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Oscillatory and excitable dynamics in an opinion model with group opinions
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In traditional models of opinion dynamics, each agent in a network has an opinion and changes in opinions
arise from pairwise (i.e., dyadic) interactions between agents. However, in many situations, groups of individuals
possess a collective opinion that can differ from the opinions of their constituent individuals. In this paper, we
study the effects of group opinions on opinion dynamics. We formulate a hypergraph model in which both
individual agents and groups of three agents have opinions, and we examine how opinions evolve through both
dyadic interactions and group memberships. We find for some parameter values that the presence of group
opinions can lead to oscillatory and excitable opinion dynamics. In the oscillatory regime, the mean opinion of
the agents in a network has self-sustained oscillations. In the excitable regime, finite-size effects create large but
short-lived opinion swings (as in social fads). We develop a mean-field approximation of our model and obtain
good agreement with direct numerical simulations. We also show—both numerically and via our mean-field
description—that oscillatory dynamics occur only when the numbers of dyadic and polyadic interactions of the
agents are not completely correlated. Our results illustrate how polyadic structures, such as groups of agents, can
have important effects on collective opinion dynamics.

DOI: 10.1103/PhysRevE.112.024303

I. INTRODUCTION

The opinions of individuals in a social network often
change when they are exposed to the opinions and actions
of other individuals. The ensuing opinion dynamics of such
individuals (i.e., “agents”) has received considerable atten-
tion from sociologists [1], economists [2], political scientists
[3,4], applied mathematicians, theoretical physicists [3,5–8],
and many others. Researchers have studied models of opinion
dynamics on social networks to gain insight into phenomena
such as the propagation of false or misleading information
[9,10], the emergence of consensus opinions [7,11,12], and
the formation of echo chambers [13,14]. See Refs. [15,16] for
reviews of opinion models.

Models of opinion dynamics necessarily involve many as-
sumptions about the nature of the opinions of individuals, the
interactions between individuals, and how such interactions
affect the opinions of other individuals [17]. Most opinion
models assume that agent opinions change as a result of
pairwise (i.e., dyadic) interactions. In opinion models, agent
opinions are typically either real-valued scalars or real-valued
vectors (e.g., if one wants to simultaneously model opinions
of multiple things). In some models, the opinions have dis-
crete values; in others, they have continuous values, such as in
an interval of the real line [16]. Researchers typically consider
discrete-value opinions when examining phenomena in which
individuals or other entities make discrete choices, such as
when people vote for a candidate for a political office. By con-
trast, researchers often consider continuous-valued opinions
when they want to explicitly account for a wide spectrum of

views, such as political outlooks that range from very liberal
to very conservative. There are numerous opinion models
[16,18], which researchers study on networks to examine how
social structures affect opinion dynamics. Examples of opin-
ion models include the DeGroot consensus model [19], voter
models [20,21] and their generalizations [22], majority-rule
models [23], and bounded-confidence models [24].

A basic assumption in most opinion models is that only
the individual agents, which are represented by the nodes of
a network, are endowed with opinions. In the present paper,
we relax this assumption by allowing groups of nodes to hold
collective opinions. Social groups, which range in scope from
family and friendship units to large political and corporate
organizations, help shape the fabric of society [25–27]. In
many situations, it is reasonable to posit that social groups
themselves can possess opinions. For example, large corporate
organizations sometimes take public stances on social issues
[28]. Additionally, courts such as the United States Supreme
Court hear cases and document collective opinions through
their decisions on these cases [29]. Moreover, a mathematics
department at a university may broadcast a collective opinion,
such as through documentation on its website or through a
hiring decision, that differs markedly from the opinions of its
individual faculty members. The opinion of a research group,
such as the applied-mathematics group, may also differ from
the individual opinions of members of that group. In all of
these examples, a group’s opinion does not necessarily reflect
a consensus among the members of that group, as individuals
in the group can disagree (sometimes rather strongly) with the
group opinion. Importantly, groups and individual members
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FIG. 1. A schematic illustration of how the opinions of nodes and groups are influenced by the opinions of other nodes and groups in our
model. (a) A hypergraph with 9 nodes and 3 groups. Nodes 1, 3, 4, 6, and 8 have opinion 1 (in blue), and nodes 2, 5, 7, and 9 have opinion
0 (in red). Groups I and III have opinion 1 (in light blue), and group II has opinion 0 (in light red). (b) Node 5’s opinion is influenced by the
opinions of its neighboring nodes 1, 2, 6, 8, and 9 (thin arrows) and by the opinions of groups I and II (thick arrows). (c) Group I’s opinion is
influenced by the opinions of its constituent nodes 1, 2, and 5 (thick arrows).

of a group can influence each other. Group opinions are in-
fluenced by the opinions of their constituent members, and
the opinions of individuals are influenced by the collective
opinions of the groups in which they participate [30,31].

In the present paper, we formulate and analyze a model
of opinion dynamics in which both a network’s nodes and
its groups of nodes have binary opinions. The opinions of
individual nodes are affected both by their neighbors in a
network and by the opinions of the groups in which they par-
ticipate. The opinions of groups are affected by the opinions of
their constituent nodes. For simplicity, we neglect interactions
between distinct groups. In Fig. 1, we give a schematic illus-
tration of how the opinions of nodes and groups influence the
opinions of other nodes and groups in our model, which we
describe in detail in Sec. II. In our model, group opinions can
lead to oscillatory dynamics and excitable dynamics. In the
oscillatory regime, the mean opinion of a network develops
self-sustained oscillations. In the excitable regime, situations
in which most of the nodes have the same opinion can quickly
and temporarily change to situations in which most of the
nodes have the other opinion. The emergence of oscillatory
and excitable regimes depends strongly on the correlation
between group structure and dyadic network adjacencies. We
develop a mean-field approximation of our model’s dynamics
and use it to gain insight into it. We find that excitable dynam-
ics arise because of a bifurcation from a stable equilibrium
to sustained oscillatory dynamics. This change in qualitative
dynamics resembles the onset of excitable dynamics in mod-
els of neuronal systems [32,33]. There is some qualitative
similarity between the excitable dynamics in our model and
the formation of social fads, which is a collective phenomenon
in which a topic, object, or behavior experiences an increase
in popularity that develops suddenly, lasts a short amount of
time, and declines rapidly [34,35].

The role of group interactions, which are often called
“higher-order interactions” or “polyadic interactions”, in
opinion dynamics and other dynamical processes on networks
has received much attention in the past few years [36–39].
The renewed interest in polyadic interactions in complex sys-
tems has built on foundational work that dates back many
decades [40–43]. In social systems, a lot of recent research

has extended existing models to incorporate polyadic inter-
actions [5,7,8,11,12,44–51]. In these extensions, the opinions
are associated with individual agents and change due to both
pairwise and group interactions. By contrast, in our model, we
also assign opinions to the groups themselves. In this respect,
our work is related to recent studies of the synchronization
of quantities that are defined on the edges and higher-order
simplices of a simplicial complex [52].

The incorporation of polyadic interactions into network
dynamics can significantly influence the qualitative behavior
of dynamical processes. For example, “opinion jumping” can
occur in polyadic bounded-confidence models [8], bistable
regions can arise in polyadic models of disease spread
[44,53,54], and the qualitative nature of synchronization
transitions of phase oscillators can be affected by polyadic
interactions [55,56]. Our observation that group opinions
can induce oscillatory and excitable dynamics provides an-
other example of how polyadic interactions can fundamentally
modify the dynamics of networked systems.

For simplicity, we consider polyadic interactions only
through groups of size 3 (i.e., the groups always have exactly
three nodes). Although this choice prevents us from exploring
the effects of group-size heterogeneity (which occurs in most
social systems), it has the important advantage of allowing us
to easily engage with our primary focus, which is to study the
effects of group opinions. Even with this major assumption,
our model has very rich dynamics that differ markedly from
existing opinion models (which do not incorporate group
opinions).

In our model, the individual nodes do not account for
their own current opinions when they update their opinions.
With this choice of opinion updating, we emphasize the role
of (both dyadic and polyadic) social interactions in opinion
evolution. Essentially, we are examining a regime in which
the effects of self-influence are small in comparison to the ef-
fects of social interactions. In this respect, our opinion model
differs from many existing opinion models [16]; however,
it follows the tradition of classical voter models [20–22].
In our model, groups can influence themselves, but distinct
groups cannot influence each other. Because of group self-
influence, we can use our model to explore the effects of
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social phenomena, such as “pluralistic ignorance” [57,58]
and “groupthink” [59], that can decelerate changes in group
opinions. In pluralistic ignorance, the members of a group
believe incorrectly that they hold a minority opinion within
a group [57,58]. Pluralistic ignorance, which one can view
as a “minority illusion” [60] in social dynamics, provides a
potential mechanism to slow social change through a process
of self-silencing, whereby individuals appear to conform to
a belief that they believe is held by the rest of a group [61].
Groupthink refers to the tendency of individuals in a group
to seek social conformity and thereby disregard their own
opinions. Our opinion model does not directly encode plu-
ralistic ignorance or groupthink, but one can view its group
self-influence term (which slows changes in group opinions)
as incorporating them indirectly.

Our paper proceeds as follows. In Sec. II, we introduce
our stochastic model of opinion dynamics. In Sec. III, we dis-
cuss the model of random hypergraphs on which we simulate
these opinion dynamics. In Sec. IV, we derive a mean-field
description of our stochastic opinion model, study its steady-
state behavior, and compare that behavior to the steady-state
behavior of the original opinion model. We also discuss the
assumptions and approximations that we use to derive the
mean-field description. In Sec. V, we discuss the formation
of group–node discordance states. In Sec VI, we examine the
formation of excitable and oscillatory dynamics. Finally, in
Sec. VII, we summarize and discuss our findings. Our code,
figures, and data are available online [62].

II. OUR STOCHASTIC OPINION MODEL

In this section, we describe our stochastic model of opin-
ion dynamics with group opinions. We consider a set V of
N nodes, which we index by i ∈ {1, 2, . . . , N}. Each node
holds a binary opinion, which is either 0 or 1. Our model
uses discrete time, so the time t ∈ {0, 1, . . .}. Let x t

i denote
the opinion of node i at time t . As in opinion models on
ordinary graphs, which assume dyadic interactions between
nodes, our nodes are adjacent to each other if there is an edge
between them in a graph G, which has an associated adjacency
matrix A. We assume that G is undirected and unweighted,
so Ai j = Aji = 1 if nodes i and j are adjacent to each other
and Ai j = Aji = 0 if they are not adjacent. We also suppose
that there are S groups of nodes; each group is a subset of V .
For simplicity, we suppose that all groups have exactly three
nodes. Each group has either opinion 0 or opinion 1. We label
the groups with the index j ∈ {1, 2, . . . , S}, and we denote
the opinion of group j at time t by y t

j . The N × S incidence
matrix M has entries Mi j = 1 if node i participates in group
j and Mi j = 0 if it does not. We often refer to the groups
in our networks as “triangles”. The dyadic degree of each
node is its number of edges, and the triadic degree of each
node is its number of triangles. Node i’s dyadic degree is thus
ki = ∑

j Ai j , and its triadic degree is qi = ∑
j Mi j . The mean

number of edges per node is 〈k〉 = ∑
i ki/N , and the mean

number of triangles per node is 〈q〉 = ∑
i qi/N .

The opinion of a node is influenced both by the opinions of
its adjacent nodes (i.e., dyadic influence) and by the opinions
of the groups in which it participates (i.e., polyadic influence)
[see Fig. 1(b)]. The opinion of a group is influenced by the

opinions of its constituent nodes [see Fig. 1(c)]. Groups do
not directly influence other groups.

We now describe our model in detail. The opinions of
the nodes (i.e., individuals) and triangles (i.e., groups) evolve
stochastically according to the update rule

x t+1
i =

{
1 with probability pN

i (x t , y t )
0 otherwise ,

(1)

y t+1
j =

{
1 with probability pE

j (x t , y t )
0 otherwise ,

(2)

where x t = [x t
1, x t

2, . . . , x t
N ]T is a node opinion vector at time

t and y t = [y t
1, y t

2, . . . , y t
S]T is a triangle opinion vector at

time t .
Suppose that the probability that node i adopts opinion 1 is

a nonlinear function of a linear combination of the opinions of
its adjacent nodes and the opinions of the triangles in which it
participates. That is,

pN
i (x t , y t ) = fN

(
ax̄ t

i + bȳ t
i

)
, (3)

where

x̄ t
i =

N∑
j=1

Ai jx
t
j

/〈k〉 , (4)

ȳ t
j =

S∑
k=1

Mjky t
k

/〈q〉 , (5)

the influence function fN is a sigmoidal function [see Eq. (8)
below], and a and b are real-valued constants.1 The parameter
a encodes the influence of nodes on their neighbors, and
the parameter b encodes the influence of triangles on their
constituent nodes. As we discussed in Sec. I, nodes do not
consider their own current opinions when they update their
opinions (i.e., Aii = 0 for all i).

We suppose that the probability that a triangle adopts opin-
ion 1 is a sigmoidal function of a linear combination of its
own current opinion and the opinions of its constituent nodes.
That is,

pE
j (x t , y t ) = fE

(
cz̄ t

j + dy t
j

)
, (6)

where

z̄ t
j = 1

3

N∑
i=1

Mi jx
t
i , (7)

the influence function fE is a sigmoidal function [see Eq. (8)
below], and c and d are real-valued constants. The parameter
c encodes the influence of nodes on the triangles in which
they participate, and the parameter d encodes the tendency of
a triangle to maintain its opinion.

For simplicity, we use the same sigmoidal function for the
influence function for all nodes and all triangles. We thus write

f (z) := fN (z) = fE (z) = 1
2 {1 + tanh[m(z − μ)]} , (8)

1One can absorb the quantities 〈k〉 and 〈q〉 in Eqs. (4) and (5) into
the model parameters a, b, c, and d .
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TABLE I. The parameters and other key quantities of our opinion
model.

Parameter Description

a Influence of individuals on other individuals

b Influence of groups on individuals

c Influence of individuals on groups

d Influence of a group on itself

f Sigmoidal influence function

μ Inflection point of the sigmoid f

1/m Width of the transition of the sigmoid f

r Correlation coefficient between dyadic degree and
triadic degree

P Hyperdegree distribution

P1 Marginal dyadic degree distribution

P2 Marginal triadic degree distribution

ki Dyadic degree (i.e., ordinary node degree) of node i

qi Triadic degree of node i

where μ is the inflection point of the sigmoid f (z) and 1/m
is proportional to the width of the sigmoid’s transition re-
gion. We use a sigmoidal function because it is convenient
for representing saturating interactions [63]. Researchers have
used sigmoidal functions in models of many other scenar-
ios, including echo chambers and polarization [13], smooth
bounded-confidence dynamics [14], and other saturating in-
teractions, which occur in diverse fields that range from
neuroscience to robotics [64].

In Table I, we summarize the parameters and other key
quantities of our model. These parameters include the in-
fluence parameters (a, b, c, and d), the influence function
f and its parameters μ and 1/m, and parameters and other
descriptors of network structure.

It is important to highlight the parameters a, b, c, and d ,
which encode the amount of (positive or negative) opinion
influence at each time step. We interpret positive values of
a, b, c, and d as conforming to influence, and we interpret
negative values of these parameters as rejecting influence. The
parameters a and b encode how much nodes are influenced by
their neighboring nodes (the parameter a) and by the groups in
which they participate (the parameter b). In particular, a > 0
(respectively, a < 0) increases (respectively, decreases) the
probability that a node changes to or maintains opinion 1
when more of its neighbors have opinion 1. Analogously,
b > 0 (respectively, b < 0) increases (respectively, decreases)
the probability that a node changes to or maintains opinion 1
as it participates in more groups with opinion 1. The parameter
c plays an analogous role for group opinions as b does for node
opinions. Specifically, c > 0 (respectively, c < 0) increases
(respectively, decreases) the probability that a group changes
to or maintains opinion 1 when more of its participants have
opinion 1. The parameter d encodes how much a group’s
current opinion affects its subsequent opinion. In particular,
d > 0 (respectively, d < 0) increases (respectively, decreases)
the probability that a group maintains opinion 1.

III. RANDOM-HYPERGRAPH MODEL

We use hypergraphs to describe our networks, which
consist of nodes, edges, and triangles. A hypergraph is a
generalization of a graph that includes both ordinary edges
(i.e., dyadic adjacencies) and hyperedges with more than two
nodes (i.e., polyadic adjacencies) [38,65]. Following standard
convention, we refer to any of these adjacencies as “hyper-
edges”. Mathematically, a hypergraph HG = (V, E ) consists
of a set V of nodes and a set E of hyperedges. Each hyperedge
is a nonempty subset of V; the number of nodes in this subset
is the “size” of the hyperedge.

In an ordinary graph, each node i ∈ V has an associated
degree k i, which indicates the number of edges that are at-
tached (i.e., “incident”) to it. In a hypergraph, the hyperdegree
of node i is the vector ki = [k(2)

i , k(3)
i , . . . , k(L)

i ], where L is
the size of the hypergraph’s largest hyperedge and the lth-
order degree k(l )

i is the number of size-l hyperedges that
are incident to the node. Each hypergraph has a hyperde-
gree distribution P (k), which encodes the probabilities that a
uniformly-randomly-chosen node has hyperdegree k for each
k. We consider hypergraphs with hyperedges of sizes 2 and 3;
the hyperedges of size 2 encode dyadic adjacencies, and the
hyperedges of size 3 encode triadic (i.e., group) adjacencies.
For such hypergraphs, the hyperdegree of a node is k = [k, q].

To study our opinion model, it is convenient to use
random hypergraphs with specified hyperdegree sequences.
We use such configuration-model random hypergraphs be-
cause we are able to control their hyperdegree sequences.
In Appendix A, we provide a detailed discussion of the
random-hypergraph model that we employ. The formation of
hyperedges in this random-hypergraph model depends only
on the specified hyperdegree of each node, so one can use
hyperdegree-based compartmental models when studying dy-
namical processes on the hypergraphs that it generates. Such
techniques have been used extensively in the study of disease
spread on networks [66,67].

To examine the effects of correlations between the dyadic
degree k and the triadic degree q, we use a convenient
family of hyperdegree distributions to produce the degree
sequences in our random hypergraphs. Given the marginal
degree distributions P1(·) and P2(·) for the edges and triangles,
respectively, there are two extremes of the joint distribution
P (k, q). In one extreme, we let k = q, which implies that
P (k, q) = P1(k)δ(k − q). In the other extreme, k and q are
uncorrelated, which implies that P (k, q) = P1(k)P2(q). To
systematically explore the effects of correlations between the
dyadic and triadic degrees, we use a hyperdegree distribution
that interpolates between these two extremes. This joint dis-
tribution is

P (k, q) = P1(k)P2(q)(1 − r) + P1(k)δ(q − k)r , (9)

where the Pearson correlation coefficient r ∈ [0, 1] between
the dyadic and triadic degrees parameterizes the amount of
correlation between these degrees. When r = 0, the dyadic
degree k and triadic degree q are uncorrelated; when r = 1,
we have k = q for every node.

To examine the effects of degree heterogeneity, we suppose
that the marginal degree distributions P1(k) and P2(q) have the
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approximate power-law form

P(k) := P1(k) = P2(k) =
⎧⎨
⎩

(
γ−1
k1−γ

min

)
k−γ , k � kmin

0 , otherwise ,
(10)

where kmin is the minimum degree. In the hypergraphs that we
construct using our random-hypergraph model, we generate
the hyperdegree of each node using bivariate inverse sampling
from the distribution that is described by Eqs. (9) and (10).
We then construct our hypergraphs using the procedure that
we describe in Appendix A.

IV. MEAN-FIELD APPROXIMATION, INITIAL
CONDITIONS, AND STEADY-STATE SOLUTIONS

A. Mean-field approximation of Eqs. (1)–(2)

We develop a mean-field description that approximates
the dynamics of our stochastic opinion model (1)–(2). Our
mean-field description tracks the dynamics of three order pa-
rameters:

(1) the expected fraction V t of nodes with opinion 1 in a
uniformly-randomly-selected edge at time t ;

(2) the expected fraction Ut of nodes with opinion 1 in a
uniformly-randomly-selected triangle at time t ; and

(3) the expected fraction Y t of triangles with opinion 1 at
time t .

Alternatively, V t represents the probability of moving to an
opinion-1 node by following an edge that one chooses uni-
formly at random.

In this subsection, we present a simplified derivation of our
mean-field approximation. In Appendix B, we show a detailed
derivation of this approximation. Because we generate hyper-
graphs using a configuration model, the probability that there
is a hyperedge that connects a group of nodes depends only
on the hyperdegrees of those nodes. Therefore, we can use
a hyperdegree-based compartmental model to obtain mean-
field equations. First, we approximate the order parameters
V t and Ut in terms of the expected fraction x t

k of nodes with
hyperdegree k = [k, q] that have opinion 1 at time t . As we
show in Appendix B, these approximations take the form

V t =
∑

k

kP (k)x t
k

〈k〉 , (11)

Ut =
∑

k

qP (k)x t
k

〈q〉 . (12)

The variables V t and Ut are both closely related to—but can
differ from—the expected fraction

∑
k P (k)x t

k of nodes with
opinion 1 at time t .

To obtain a system of discrete-time evolution equations for
the order parameters V t , Ut , and Y t , consider the probability
[see Eq. (1)] that a node i with hyperdegree k = [k, q] has
opinion 1 at time t + 1. Assuming that all nodes with the same
hyperdegree behave in the same way, we seek to approximate
the variables x̄ t

i , ȳ t
i , z̄ t

j , and y t
j that appear in the probabilities

(3)–(7) in terms of the order parameters.

We approximate x̄ t
i , which is the normalized number of

neighbors of node i that have opinion 1, by

x̄ t
i ≈ kV t/〈k〉 (13)

because node i is attached to approximately k edges and
approximately a fraction V t of these edges (see Appendix B)
are attached to a node with opinion 1. The term ȳ t

i , which is
the normalized number of triangles that are attached to node i
and have opinion 1 [see Eq. (7)], is approximately

ȳ t
i ≈ qY t/〈q〉 (14)

because node i is attached to approximately q triangles and Y t

is the expected fraction of triangles that have opinion 1.
We insert the approximations (13) and (14) into Eqs. (1)

and (3) to obtain

x t+1
k ≈ f

(
ak

〈k〉V t + bq

〈q〉Y t

)
. (15)

Under the mean-field assumption that all triangles behave in
the same way (i.e., y t

j = y t and z̄ t
j = z̄ t for all j), the time evo-

lution of the expected fraction Y t of triangles with opinion 1
satisfies

Y t+1 = f (cz̄ t + d )Y t + f (cz̄ t )(1 − Y t ) . (16)

Similarly to our approximation of ȳ t
i in Eq. (14), we approxi-

mate z̄ t by

z̄ t ≈ Ut , (17)

which is the expected fraction of nodes at time t with opinion
1 in a triangle that we select uniformly at random. Substituting
Eq. (17) into Eq. (16) yields

Y t+1 = Y t f (cUt + d ) + (1 − Y t ) f (cUt ) . (18)

Inserting Eq. (15) into Eqs. (11)–(12) yields a closed map for
the time evolution of the three order parameters:

V t+1 =
∑

k

∑
q

kP (k, q)

〈k〉 f

(
a k

〈k〉V t + b q

〈q〉Y t

)
,

U t+1 =
∑

k

∑
q

qP (k, q)

〈q〉 f

(
a k

〈k〉V t + b q

〈q〉Y t

)
,

Y t+1 = Y t f (cUt + d ) + (1 − Y t ) f (cUt ) . (19)

The mean-field description (19) relies on various approx-
imations, which we now summarize and discuss. First, our
mean-field description is a hyperdegree-based compartmental
model, so it assumes that the expected time evolution of all
nodes with hyperdegree k is the same. (For example, the prob-
ability that each such node has opinion 1 at time t is x t

k.) This
approximation relies on the fact that we assume that all nodes
with hyperdegree k possess the same type and number of ex-
pected connections. Our mean-field description also assumes
that the dyadic and triadic degrees of each node are both suffi-
ciently large that we can replace the variables x̄ t

i , ȳ t
i , and z̄ t

i by
their means [as we did in Eqs. (13), (14), and (17)]. In partic-
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ular, we do not expect our mean-field approximation to work
well for sparse hypergraphs. One can generalize our mean-
field description to account for hypergraph models (e.g., ones
that generate degree-assortative random hypergraphs [68]) in
which nodes have intrinsic variables and connect to each other
with probabilities that depend on these variables. Such gener-
alizations of configuration models have a long history of suc-
cess in investigations of dynamical processes on graphs [69].

B. Selection of initial conditions

We now discuss our selection of initial conditions for our
stochastic opinion model (1)–(2) and its mean-field approx-
imation (19). The spaces of initial conditions in these two
models differ drastically from each other, so we need to select
initial conditions that allow us to compare these models as
effectively as possible.

In our simulations of the stochastic opinion model (1)–(2),
the initial opinion of each node and each triangle is either
0 or 1. To reduce the number of parameters that we need
to describe the initial conditions of the stochastic opinion
model, we specify only the initial probabilities that nodes and
triangles have opinion 1. We specify the initial opinion of each
node and each triangle independently. Each node initially has
opinion 1 with probability u1 and opinion 0 with probability
1 − u1, and each triangle initially has opinion 1 with probabil-
ity u2 and opinion 0 with probability 1 − u2. We then specify
the initial conditions of the stochastic opinion model (1)–(2)
as ordered pairs (u1, u2) of initial probabilities.

The mean-field map (19) describes the evolution of the
three orders parameters V t , Ut , and Y t , so we directly specify
the initial conditions V 0, U 0, and Y 0 of these order parame-
ters. This specification contrasts with our selection of initial
conditions in the stochastic opinion model (1)–(2), for which
we can specify initial conditions using only two parameters.
To mitigate this discrepancy, in our examples that compare
simulations of (1)–(2) and (19), we let V 0 = U 0 = u1 and
Y 0 = u2 to make the initial conditions for the two descriptions
as similar as possible. We make this choice because the order
parameters V t and Ut are related (but not equal) to the fraction
of nodes with opinion 1 [see Eqs. (11) and (12)] and Y t is the
expected fraction of triangles with opinion 1.

In several of our examples, we compare many possible
choices of the initial conditions of the stochastic opinion
model (1)–(2) and the mean-field map (19). In Appendix C,
we give a detailed description of how we select these initial
conditions.

C. Steady-state solutions of the stochastic opinion model (1)–(2)

We now examine the steady-state solutions (i.e., states in
which the order parameters V t , Ut , and Y t are constant) of the
stochastic opinion model (1)–(2) by studying the fixed points
of the mean-field equations (19). For simplicity, we assume
in the present discussion that the hyperdegree correlation is
r = 1, which implies that the dyadic and triadic degrees are
equal (i.e., k = q). We use this assumption, which restricts
the possible dynamics, for the remainder of this section and
throughout Sec. V. We will see in Sec. VI that relaxing this
assumption leads to additional dynamics that are qualitatively

FIG. 2. An example of a bifurcation of the steady-state solu-
tions when the dyadic and triadic degrees are equal (i.e., r = 1) in
simulations of our stochastic opinion model (1)–(2) and solutions
of the mean-field equations (20) for a single configuration-model
hypergraph with N = 700 nodes, influence parameters a = b = c =
d = 0.5, sigmoid inflection point μ = 0.5, power-law exponent γ =
4, and mean degrees 〈k〉 = 〈q〉 = 20. The bifurcation parameter is
the inverse-width parameter m of the sigmoidal influence function
(8). We show the values of (a) V ∗ and (b) Y ∗ that we obtain from the
mean-field equations (solid and dashed curves) and from means of
100 simulations of our stochastic opinion model (dots).

different from the dynamics that we study in this section and
Sec. V. Under this assumption, V t = Ut and the mean-field
equations (19) reduce to

V t+1 =
∑

k

kP(k)

〈k〉 f

(
k

〈k〉 [aV t + bY t ]

)
,

Y t+1 = Y t f (cV t + d ) + (1 − Y t ) f (cV t ) . (20)

Any fixed point [V t ,Y t ] = [V ∗,Y ∗] of the map (20) must
satisfy

V ∗ =
∑

k

kP(k)

〈k〉 f

(
k

〈k〉 [aV ∗ + bY ∗]

)
, (21)

Y ∗ = Y ∗ f (cV ∗ + d ) + (1 − Y ∗) f (cV ∗) . (22)

Solving (22) for Y ∗ and substituting the result into Eq. (21)
shows that the fixed points of the map (20) have the form
[V ∗,Y ∗] = [F (V ∗), G(V ∗)], where

F (V ) =
∑

k

kP(k)

〈k〉 f

(
k

〈k〉 [aV + bG(V )]

)
,

G(V ) = f (cV )

1 + f (cV ) − f (cV + d )
. (23)

The equation V ∗ = F (V ∗) is a one-dimensional equation for
V ∗ that one can solve using a root-finding algorithm. After de-
termining V ∗, one obtains Y ∗ using the equation Y ∗ = G(V ∗).

To illustrate the usefulness of Eqs. (21)–(22) to study
steady-state solutions of the stochastic opinion model (1)–(2),
we compare the fixed points that we obtain by solving
Eqs. (21)–(22) to the results of simulations of Eqs. (1)–(2).
In Fig. 2, we plot the steady-state values V ∗ and Y ∗ that
we obtain from simulations of Eqs. (1)–(2) (dots) and the
fixed-point solutions of Eqs. (21)–(22) (solid and dashed
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curves) as functions of the sigmoid inverse-width parameter
m for influence parameters a = b = c = d = 0.5, sigmoid
inflection point μ = 0.5, power-law exponent γ = 4, and
mean degrees 〈k〉 = 〈q〉 = 20. Because a, b, c, and d all have
positive values, all nodes and groups experience only con-
forming influence. For each value of m, we iterate Eqs. (1)–(2)
for 400 steps and plot the values of V ∗ and Y ∗ after the
final step. We do 100 independent simulations of this process
with evenly spaced initial conditions in the unit square (see
Appendix C). For each value of m, we use the same 700-node
hypergraph.

Both our simulations of the stochastic opinion model (1)–
(2) and our analysis of the mean-field approximation (20)
illustrate that the system undergoes a transition from a regime
with a single steady state to a regime with two distinct steady
states as we increase m. Although we observe some quantita-
tive differences between our mean-field description and direct
simulations of the original stochastic opinion model, the fixed
points of the mean-field equations are reasonably successful
at approximating the steady-state solutions of the stochastic
model. The bifurcation in Fig. 2 gives an interesting example
of the behavior of our opinion model. A similar bifurcation
was also observed in another opinion model with sigmoidal
interactions [64]. Therefore, we do not focus on such bi-
furcations of steady-state solutions in situations with equal
dyadic and triadic degrees (r = 1). Instead, we investigate
novel features that arise due to the presence of group opin-
ions. In particular, we observe (1) states in which the mean
node opinions and mean group opinions are different and (2)
excitable and oscillatory opinion dynamics. The oscillatory
dynamics (see Sec. VI) arise only when the dyadic degree and
triadic degree are not fully correlated (i.e., when r < 1).

V. GROUP–NODE DISCORDANCE

An important feature of our opinion model is that it admits
solutions in which the mean opinion of the nodes differs
significantly from the mean opinion of the groups. We refer to
these solutions as group–node discordance states. These states
can model situations in which a social organization (or other
social group) has a different official stance than the individuals
who comprise that organization. In our model, we measure the
discordance of a solution by calculating

D(V ∗,Y ∗) = |V ∗ − Y ∗| . (24)

A group–node discordance state occurs when D(V ∗,Y ∗) > 0.
The maximum possible discordance is D(V ∗,Y ∗) = 1.

We explore group–node discordance for different strengths
of group influence (i.e., for different values of the group-
influence parameters c and d). We plot D(V ∗,Y ∗) versus the
node-opinion influence parameter a (with a = b) using the
mean values of V ∗ and Y ∗ from 16 independent simulations of
the stochastic opinion model (1)–(2), and we compare this plot
to a numerical solution of the fixed-point equations (21)–(22)
for the mean-field approximation (20). In this comparison,
we use a single realization of a configuration-model hyper-
graph with N = 2000 nodes, inverse-width parameter m = 4,
power-law exponent γ = 4, and mean degrees 〈k〉 = 〈q〉 = 20
for both μ = 0.5 [see Fig. 3(a)] and μ = 0.25 [see Fig. 3(b)].
The initial conditions of the 16 independent simulations are
evenly spaced in the unit square (see Appendix C). For a

FIG. 3. The group–node discordance D(V ∗,Y ∗) versus the node-
opinion influence parameter a, with a = b, for a single numerical
solution (V ∗,Y ∗) = (F (V ∗), G(V ∗)) of Eqs. (23) (solid curves) and
the mean of 16 independent simulations of the stochastic opinion
model (1)–(2) (markers) for a single configuration-model hypergraph
with N = 2000 nodes, inverse-width parameter m = 4, power-law
exponent γ = 4, mean degrees 〈k〉 = 〈q〉 = 20, and several values
of the group-influence parameters c and d . We consider sigmoid
inflection points of (a) μ = 0.5 and (b) μ = 0.25. The initial con-
ditions of the 16 simulations are evenly spaced in the unit square
(see Appendix C).

sigmoid inflection point of μ = 0.5, we obtain more group–
node discordance [i.e., larger values of D(V ∗,Y ∗)] when the
node parameters a and b are very different from the group
parameters c and d . We see this in Fig. 3(a) for c = d = 0.1
(red curve and open circles) and c = d = 0.9 (orange curve
and open squares). This is also the case for μ = 0.25 [see
Fig. 3(b)] when the group-influence parameters are c = d =
0.1 or c = d = 0.9. For both μ = 0.5 and μ = 0.25, the
group–node discordance is most prominent when c + d <

μ < a + b or a + b < μ < c + d . For μ = 0.5 with c = 0.1
and d = 0.9 [see the blue curve and blue stars in Fig. 3(a)],
the amount of discordance does not vary much with a and b,
except for a small decrease near a = b = 0.5. For μ = 0.5,
as we increase a, the transition to a group–node discordance
state for c = d = 0.1 looks like it may be discontinuous. For
μ = 0.25, the transition between a group–node discordance
state and a state without group–node discordance is continu-
ous for all three examined parameter sets.

We also explore how the width (which is proportional
to 1/m) of the sigmoid transition region affects the onset
of group–node discordance states by calculating D(V ∗,Y ∗)
versus m for several values of a, b, c, and d . We show the
results of our numerical simulations in Fig. 4, which uses
the same initial conditions, network parameters, and other
conventions as Fig. 3. When a = b = c = d = 0.5 (blue curve
and closed circles), the width parameter m has a minimal
effect and D(V ∗,Y ∗) remains close to 0, indicating that there
is very little group–node discordance. For both a = b = 0.2,
c = d = 0.8 (red curve and open circles) and a = b = 0.8,
c = d = 0.2 (orange curve and open squares), the group–node
discordance D(V ∗,Y ∗) has a maximum at an intermediate
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FIG. 4. The group–node discordance D(V ∗,Y ∗) versus the sig-
moid inverse-width parameter m for a single numerical solution
(V ∗,Y ∗) = (F (V ∗), G(V ∗)) of Eqs. (23) (solid curves) and the mean
of 16 independent simulations of the stochastic opinion model
(1)–(2) (markers) for a single realization of a configuration-model
hypergraph with N = 2000 nodes, power-law exponent γ = 4, mean
degrees 〈k〉 = 〈q〉 = 20, and several values of a, b, c, and d . We
consider (a) μ = 0.5 and (b) μ = 0.25. The initial conditions of the
16 simulations are evenly spaced in the unit square (see Appendix C).

value of m. We also observe an interesting difference between
the cases μ = 0.5 [see Fig. 4(a)] and μ = 0.25 [see Fig. 4(b)].
When a = b = 0.8 and c = d = 0.2, there is a possibly dis-
continuous transition from discordance to non-discordance for
μ = 0.5; however, the transition is continuous (and gradual)
for μ = 0.25.

VI. EXCITABLE AND OSCILLATORY DYNAMICS

Our opinion model also has excitable and oscillatory opin-
ion dynamics. To illustrate these dynamics, we simulate
both the stochastic opinion model (1)–(2) and the mean-
field approximation (19) with the parameters (a, b, c, d ) =
(1,−0.5, 0.25, 0.25) and (m, μ) = (8, 0.25). In this regime,
the nodes are influenced considerably by the opinions of
their neighboring nodes (a = 1), nodes reject the opinions of
their groups (b = −0.5), groups are influenced equally by
their constituent nodes and their own opinions (c = d = 0.25),
and the sigmoidal influence function of the nodes and groups
has a small inflection point (μ = 0.25) and a very steep tran-
sition (m = 8).

We first suppose that the dyadic and triadic degrees are
equal (so the correlation between them is r = 1). This situa-
tion yields excitable dynamics, in which the system is initially
at a locally stable steady-state solution, but—for a sufficiently
large perturbation (which is often called a “stimulus”)—it
experiences a large excursion through phase space before
returning to the steady-state solution [32,33]. Excitable dy-
namics are common in neuronal and cardiac systems, and
they are often associated with a system being near a bifur-
cation from a resting state to sustained spiking or oscillatory

FIG. 5. An example of opinion pulses in a single simulation of
our stochastic opinion model (1)–(2) with parameter values a = 1,
b = −0.5, c = d = 0.25, μ = 0.25, and m = 8 for a configuration-
model hypergraph with equal dyadic and triadic degrees (i.e., r = 1)
that we draw from an approximate power-law distribution with expo-
nent γ = 4 and mean degrees 〈k〉 = 〈q〉 = 20. We plot the expected
node fraction V t in red and the expected triangle fraction Y t in blue.
The dashed lines show the fixed points that we obtain by solving
Eqs. (21)–(22).

behavior [32,33,70]. In Fig. 5, we show the order parame-
ters V t (red) and Y t (blue) from numerical simulations of
Eqs. (1)–(2) for the aforementioned parameter values and a
1000-node configuration-model hypergraph with an approx-
imate power-law hyperdegree distribution with γ = 4. The
dashed curves show the fixed-point solution that we obtain
by solving Eqs. (21)–(22). In these simulations, the expected
node fraction V t remains close to the fixed-point solution for
a short time before it increases sharply and then subsequently
decreases and returns approximately to the fixed-point solu-
tion. The expected triangle fraction Y t has the same behavior;
its dynamics follow V t with a short delay. We use the term
opinion pulses for these spikes in V t and Y t .

In Fig. 6, we compare a single pulse of the order pa-
rameter V t in a simulation of the stochastic opinion model
(1)–(2) (top) and the mean-field equations (19) (bottom). For
the mean-field equations, we introduce a stimulus at time
t = 200 by increasing both V t and Ut by 0.2 (vertical arrow).
The mean-field equations yield a single opinion pulse, which
resembles the ones that we observe in simulations of our
stochastic opinion model (1)–(2), in which finite-size fluctua-
tions seemingly provide a stimulus.

As we decrease the correlation r between the dyadic and
triadic degrees, the opinion pulses become more frequent until
they eventually become self-sustained oscillations. In Fig. 7,
we show an example of such oscillations for r = 0.15. We
again observe that the mean-field equations (19) successfully
reproduce the qualitative behavior of the stochastic opinion
model (1)–(2).

One can use the mean-field equations (19) to understand
the transition from excitable to oscillatory dynamics as one
decreases the correlation r. When r = 1, the mean-field
map (19) has three fixed points [see Fig. 8(a)]. We obtain
these fixed points using root-finding methods and determine
their linear stability by calculating the eigenvalues of the
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FIG. 6. Comparison of a single pulse of the order parameter V t

in (top) a single simulation of our stochastic opinion model (1)–(2)
and (bottom) the mean-field equations (20) for the parameter values
a = 1, b = −0.5, c = d = 0.25, μ = 0.25, and m = 8 for a hyper-
graph with equal dyadic and triadic degrees (i.e., r = 1) that we draw
from an approximate power-law distribution with exponent γ = 4
and mean degrees 〈k〉 = 〈q〉 = 20. We apply a stimulus (which is
indicated by the black arrow) of (δV, δU, δY ) = (0.2, 0.2, 0) to the
mean-field equations to induce an excitation at time t = 200.

Jacobian matrix of Eq. (19). We compute the Jacobian matrix
numerically using the “Adaptive Robust Numerical Differen-
tiation” package for MATLAB [71]. One of the fixed points
[see the closed blue circles in Figs. 8(a) and 8(b)] is lin-
early stable. It is located near the origin, so we refer to it
as the “near-0” fixed point. A nearby fixed point [see the
open green circles in Figs. 8(a)–8(c)] is a saddle. The third
fixed point [see the red stars in Figs. 8(a)–8(c)] is an unstable

FIG. 7. An example of the oscillatory dynamics in (top) a single
simulation of our stochastic opinion model (1)–(2) and (bottom) the
mean-field equations (19) for parameter values a = 1, b = −0.5, c =
d = 0.25, μ = 0.25, r = 0.15, m = 8, γ = 3.8, and 〈k〉 = 〈q〉 = 20.
We plot the expected node fraction V t in blue and the expected
triangle fraction Y t in red. The initial conditions of the stochastic
opinion model are (u1, u2) = (0.5, 0.5), and the initial conditions of
the mean-field equations are (V 0,U 0,Y 0 ) = (0.5, 0.5, 0.5).

FIG. 8. The phase-space trajectories of solutions of the
mean-field equations (19) with a perturbation (δV, δU, δY ) =
(0.25, 0.25, 0) for hyperdegree distributions with correlations be-
tween the dyadic and triadic degrees of (a) r = 1, (b) r = 0.5, and
(c) r = 0.1. The merging of stable and unstable fixed points near
an unstable spiral leads to the transition from excitable to oscillatory
dynamics. The other parameter values are a = 1, b = −0.5, c = d =
0.25, μ = 0.25, m = 8, γ = 4, and 〈k〉 = 〈q〉 = 20.

spiral, and we refer to it as the “away-from-0” fixed point.
When the mean-field system (19) is close to the near-0 fixed
point (which is linearly stable) and is perturbed so that it
crosses the stable manifold of the saddle, it makes an ex-
cursion through phase space. It gets close to the unstable
spiral and then returns to the stable fixed point, completing
an opinion pulse. In Fig. 8(a), we show an example of such
a trajectory in phase space. As we decrease r, the stable
and saddle fixed points approach each other [see Fig. 8(b)],
and one can then create opinion pulses using smaller stim-
uli. Eventually, the linearly stable fixed point and the saddle
collide in a SNIC (which stands for “saddle–node on invariant
cycle” and is pronounced “snick”) bifurcation, resulting in
oscillatory behavior [see Fig. 8(c)]. See Ref. [33] for details
about SNIC bifurcations.

We have seen that oscillatory dynamics arise via a SNIC
bifurcation as we decrease the correlation coefficient r. To
obtain a broader perspective on the bifurcations and the
associated changes in qualitative dynamics that occur as
we change the parameters, we show a bifurcation diagram
in (r, γ ) space in Fig. 9. Recall that γ is the exponent
of the approximate power-law degree distributions of our
configuration-model hypergraphs, so smaller values of γ cor-
respond to more heterogeneous degree distributions. For small
values of r and γ , the fixed points of the mean-field map
(19) are linearly stable, which we indicate in the diagram by
writing “steady state”. Through the numerical linear stability
analysis that we described above, we observe three bifurca-
tions as we increase γ and r (see Fig. 9). We describe these
three bifurcations in the order that they occur. First, there is a
Hopf bifurcation of the away-from-0 fixed point (red curve),
which transitions from a linearly stable spiral to a linearly
unstable spiral. This bifurcation marks the onset of oscillatory
dynamics. Second, there is a SNIC bifurcation of the near-0

024303-9



SAMPSON, RESTREPO, AND PORTER PHYSICAL REVIEW E 112, 024303 (2025)

FIG. 9. A bifurcation diagram of the transitions between station-
ary, excitable, and oscillatory states of the mean-field equations (19).
Each curve indicates a bifurcation in the linear stability of the near-0
fixed point or the away-from-0 fixed point. As one crosses the red
curve, the away-from-0 fixed point undergoes a Hopf bifurcation.
As one crosses the blue curve, the near-0 fixed point undergoes a
saddle–node bifurcation. As one crosses the black curve, the away-
from-0 fixed point transitions between a linearly unstable spiral and
a linearly unstable node.

fixed point (blue curve), which transitions from a saddle to
a linearly stable fixed point. This bifurcation marks a change
from oscillatory dynamics to excitable dynamics. Third, there
is a “complex-to-real bifurcation” where the away-from-0
fixed point transitions from an unstable spiral to an unsta-
ble node. This bifurcation marks the return of steady-state
behavior. The bifurcation diagram in Fig. 9 indicates where
excitable and oscillatory dynamics occur in the parameter
range (r, γ ) ∈ [0, 1] × [2.5, 6].

The mean-field map (19) is an approximation of the
stochastic opinion model (1)–(2), so we expect similar bi-
furcations to occur in both sets of equations. Therefore, we
believe that the aforementioned bifurcations provide a good
explanation of the onset of excitable and oscillatory dynam-
ics in both the mean-field equations (19) and the stochastic
opinion model (1)–(2) that they approximate. To numerically
verify this conjecture, we study the qualitative dynamics of
Eqs. (1)–(2) for different values of both the correlation coef-
ficient r and the exponent γ of the approximate power-law
degree distribution. We compute the difference

H(V t , I ) := max
I

(V t ) − min
I

(V t ) (25)

between the maximum and minimum values of the expected
node fraction V t in an interval I. A fixed-point solution of
the mean-field map (19) gives H(V t , I ) ≈ 0 if we choose an
interval I after the transient dynamics disappear. Oscillations
and opinion pulses both yield H(V t , I ) > 0. In principle, one
can also distinguish between pulses and oscillations by sliding
and/or varying the length of the interval I, but we do not
employ these approaches (and we have not examined them
thoroughly).

In Fig. 10, we plot H(V t , I ) versus the power-law expo-
nent γ from Eq. (10) and the correlation coefficient r for
dyadic and triadic degrees in the interval I = [100, 400],

FIG. 10. A heat map of H(V t ,I ) = maxI (V t ) − minI (V t ) [see
Eq. (25)] for (top) a mean of 25 independent simulations of the
stochastic opinion model (1)–(2), (middle) a mean of 25 independent
simulations of the stochastically perturbed mean-field equations (26),
and (bottom) a mean of 25 independent simulations of the original
mean-field equations (19). The horizontal axis is the correlation co-
efficient r, and the vertical axis is the power-law exponent γ . In these
simulations, we use a single realization of a configuration-model
hypergraph and the parameter values a = 1, b = −0.5, c = d =
0.25, μ = 0.25, m = 8, and 〈k〉 = 〈q〉 = 20. For both the stochastic
opinion model and the mean-field equations (both with and without
stochastic fluctuations), we select 25 evenly spaced initial conditions
in the unit square (see Appendix C).

which seems to provide adequate time for the transient
behavior to disappear. For each pair (r, γ ), we simulate
the stochastic opinion model (1)–(2) and the mean-field
equations (19) to obtain H from Eq. (25). For both the
stochastic opinion model and the mean-field equations, we
select 25 evenly spaced initial conditions in the unit square
(see Appendix C). In the top panel of Fig. 10, we plot H from
simulations of the stochastic opinion model (1)–(2). In the
bottom panel, we plot H from the mean-field equations (19).
For a given value of the correlation coefficient r, oscilla-
tory or excitable dynamics occur only for a narrow range of
power-law exponents, illustrating that these dynamics are very
sensitive to network structure. A stronger correlation between
dyadic and triadic degrees (i.e., a larger r) requires a smaller
value of γ (i.e., a more heterogeneous network) for oscilla-
tory or excitable dynamics to occur. Interestingly, perfectly
correlated dyadic and triadic degrees (i.e., r = 1), which re-
duce the dimensionality of the mean-field equations (19) from
3 to 2, suppress the oscillatory dynamics. Observe that the
yellow band [which indicates a large value of H(V t , I )] in
the bottom panel of Fig. 10 does not extend to r = 1.

Despite the qualitative similarities between the dynamics
of the stochastic opinion model (1)–(2) (see the top panel of
Fig. 10) and those of the mean-field equations (19) (see the
bottom panel of Fig. 10), there are key differences between
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the qualitative dynamics of these models. As we discussed
above, although the mean-field equations support excitable
dynamics, they require a stimulus to yield opinion pulses.
To mimic the effect of the stochastic model’s finite-size fluc-
tuations, which are absent in the deterministic mean-field
equations (19), we introduce a stochastic term. We consider
the equations

V t+1 =
∑

k

∑
q

kP (k, q)

〈k〉 f

(
a k

〈k〉V t + b q

〈q〉Y t

)
+ σ t

1 ,

U t+1 =
∑

k

∑
q

qP (k, q)

〈q〉 f

(
a k

〈k〉V t + b q

〈q〉Y t

)
+ σ t

2 ,

Y t+1 = Y t f (cUt + d ) + (1 − Y t ) f (cUt ) . (26)

In the map (26), we draw σ t
1 and σ t

2 uniformly at random from
the interval (0, Q) at each time step. These small stochastic
perturbations act as a repeated small stimulus to the system.
Our decision to not include a random stimulus for Y t arises
from our observation that the fluctuations in the fraction of
hyperedges with opinion 1 are smaller than the fluctuations in
the fraction of nodes with opinion 1. This occurs because the
hypergraphs that we generate using our random-hypergraph
model have many more hyperedges than nodes. There are
N〈q〉/3 hyperedges in an N-node hypergraph.

In the middle panel of Fig. 10, we show H from the
stochastically perturbed mean-field equations (26) with an
upper bound of Q ≈ 0.036 on the stochastic noise. We are not
attempting to accurately reproduce the finite-size fluctuations
of the stochastic opinion model (1)–(2). Instead, we seek to
demonstrate that the mean-field description (19), when aug-
mented with (admittedly ad hoc) stochastic fluctuations, can
produce excitable and oscillatory dynamics that are qualita-
tively similar to those that we obtain from simulations of the
stochastic opinion model.

By simultaneously examining Figs. 9 and 10, we observe
that the mean-field approximation (see the bottom panel of
Fig. 10) has a region with H(V t , I ) > 0 of a shape that is
qualitatively similar to the oscillatory region in Fig. 9. We ex-
pect this similarity because our simulations of the mean-field
equations (19) in the bottom panel of Fig. 10 do not include
perturbations or stimuli, and they thus do not exhibit excitable
dynamics. Additionally, in both the top and middle panels
of Fig. 10, we observe that the region with H(V t , I ) > 0 is
qualitatively similar to the union of the oscillatory region and
the lower part of the excitable region in Fig. 9. When we use
a larger value of Q in the stochastically perturbed mean-field
map (26), the region with H(V t , I ) > 0 more closely resem-
bles the union of the entirety of the excitable and oscillatory
regions in Fig. 9.

VII. CONCLUSIONS AND DISCUSSION

We introduced and analyzed a stochastic model of opinion
dynamics in which both nodes and groups of nodes have
binary opinions. This opinion model includes novel dynamics
that result directly from polyadic interactions. We showed that
our model has a richer repertoire of qualitative dynamics than
related models in which only nodes have opinions. In par-
ticular, our opinion model supports both excitable dynamics

(in which brief but strong opinion swings arise from pertur-
bations of a steady-state solution) and oscillatory dynamics
(in which the mean opinions of the nodes and groups have
self-sustained oscillations). The excitable dynamics of our
system has qualitative similarities to the dynamics of social
fads [34]. In particular, a few individuals change their opin-
ions initially, and then there is a surge in opinion changes
in the system that quickly dies out. Our opinion model also
possesses group–node discordance states, in which nodes and
groups have contradictory opinions. Our simulations of our
stochastic opinion model and its mean-field approximation
both reveal that the excitable and oscillatory dynamics depend
significantly on network structure (specifically, on dyadic de-
grees, polyadic degrees, and the correlation between them).

There are many interesting ways to extend our opinion
model. As with all models of opinion dynamics, we greatly
simplified human dynamics (or the dynamics of other an-
imals) to formulate a mathematically and computationally
tractable model that one can study systematically. For ex-
ample, we assumed that opinions are binary (instead of
allowing more opinion states or continuous-valued opinions),
that interactions occur through a known and time-independent
hypergraph, and that opinions evolve through precise math-
ematical rules. It is worth relaxing these assumptions and
exploring the consequences of doing so.

One important way to generalize our model is to incor-
porate various heterogeneities, including in the group sizes,
the interaction strengths (e.g., some groups or nodes may be
more influential than others), and the shapes of the sigmoidal
functions (e.g., some nodes may be more likely than others to
change their opinions). For simplicity, we limited our study
to groups of size 3. As we illustrated at length, the dynamics
that result from considering only groups of size 3 is already
very rich. However, it is natural to expect that some phenom-
ena occur only in networks with heterogeneous group sizes.
For example, perhaps an opinion can propagate from small
groups to large groups (or vice versa). Just as the degree
distribution of a graph can significantly influence the qualita-
tive behavior of dynamical processes on it [65,72], we expect
that the hyperedge-size distribution (along with hyperdegree
distributions) influences the qualitative behavior of dynamical
processes on a hypergraph. In our study, we also neglected
interactions between distinct groups; such interactions are
likely to introduce additional interesting dynamics. Another
potentially interesting way to extend our model is to allow
nodes to have self-influence, as individuals typically have
some conviction in their prior beliefs. Additionally, although
our mean-field approximation adequately reproduced the ob-
served dynamics and provided some theoretical insights, it is
based on the assumption that the hypergraph that describes the
nodes and the groups is generated by a configuration model.
It is worthwhile to extend our mean-field approximations to
stochastic-block-model hypergraphs with assortative mixing,
which can encode homophily [73] and community structure
[74].

Although our opinion model has rich behavior and pro-
vides insights into the effects of group opinions on opinion
dynamics, it is important to note that we have not vali-
dated our model with real-world opinion data. Such validation
efforts are notoriously difficult in the study of opinion
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dynamics [75,76], although they can be possible when ap-
propriate data are available [77]. We hope that further
studies of opinion dynamics will encourage and guide ef-
forts in data collection, associated data analysis, and model
validation.
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APPENDIX A: HYPERGRAPHS AND THE
RANDOM-HYPERGRAPH MODEL

As we stated in Sec. III, it is convenient to use hypergraphs
to describe our networks, which consist of nodes and groups
of nodes. A hypergraph is a generalization of a graph that
includes both ordinary edges (i.e., dyadic adjacencies) and
hyperedges with more than two nodes (i.e., polyadic adjacen-
cies) [38,64]. Following standard convention, we use the term
“hyperedge” for any of these adjacencies. Mathematically, a
hypergraph HG = (V, E ) consists of a set V of nodes and a
set E of hyperedges. Each hyperedge is a nonempty subset
of V; the number of nodes in this subset is the “size” of
the hyperedge. In an ordinary graph, each node i ∈ V has an
associated degree k i, which indicates the number of edges
that are attached (i.e., “incident”) to it. The “hyperdegree” of
node i is the vector ki = [k(2)

i , k(3)
i , . . . , k(L)

i ], where L is the
size of its largest hyperedge and the lth-order degree k(l )

i is
the number of size-l hyperedges that are incident to node i.
Each hypergraph has a hyperdegree distribution P (k), which
encodes the probabilities that a uniformly-randomly-chosen
node has hyperdegree k for each k.

Just as one can describe a hypergraph using a bipartite
network [65], it is also possible to formulate our opinion
model by considering dynamics on an ordinary graph with
two types of nodes. In this formulation, the agents constitute
one type of node and the groups constitute a second type of
node. An agent can have adjacencies both with groups and
with other agents, and a group is adjacent to each agent that
participates in it. We view the group language as much more
natural than bipartite-network language, just as the language
of hypergraphs and simplicial complexes is natural for study-
ing polyadic interactions [38,78].

We now describe the particular random-hypergraph model
that we employ. Consider a set of nodes i ∈ {1, 2, 3, . . . , N}
with hyperdegrees ki, where k(l )

i is the number of loose ends
(i.e., “stubs”) of size-l hyperedges that are attached to i. We
form a size-l hyperedge by uniformly randomly selecting l
stubs for the hyperedge. We repeat this stub-selection process
until all stubs are assigned to a hyperedge. If the mean 〈k(l )〉
is finite, the probability that there is a size-l hyperedge that

connects nodes {i1, i2, . . . , il} in the limit N → ∞ is

fl
(
ki1 , ki2 , . . . , kil

) = (l − 1)! k(l )
i1

k(l )
i2

× · · · × k(l )
il

(N〈k(l )〉)l−1 . (A1)

This expression is a generalization of an associated expression
for ordinary configuration-model graphs [65,79].

The above random-hypergraph model is a special case of
the stub-labeled hypergraph configuration model in [68] in
which we allow only hyperedges of sizes 2 and 3. Construct-
ing a hypergraph with a configuration model yields a small
number of self-hyperedges (i.e., hyperedges in which a single
node participates two or more times) and multi-hyperedges
(i.e., redundant hyperedges, which are hyperedges that occur
two or more times). See Sec. 12.1 of Ref. [65] and Ref. [79]
for relevant discussions in the context of graphs. Because we
assume that nodes do not influence themselves, we remove
self-hyperedges when constructing hypergraphs. For example,
in one sample of 20 instantiations of a 2500-node hypergraph
with γ = 4 and 〈k〉 = 〈q〉 = 20, we removed approximately
0.05% of the edges and approximately 0.15% of the triangles.
In our computations, we retain multi-hyperedges. In the same
sample of 20 instantiations of a 2500-node hypergraph with
γ = 4 and 〈k〉 = 〈q〉 = 20, about 0.33% of all edges and
about 0.0003% of all triangles are multi-hyperedges.

Our random-hypergraph model is reminiscent of the
closely related random-graph models with clustering that
were proposed independently by Newman [80] and Miller
[81]. In a Newman–Miller model, nodes have specified dyadic
and triadic (i.e., triangle) degree sequences, which one uses
independently in a stub-matching procedure. However, a “tri-
angle” in the Newman–Miller model corresponds to three
dyadic interactions, rather than to a single size-3 hyperedge.

APPENDIX B: DETAILED DERIVATION OF THE
MEAN-FIELD APPROXIMATION (19)

In this appendix, we give a detailed derivation of our
mean-field equations (19). As we discussed in Sec. IV A, we
consider the time evolution of the three order parameters V t ,
Ut , and Y t .

We begin by expressing V t and Ut in terms of x t
k, which

is the fraction of nodes at time t with hyperdegree k = [k, q]
that have opinion 1. The total number of edges is N〈k〉/2, and
the total number of triangles is N〈q〉/3. The expected fraction
of opinion-1 nodes in a uniformly-randomly-selected edge is
thus

V t =
∑

k

∑
k′

NP (k)NP (k′)
2!

(
kk′

N〈k〉
)(

x t
k + x t

k′

2

)/(
N〈k〉

2

)

=
∑

k

kP (k)x t
k

〈k〉 , (B1)

where NP(k)NP(k′)/2! is the expected number of pairs of
nodes with hyperdegrees k and k′, the quantity kk′/(N〈k〉)
is the expected fraction of these pairs that are connected by
an edge [see Eq. (A1) with l = 2], and (x t

k + x t
k′ )/2 is the

expected fraction of opinion-1 nodes that are attached to an
edge that connects uniformly-randomly-selected nodes with
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hyperdegrees k and k′. Analogously, the expected fraction of opinion-1 nodes in a uniformly-randomly-selected triangle is

Ut =
∑

k

∑
k′

∑
k′′

NP (k) NP (k′) NP (k′′)
3!

(
2q q′ q′′

(N〈q〉)2

)(
x t

k + x t
k′ + x t

k′′

3

)/(
N〈q〉

3

)

=
∑

k

qP (k)x t
k

〈q〉 . (B2)

Because we generate hypergraphs using a configuration
model, the probability that there is a hyperedge that con-
nects a group of nodes depends only on the hyperdegrees of
those nodes. Therefore, we are able to use a hyperdegree-
based compartmental model to derive mean-field equations.
Consider the probability [see Eq. (1)] that a node i with hy-
perdegree k = [k, q] has opinion 1 at time t + 1. Assuming
that all nodes with the same hyperdegree behave in the same
way (i.e., the probability that node j has opinion 1 is x t

k
for all nodes j with hyperdegree k j = k), we approximate
the normalized number x̄ t

i of neighbors of node i that have
opinion 1 [see Eq. (4)] by

x̄ t
i = 1

〈k〉
N∑

j=1

Ai jx
t
j

≈ 1

〈k〉
∑

k′
NP (k′, q′)

(
kk′

N〈k〉
)

x t
k′

= k

〈k〉
∑

k′

k′P (k′, q′)x t
k′

〈k〉 = kV t/〈k〉 , (B3)

where the approximation in the second line replaces the num-
ber of opinion-1 neighbors of node i with its expected value.
The term ȳ t

i , which is the normalized number of triangles that
are attached to node i and have opinion 1 [see Eq. (7)], is
approximately

ȳ t
i ≈ qY t/〈q〉 (B4)

because node i is attached to q triangles and Y t is the expected
fraction of triangles that have opinion 1. We insert the approx-
imations (B3) and (B4) into Eqs. (1) and (3) to obtain

x t+1
k = 1

NP (k)

∑
ki=k

E
[
x t+1

i

] = 1

NP (k)

∑
ki=k

f
(
ax̄ t

i + bȳ t
i

)

≈ 1

NP (k)

∑
ki=k

f

(
ak

〈k〉V t + bq

〈q〉Y t

)

= f

(
ak

〈k〉V t + bq

〈q〉Y t

)
, (B5)

where E[·] denotes the expectation. The time evolution of the
expected fraction Y t of triangles with opinion 1 satisfies

Y t+1 = E

⎡
⎣1

S

S∑
j=1

y t+1
j

⎤
⎦ = 1

S

S∑
j=1

E
[
y t+1

j

]

= 1

S

S∑
j=1

{
E

[
y t+1

j

∣∣y t
j = 1

]
P
(
y t

j = 1
) + E

[
y t+1

j

∣∣y t
j = 0

]
P
(
y t

j = 0
)}

. (B6)

Making the mean-field assumption that all triangles behave in
the same way (i.e., y t

j = y t and z̄ t = z̄ t
j for all j) yields

Y t+1 = E[y t+1|y t = 1]P(y t = 1)

+ E[y t+1|y t = 0]P(y t = 0) . (B7)

We then use Eq. (6) for the expected values and the relation
P(y t = 1) = Y t to obtain

Y t+1 = f (cz̄ t + d )Y t + f (cz̄ t )(1 − Y t ) . (B8)

Finally, similarly to our approximation of ȳ t
i in Eq. (14), we

approximate z̄ t (i.e., the fraction of nodes with opinion 1 in a
triangle that we select uniformly at random) by setting

z̄ t ≈ Ut , (B9)

which is the expected fraction of opinion-1 nodes at time t
in a triangle that we select uniformly at random. Substituting
Eq. (B9) into Eq. (B8) yields

Y t+1 = Y t f (cUt + d ) + (1 − Y t ) f (cUt ) . (B10)

Inserting Eq. (B5) into Eqs. (B1)–(B2) yields the closed map
(19) for the time evolution of the three order parameters:

V t+1 =
∑

k

∑
q

kP (k, q)

〈k〉 f

(
a k

〈k〉V t + b q

〈q〉Y t

)
,

U t+1 =
∑

k

∑
q

qP (k, q)

〈q〉 f

(
a k

〈k〉V t + b q

〈q〉Y t

)
,

Y t+1 = Y t f (cUt + d ) + (1 − Y t ) f (cUt ) . (B11)

APPENDIX C: SELECTION OF INITIAL CONDITIONS

In this appendix, we discuss how we select initial con-
ditions for our simulations of the stochastic opinion model
(1)–(2), the deterministic mean-field approximation (19), and
the stochastically perturbed mean-field approximation (26). In
most of our simulations, we perform parameter sweeps using
W 2 evenly spaced initial conditions in the unit square. For
each initial condition, we perform a single simulation of the
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stochastic opinion model (1)–(2), the deterministic mean-field
map (19), or the stochastically perturbed mean-field map (26).

For the stochastic opinion model (1)–(2), we use the W 2

evenly spaced probabilities (u1, u2) (which we described
in Sec. IV B) in the set {(i/(W − 1), j/(W − 1))| i, j ∈
{0, 1, . . . ,W − 1}} for our parameter sweeps. For the mean-
field equations (19) and (26), we need to select initial values

(V 0,U 0,Y 0) of the three order parameters. As we described
in Sec. IV B, we employ initial conditions with V 0 = U 0

so that our initial conditions resemble our initial conditions
for the stochastic opinion model as closely as possible.
Therefore, we use the W 2 evenly spaced initial conditions
(V 0,U 0,Y 0) in the set {(i/(W −1), i/(W − 1), j/(W −1))| i,
j ∈ {0, 1, . . . ,W − 1}} for our parameter sweeps.
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