchronization

As we discussed in the introduction, there are many biological
benefits to achieving synchronized eating and lying down in cattle.
We are thus motivated to construct herd equations that describe
interacting cows by coupling the single-cow equations (3)–(6). We
make specific choices motivated by biology and simplicity, though
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it is of course important to consider bothmore complicated choices
and alternative forms of coupling. Our goal is to highlight one
possible form of the interactions in detail, but we hope that our
work will serve as a springboard for rumination on some of the
alternatives that we will mention briefly in Section 5.

In this section, we numerically investigate the effect of coupling
in a system of a few cows. For the purpose of simplifying the
exposition of the equations, we use indicator functions defined on
the setΘ = {E,R, S}:

χψ (θ) ≡


1, if θ = ψ,
0, otherwise. (23)

Eqs. (3)–(5) can be rewritten as
ẋ = α(θ)x,
ẏ = β(θ)y, (24)

where we have defined the functions
α(θ) = −α2χE (θ)+ α1χR(θ)+ α1χS(θ),
β(θ) = β1χE (θ)− β2χR(θ)+ β1χS(θ).

(25)

4.1. The coupling scheme

There are numerous possible ways to model the coupling
between cows. We have chosen one based on the hypothesis that
a cow feels hungrier when it notices other cows eating and feels a
greater desire to lie down when it notices other cows lying down.
(We briefly discuss other possibilities in Section 5.) This provides a
coupling that does not have a spatial component, in contrast to the
agent-based approach of Ref. [30]. We therefore assume implicitly
that space is unlimited, so we are considering cows to be in a field
rather than in a pen. We suppose that the herd consists of n cows
and use i to represent the ith cow in the herd. This yields herd
equations given by

ẋi =

[
α(i)(θi)+

σx

ki

n−
j=1

aijχE (θj)

]
xi,

ẏi =

[
β(i)(θi)+

σy

ki

n−
j=1

aijχR(θj)

]
yi,

(26)

with the switching condition given by Eq. (6) for each individual
cow. The summation terms in both equations give the coupling
terms of this system. The matrix A = [aij]n×n is a time-
dependent adjacency matrix that represents the network of cows.
Its components are given by

aij(t) =


1 if the ith cow perceives the

jth cow at time t,
0 if the ith cow does not perceive the

jth cow at time t.

(27)

Additionally, ki =
∑n

j=1 Aij is the degree of node i (i.e., the number
of cows to which it is connected), and the coupling strengths σx
andσy are non-negative (and usually positive) real numbers. This is
designed to emphasize that animal interaction strengths consider
proximity to neighboring animals.

It is important to note that in the case where A is time-
independent, the dynamics governing the network of interacting
cows only changes when at least one of the individual cows
changes its state θi. In practice, we solve analytically for the flows
in between such transitions (because they are piecewise linear
differential equations) instead of performingnumerical integration
in thewhole time interval, whichmight cause numerical instability
when the number of transitions becomes large.
4.2. Measuring synchrony

We also need a measure for the synchrony between cows. For
each cow i, let τ (i) and κ (i) be vectors such that
τ
(i)
k ≡ the kth time at which the ith
cow switches its state to E,

κ
(i)
k ≡ the kth time at which the ith
cow switches its state to R.

(28)

Given pairs of vectors τ (i) and τ (j) of the same length, the
‘‘eating’’ synchrony between cows i and j is measured by

∆E
ij ≡ ⟨|τ (i) − τ (j)|⟩ =

1
K

K−
k=1

|τ
(i)
k − τ

(j)
k |, (29)

where ⟨·⟩ denotes time-averaging and K is the number of state
changes. Smaller sums in Eq. (29) (and in similar equations below)
indicate that there is more synchrony. For a specific pair of vectors
τ (i) and τ (j), we first truncate the beginning part of the vector of
larger length. After this truncation, the two vectors have the same
number of components. We then shift one of the two vectors (with
a maximum allowed shift to be 10); by symmetry, either one can
be shifted. For each shift, we compute the synchronization error
defined by Eq. (29). The minimal synchronization error among all
shifts is taken to be the synchronization error between i and j.

Similarly, we define the ‘‘lying’’ synchrony between cows i and
j by

∆R
ij ≡ ⟨|κ (i) − κ (j)|⟩. (30)

For n cows, the group ‘‘eating’’ and ‘‘lying’’ synchronies are
then measured by averaging over all of the synchronies between
individual pairs:
∆E

≡ ⟨∆E
ij ⟩ =

1
n2

−
i,j

∆E
ij ,

∆R
≡ ⟨∆R

ij ⟩ =
1
n2

−
i,j

∆R
ij ,

(31)

and the aggregate synchrony can then be measured via

∆ ≡ ∆E
+∆R. (32)

There are, of course, other possiblemeasures of synchrony that one
could employ. For example, in his agent-based study, Franz [30]
considered kappa statistics, an order parameter adapted from the
usual one used in the Kuramoto model, and a direct count of how
often all cows are lying down [19,27].

4.3. Numerical exploration of herd synchrony

With the tools described above,we are now ready to show some
examples of synchronization of cows. We will start with a system
consisting of only two cows and then consider herds with more
than two cows.

4.3.1. Two coupled cows
We first examine how the coupling strength affects the extent

of synchronization. Assume that the two cows have individual
dynamics that are specified by nearly identical parameter values:

α
(1,2)
1 = 0.05 ± ϵ, α

(1,2)
2 = 0.1 ± ϵ,

β
(1,2)
1 = 0.05 ± ϵ, β

(1,2)
2 = 0.125 ± ϵ,

δ = 0.25. (33)

We show simulation results in Figs. 6 and 7 to illustrate the
dependence of synchrony both on the mismatch parameter ϵ and
on the coupling strengths σx, σy.
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Fig. 6. (Color online) Typical time series of the state variables θ1,2 for different coupling strengths. The system of equations is described by Eq. (26), and the parameter values
are given in Eq. (33). The mismatch parameter between the two cows is ϵ = 10−3 . The horizontal axis is time t . The left panel shows the transition of states θ1 (red circles
connected by ‘−′) and θ2 (black crosses connected by ‘ − −

′) of a typical time series with the coupling strengths σx = σy = 0 (i.e., when there is no coupling). The right
panel shows a similar plot with the coupling strengths σx = σy = 0.045.
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Fig. 7. (Color online) Dependence of synchrony on coupling strength. The system of equations and parameters are specified by Eqs. (26) and (33), respectively. In the
left panel, we plot the synchronization error, which we measure using Eq. (31), for different coupling strengths σx,y for two coupled cows whose mismatch parameter is
ϵ = 10−3 . In the right panel, we show the synchronization error for mismatch parameter ϵ = 10−2 . We obtain each curve (for a fixed ϵ) by averaging over 50 runs. Each run
is an independent realization of the herd equations starting from an initial condition chosen uniformly at random. Vertical error bars indicate one standard deviation from
the mean.
These pictures suggest that our measure of synchrony is
reasonable for such a system. The greater the difference between
the two cows, the harder it is for them to achieve synchrony.
However, the level of synchrony is not necessarily monotonically
dependent on the coupling strength. An increase in the coupling
strength at the beginning does improve synchrony, but there is
a point beyond which stronger coupling can in fact lead to lower
synchrony.

4.3.2. A network of coupled cows
In this subsection, we show numerical results on synchroniza-

tion among a few cows. In all examples, we consider a herd of
n = 10 cows, where each individual has parameter values slightly
perturbed from α1 = 0.05, α2 = 0.1, β1 = 0.05, and β2 =

0.125. Additionally, we note that 10−3 is the maximum difference
in each parameter value relative to the average parameter among
all individuals. We can couple these cows using different network
architectures—for example, a circular lattice and a star graph (see
Fig. 8). We use these networks only as illustrative examples, as one
can of course perform similar investigations with any other net-
work architecture (including network structures that vary in time).

In Fig. 9, we show the state transitions of the ten cows during
a small time interval. We consider fixed coupling strengths σx =

σy = 0.05 for each of the two network architectures.
In Fig. 10, we illustrate the dependence of synchrony on cou-

pling strength for the two network configurations. Interestingly,
when the coupling strength is increased, the cows tend to synchro-
nize less when they are coupled via a circular lattice, whereas syn-
chrony is improved if they are coupled via a star graph. We also
tested other network configurations, such as circular lattices with
more than just nearest-neighbor connections and (Erdös–Rényi)
random graphs, and the resulting curves are qualitatively similar
to the one shown in the left panel of Fig. 10. It would be interesting
to study what network architectures can lead to good synchrony
beyond the star graph, which is an idealized example. A heuristic
reason that synchrony can decrease when coupling is increased in
our herdmodel (and, more generally, in piecewise smooth dynam-
ical systems) is that decreasing the difference in the observable
variables (x, y) through coupling does not necessarily reduce the
difference in the hidden state variable θ , and the effect of coupling
might well be the opposite of what one would naively anticipate
(as we have observed using the circular lattice structure). More-
over, recent work in other contexts has illustrated that increasing
the number of connections in a network can sometimes lead to less
synchrony [43]. Although synchronization has been studied exten-
sively for smooth dynamical systems [1,2,43–50] and the mecha-
nisms that promote and inhibit synchrony in such situations are
relatively well understood, much less is known about networks of
coupled piecewise smooth dynamical systems. It would be inter-
esting to study the influence of network architecture on synchrony
formodels other than smooth dynamical systems (such as the herd
model considered in this paper), and this might prove to be impor-
tant in studying the behavior of interacting animals.
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Fig. 8. (Color online) Example network architectures for coupled cows: (left) circular lattice with 10 nodes and (right) star graph with 10 nodes. (The spherical cow image
was created for this paper by Yulian Ng and is used with her permission.)
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Fig. 9. (Color online) Typical state transitions for coupled cows in (left) a circular lattice and (right) a star graph with fixed coupling strengths σx = σy = 0.05. We plot
(artificial) straight lines to help visualize transitions between states (which are represented by open circles, with different colors representing different cows). The horizontal
axis is time. Some of the curves overlap (so that fewer than 10 colors are visible) due to the partial synchrony between individual cows.
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Fig. 10. (Color online) Synchrony measures versus coupling strengths in the (left) circular lattice and (right) star graph.
5. Discussion

We have only scratched the surface concerning themodeling of
herd synchrony in cattle.

We considered each cow as an oscillator, which we modeled
as a piecewise linear dynamical system. Our single-cowmodel has
interestingmathematical properties, which we discussed in detail.
Monotonic dynamics within each state is the most important
feature, and we chose linear dynamics to make the analysis as
tractable as possible.

We illustrated herd dynamics through specific coupling choices
for interactions between cows. We assumed that the herd is in
a field rather than a pen and, in particular, ignored the presence
of spatial constraints. We considered cows that become hungrier
when they notice others eating and that exhibit a greater desire
to lie down when they notice others lying down, but numerous
other choices would also be interesting to study. For example, the
relative importances of the two aforementioned types of positive
coupling can be varied systematically, and the specific functional
forms of coupling can also, of course, be different. Additionally,
it is not clear whether cow synchrony arises from such an active
mechanism or whether it can arise from more passive forms
of coupling. In particular, this could entail the incorporation of
spatial effects, such as limited eating and bedding areas and the
competition of cows for such resources. Additionally, the inherent
oscillations of individual cows might lead to synchronization even
with almost no interactions between individuals [51]. Synchrony
can potentially emerge even if the only interaction between cows
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occurs when one steps on another one, so such a minimalist but
biologically meaningful mechanism (in which the cows need not
even notice whether another cow is feeding or resting) would be
interesting to test against more complicated forms of interaction.
It would also be interesting to use real observations of cattle to
compare the synchronization properties in limited space versus
‘‘unlimited’’ space (i.e., pens versus open fields). Some of these
experiments have now been done, and they await analysis.

One could examine spatial effects in the oscillator model
of cows by considering more realistic network architectures.
Such networks could either come from experimental data that
would indicate which cows come into contact with each other
or using structures that respect the fact that fields and pens are
planar regions. It would also be interesting to consider different
network structures from an abstract perspective in order to test
observations such as the different dynamics with the star graph
(which has one high-degree node and many small-degree nodes),
and also to consider the synchronization dynamics of larger herds.
Additionally, herds of cattle are known to have hierarchies, as not
all cows are created equal, and this can be incorporated into the
model either through an appropriate network architecture or by
considering heterogeneity in the dynamics of individual cows.

An alternative modeling choice would be to consider agent-
based models for the herd [30] rather than the oscillator model
that we have studied. Agent-based formulations are good at
incorporating spatial effects, but they of course have a black-box
flavor that makes them very difficult to analyze.

Oscillations between standing, eating, and lying/ruminating
phases have interesting biological consequences. For example, for
cows to stay together as a herd, it is not necessary for all of
them to be exactly synchronized. It is possible (and it has been
observed often in fields) for a herd to have some individuals
lying down and other individuals standing and grazing around
them. From a functional perspective, it is conceivable that this
could lead to better spotting of predators than if everyone had
their heads down at the same time. A degree of desychronization
(provided that it does not lead to the herd breaking up) might
actually be better for each individual than perfect synchrony [52].
Intriguingly, the recent model of groups of animals by Dostálková
and Špinka, inwhich each individual can eithermove or stay in one
place, suggests (using optimization of a cost function) that partial
synchrony can occur [53]. However, this occurs much less often
in the model than do complete synchrony and utter desynchrony.
Moreover, their ‘‘paradoxical’’ prediction that mean group size
might decrease as the ratio of the grouping benefit to grouping
cost increases is in some sense similar (at least philosophically) to
our prediction that less synchronization can potentially occur even
with stronger coupling between individual cows.

Although we have framed our discussion in terms of cows, our
oscillator framework is very general and should also be useful—
perhaps with modifications that are tailored to different species—
in studying the behavior of other ruminants. It is of considerable
biological interest to establish empirically which mechanisms for
synchrony actually operate in real cows (and, more generally,
in other ruminants and in other animals) and to discern more
precisely the extent to which such synchrony actually occurs. It
is thus important to develop testable predictions that can help
one distinguish between the numerous possible synchronization
mechanisms. We have taken one small step in this paper, but
there is clearly a lot more interesting research on the horizon. It
is also desirable to consider practical situations, such as the effects
of changing pen shape, stocking density, size of lying area, feed-
trough size and position, and the nutrient quality of the food.

In addition to the many fascinating animal-behavior questions,
the research reported in this paper also suggests several inter-
esting abstract questions. For example, although the theory of
synchronization is well-developed and widely used for smooth
dynamical systems [44–46,49,50], it is an open problem how
to predict in general when a system that is composed of cou-
pled piecewise smooth oscillators can achieve stable synchronous
states. In pursuing such considerations, it would also be relevant to
consider different notions of synchrony. Such analysis is of poten-
tial importance given the wealth of piecewise smooth dynamical
systems that arise in many applications [33]. Furthermore, the ef-
fects of delay and changes in the network architecture in time are
also expected to affect the synchronization properties, though such
considerations are difficult even for smooth systems [47,48,54].
We hope that the model that we have developed in this paper will
stimulate research along these lines.

6. Conclusions

We modeled the eating, lying, and standing dynamics of a
cow using a piecewise linear dynamical system. We constructed
Poincarémaps to examine the system’s equilibriumpoint and low-
period cycles in depth and illustrated more complicated behavior
using bifurcationdiagrams.We then considered amodel of coupled
cows—first using two cows and then using networks of interacting
cows—in order to study herd synchrony. We chose a form of
coupling based on cows having an increased desire to eat if they
notice another cow eating and an increased desire to lie down
if they notice another cow lying down. We proposed a measure
of synchrony that keeps track of when each cow is in a given
state and showed that it is possible for cows to synchronize
less when the coupling is increased. We also discussed other
forms of coupling and cow-interaction networks that can be
studied using our formulation. This line of inquiry seems very
promising, and we think that it will not only lead to interesting
future theoretical investigations but could even motivate new
experiments. Althoughwe framed our discussion in terms of cows,
our framework is general and it should be fruitful in the study
of the behavior of other ruminants as well. The stakes are high
when studying animal behavior, and we believe that our model of
cattle herds (and generalizations of ourmodel) will yield increased
understanding of their synchronization properties. Milking these
ideas as much as possible should prove to be very insightful from
both theoretical and practical perspectives.
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Appendix. Investigation of the single-cow model using a
Poincaré section

The single-cow model for w = (x, y; θ), with (x, y) ∈ [0, 1] ×

[0, 1] and θ ∈ {E,R, S}, consists of equations describing dynamics
for different states θ and rules for how to switch states. The
equations within each state are

(E ) Eating state:

ẋ = −α2x,
ẏ = β1y,

(34)

(R) Resting state:

ẋ = α1x,
ẏ = −β2y,

(35)

(S) Standing state:

ẋ = α1x,
ẏ = β1y.

(36)
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The rules for switching the state θ are

θ →


E if θ ∈ {R, S} and x = 1,
R if θ ∈ {E, S} and x < 1, y = 1,
S if θ ∈ {E,R} and x < 1, y = δ (or x = δ, y < 1).

(37)

All of the parameters (α1,2 and β1,2) are positive. We use the term
single-cow equations to refer collectively to Eqs. (34)–(37).

A.1. Transversality of the Poincaré section

As with smooth systems, the term ‘‘flow’’ in piecewise smooth
dynamical systems refers to the usual time-parameterized contin-
uous group [33].

Definition 1 (Flow). The solution to the single-cow equations,
which we denote by φ(t − t0, w0) for initial condition w0 at time
t0, is called a flow of the single-cow equations.

The two strips of the boundary of the single-cowequations form
a set that we denote byΣ . It is defined by

Σ ≡ {(x, y; θ)|x = 1, δ ≤ y ≤ 1, θ = E}

∪ {(x, y; θ)|δ ≤ x < 1, y = 1, θ = R}

= ∂E ∪ ∂R, (38)

where we recall that ∂E and ∂R are used to represent the two sets
{(x, y; θ)|x = 1, δ ≤ y ≤ 1, θ = E} and {(x, y; θ)|δ ≤ x < 1,
y = 1, θ = R}.

The following lemma shows that the surfaceΣ can be used as a
Poincaré section for any flow. This result follows directly from the
equations of motion.

Lemma 1 (Transversality and Recurrence of Σ). For any initial
conditionw0 = (x0, y0; θ0)with initial time t0, the flowφ(t−t0, w0)
of the single-cow equations is transverse to Σ . In other words, the
direction of the flow (restricted to the xy-plane) is not tangent to Σ
(also restricted to the xy-plane). Furthermore, there exists t > t0 such
that φ(t − t0, w0) ∈ Σ .

A similar lemma holds for the extended Poincaré section Σ ′,
which is defined as

Σ ′
≡ Σ ∪ {(x, y; θ)|x = δ, δ ≤ y < 1}

∪ {(x, y; θ)|δ ≤ x < 1, y = δ}

= ∂E ∪ ∂R ∪ ∂Sy ∪ ∂Sx, (39)

where ∂Sx and Sy are used to represent the sets {(x, y; θ)|x =

δ, δ ≤ y < 1} and {(x, y; θ)|δ ≤ x < 1, y = δ}, respectively.

A.2. Discrete dynamics on the Poincaré section: derivation

The derivation of the map g onΣ ′ involves first solving for the
flows on the continuous segments where θ takes one value.

Starting from θ = E , we get

(x, y; E) →
tER =

1
β1

log

1
y


, gER(x, y; E) = (y

α2
β1 , 1; R),

tES =
1
α2

log

1
δ


, gES(x, y; E) =

δ,1
δ

 β1
α2

y; S

 .(40)
Starting from θ = R, we get

(x, y; R) →
tRE =

1
α1

log

1
x


, gRE (x, y; R) = (1, x

β2
α1 ; E),

tRS =
1
β2

log

1
δ


, gRS(x, y; R) =


1
δ

 α1
β2

x, δ; S


.

(41)
Starting from θ = S, we get

(x, y; S) →
tSE =

1
α1

log

1
x


, gSE (x, y; S) =

1,

1
x

 β1
α1

y; E

 ,
tSR =

1
β1

log

1
y


, gSR(x, y; S) =


1
y

 α1
β1

x, 1; R


.

(42)

Subscripts such asER indicate the transition of θ fromone state
(e.g., E ) to another (e.g., R). The quantity t with the appropriate
subscript represents the time that it takes for this transition to
happen. In the next subsection of this appendix, we will analyze
the dependence of the discrete system specified by the above rules
on the parameter values and initial conditions.

Using the above equations, we derive the discrete dynamics g
on Σ ′ from the nth transition to the (n + 1)th transition. This is
given by (xn+1, yn+1, θn+1) = g(xn, yn, θn), where

g(x = 1, δ ≤ y ≤ 1; E) =

(y
α2
β1 , 1; R), if y ≥ δ

β1
α2 ,

(δ, δ
−
β1
α2 y; S), if y < δ

β1
α2 ,

g(δ ≤ x < 1, y = 1; R) =


(1, x

β2
α1 ; E), if x ≥ δ

α1
β2 ,

(δ
−
α1
β2 x, δ; S), if x < δ

α1
β2 ,

g(x = δ, δ ≤ y < 1; S) =

(1, δ−
β1
α1 y; E), if y ≤ δ

β1
α1 ,

(y−
α1
β1 δ, 1; R), if y > δ

β1
α1 ,

g(δ < x < 1, y = δ; S) =


(1, x−

β1
α1 δ; E), if x ≥ δ

α1
β1 ,

(δ
−
α1
β1 x, 1; R), if x < δ

α1
β1 .

(43)

This, in turn, yields the discrete dynamics on Σ ′. The dynamics f
onΣ is then simply g restricted toΣ .

We need the following definitions in order to discuss the
stability of orbits for the dynamics on Σ . We start by defining an
appropriate distance measure onΣ .

Definition 2 (Distance Measure onΣ).We define the distance ‖ · ‖

onΣ by

‖w1 − w2‖ ≡ |x1 − x2| + |y1 − y2|, (44)

wherewi = (xi, yi; θi) for i = 1, 2. Note that the symbolic variable
θ does not affect the distance.

We now give a definition of stability and asymptotic stability
that is analogous to the standard definition for smooth dynamical
systems [33,38].

Definition 3 (Stability and Asymptotic Stability). Let f denote the
discrete dynamics on Σ . A fixed point w0 on Σ is stable if for any
ϵ > 0, there exists an η > 0 such that

‖w − w0‖ < η ⇒ ‖f (w)− f (w0)‖ < ϵ. (45)

A fixed point w0 is asymptotically stable if it is stable and there
exists an η > 0 such that

‖w − w0‖ < η ⇒ lim
n→∞

f n(w) = w0. (46)

The stability and asymptotic stability of a period-T orbit {z0, . . . ,
zT−1} are defined as the stability and asymptotic stability of the
fixed point z0 of the T th iterate f T of the map f onΣ .
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Fig. 11. (Color online) Illustration that there cannot be any fixed point of f on Σ
except for the corner point (1, 1; E). This follows from the monotonic increase of
the y-componentwhen θ = E remains unchanged. The other possible situation (not
pictured) occurswhen θ = R, forwhich the x-component increasesmonotonically,
indicating that there cannot be an equilibrium point on ∂R.

A.3. Fixed points: existence and stability

We first show that there is only one fixed point onΣ .

Lemma 2 (Fixed Points on Σ). The only fixed point of f on Σ is
the point w0 = (x0, y0; θ) = (1, 1; E). This fixed point is (locally)
asymptotically stable if and only if

α2

α1
·
β2

β1
< 1. (47)

Proof. First we show that if (x0, y0; θ0) = (1, y0; E), where δ ≤

y0 < 1 or (x0, y0; θ0) = (x0, 1; R), then we do not have a fixed
point. Suppose that there is a fixed point starting fromw0 = (x0 =

1, δ ≤ y0 < 1; θ0 = E). Because it is a fixed point on Σ , the flow
cannot hit ∂R. It must thus intersect ∂Sy first and then continue
and hit ∂E again; see Fig. 11 for an illustration. However, because
the y-component increases exponentially with rate β1 > 0 when
both θ = E and θ = S [see Eqs. (34)–(36)], it follows that y1 >
y0. Consequently, (x1, y1) cannot be the same point as (x0, y0). A
similar argument applies to initial conditions with θ0 = R, so we
can conclude that there is no fixed point for the discrete dynamics
onΣ − {(1, 1, E)}.

The only possible fixed point on Σ is the point (1, 1; E). The
asymptotic stability of this fixed point is easily obtained through
linearization. �

We remark that although linearization gives local asymptotic
stability of the fixed point, numerical simulation indicates that the
actual basin of attraction is the entire domain when Eq. (47) is
satisfied.

A.4. Period-2 orbits: existence and stability

We next analyze all possible period-2 orbits of f onΣ . Some of
those orbits correspond to higher-period orbits of g on Σ ′. When
this is the case, we indicate the points of such an orbit on Σ ′ to
differentiate between different periodic orbits. Nevertheless, it is
useful to keep in mind that when restricted to Σ (i.e., when one
ignores points with θ = S), such orbits have period 2. Fig. 12
illustrates all of the possible period-2 orbits.

A.4.1. Case A: (x0, y0; E) → (x1, y1; R) → (x0, y0; E) → · · ·

This period-2 orbit satisfies
w0 = (x0, y0; E) = (1, y0; E), where 0 < y0 < 1;

f (w0) = g(w0) = w1 = (x1, y1; R) = (y
α2
β1
0 , 1; R),

where y0 ≥ δ
β1
α2 ;

w0 = f 2(w0) = g2(w0) = w2 = (x2, y2; E) = (1, x
β2
α1
1 , E),

where x1 ≥ δ
α1
β2 . (48)
Fig. 12. (Color online) Illustration of all of the possible period-2 orbits onΣ . (This
figure is the same as Fig. 3. We show it again for clarity.)

The existence of this orbit entails that (x0, y0) = (x2, y2) and that
the constraints (i.e., the inequalities that accompany the equations)
are satisfied in (48). It is thus required that the parameters satisfy

α2

α1
·
β2

β1
= 1, (49)

and that y0 satisfy
δ < y0 < 1, if α2 ≤ β1,

δ
β1
α2 < y0 < 1, if α2 > β1.

(50)

Linearization demonstrates that the orbit is stable but not
necessarily asymptotically stable.

As we are taking x0 = 1 (the initial point is on the right edge
of the square domain), we obtain conditions for y0. All orbits must
hit the right edge at some point, so we do not lose any generality
by taking x0 = 1.

A.4.2. Case B: (x0, y0; E) → (x1, y1; R) → (x2, y2; S)
→ (x0, y0; E) → · · ·

In this case, the orbit has period 2 on Σ but period 3 on Σ ′.
Specifically,

w0 = (x0, y0; θ0) = (1, y0; E), where δ ≤ y0 < 1;

f (w0) = g(w0) = w1 = (x1, y1; θ1) = (y
α2
β1
0 , 1; R),

where y0 ≥ δ
β1
α2 ;

g2(w0) = w2 = (x2, y2; θ2) = (δ
−
α1
β2 x1, δ; S),

where x1 < δ
α1
β2 ;

w0 = f 2(w0) = g3(w0) = w3 = (x3, y3; θ3) = (1, x
−
β1
α1

2 δ; E),

where x2 ≥ δ
α1
β1 . (51)

For fixed parameter values, there is only one such orbit; it must
satisfy

y0 = δ

1+
β1
β2

1+
α2
α1 . (52)

The existence of this period-2 orbit also requires that the
parameters satisfy
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α2

α1
·
β2

β1
> 1,

1
α1

+
1
α2

≥
1
β1

+
1
β2

if β1 < α2. (53)

This orbit is asymptotically stable if and only if

α2

α1
< 1. (54)

In particular, it is worth remarking that the orbit is not
asymptotically stable in the case α1 = α2 describing equal growth
and decay rates for hunger.

A.4.3. Case C: (x0, y0; E) → (x1, y1; S) → (x2, y2; R)
→ (x0, y0; E) → · · ·

In this case, the orbit has period 2 on Σ but period 3 on Σ ′.
Specifically,

w0 = (x0, y0; θ0) = (1, y0; E), where δ ≤ y0 < 1;

g(w0) = w1 = (x1, y1; θ1) = (δ, δ
−
β1
α2 y0; S),

where y0 < δ
β1
α2 ;

f (w0) = g2(w0) = w2 = (x2, y2; θ2) = (y
−
α1
β1

1 δ, 1; R),

where y1 > δ
β1
α1 ;

w0 = f 2(w0) = g3(w0) = w3 = (x3, y3; θ3) = (1, x
β2
α1
2 ; E),

where x2 ≥ δ
α1
β2 . (55)

Solving (55) with the associated constraints yields necessary
conditions for the existence of this period-2 orbit. The initial value
y0 must satisfy

y0 = δ

1
α1

+
1
α2

1
β1

+
1
β2 , (56)

and the parameters must satisfy

α2

α1
·
β2

β1
> 1,

β1 < α2,
1
α1

+
1
α2
<

1
β1

+
1
β2
,

α2

α1
≤
β2

β1
.

(57)

This orbit is asymptotically stable if and only if

β2

β1
< 1. (58)

Note, in particular, that this implies that the orbit is not
asymptotically stable when β1 = β2 (i.e., when the growth and
decay rates for the desire to lie down are equal).

A.4.4. Case D: (x0, y0; E) → (x1, y1; S) → (x2, y2; R)
→ (x3, y3; S) → (x0, y0; E) → . . .

In this case, the orbit has period 2 on Σ but period 4 on Σ ′.
Specifically,

w0 = (x0, y0; θ0) = (1, y0; E), where δ ≤ y0 < 1;

g(w0) = w1 = (x1, y1; θ1) = (δ, δ
−
β1
α2 y0; S),

where y0 < δ
β1
α2 ;

f (w0) = g2(w0) = w2 = (x2, y2; θ2) = (y
−
α1
β1

1 δ, 1; R),
where y1 > δ
β1
α1 ;

g3(w0) = w3 = (x3, y3; θ3) = (δ
−
α1
β2 x2, δ; S),

where x2 < δ
α1
β2 ;

w0 = f 2(w0) = g4(w0) = w4 = (x4, y4; θ4) = (1, x
−
β1
α1

3 δ; E),

where x3 ≥ δ
α1
β1 . (59)

The existence of such orbits entails that
α2

α1
·
β2

β1
> 1,

1
α1

+
1
α2

=
1
β1

+
1
β2
,

β1 < α2. (60)

This yields infinitely many such orbits, for which x0 = 1 and

δ < y0 < δ
β1
α2 . (61)

All of these orbits are stable but not asymptotically stable.
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