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Abstract. There is enormous interest—both mathematically and in diverse applications—in under-
standing the dynamics of coupled-oscillator networks. The real-world motivation of such
networks arises from studies of the brain, the heart, ecology, and more. It is common
to describe the rich emergent behavior in these systems in terms of complex patterns of
network activity that reflect both the connectivity and the nonlinear dynamics of the net-
work components. Such behavior is often organized around phase-locked periodic states
and their instabilities. However, the explicit calculation of periodic orbits in nonlinear
systems (even in low dimensions) is notoriously hard, so network-level insights often re-
quire the numerical construction of some underlying periodic component. In this paper,
we review powerful techniques for studying coupled-oscillator networks. We discuss phase
reductions, phase—amplitude reductions, and the master stability function for smooth dy-
namical systems. We then focus, in particular, on the augmentation of these methods
to analyze piecewise-linear systems, for which one can readily construct periodic orbits.
This yields useful insights into network behavior, but the cost is that one needs to study
nonsmooth dynamical systems. The study of nonsmooth systems is well developed when
focusing on the interacting units (i.e., at the node level) of a system, and we give a de-
tailed presentation of how to use saltation operators, which can treat the propagation of
perturbations through switching manifolds, to understand dynamics and bifurcations at
the network level. We illustrate this merger of tools and techniques from network science
and nonsmooth dynamical systems with applications to neural systems, cardiac systems,
networks of electromechanical oscillators, and cooperation in cattle herds.
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I. Introduction. Real-world networks—such as those in the brain, the heart, and
ecological systems—exhibit rich emergent behavior. The observed complex patterns
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of network activity reflect both the connectivity and the nonlinear dynamics of the
network components [127]. The science of networks [105] has proven especially fruitful
in probing the role of connectivity, as exemplified by [129]. However, overly focusing
on network connectivity can downplay the crucial role of dynamics, and even the
investigation of dynamical processes on networks has often focused on a few types of
situations [127], such as the spread of infectious diseases [116] and synchronization
in coupled oscillators [5]. This is perhaps not too surprising, given the significant
challenges of understanding even low-dimensional dynamical systems. However, for
some time, there has been an appreciation in the applied sciences of the benefits of
studying complex systems in the form of networks of piecewise-linear (PWL) and
possibly discontinuous dynamical systems.

There is a long history of PWL modeling throughout engineering—particularly
in electrical engineering [1] and mechanical engineering [41]—that has now begun to
pervade other disciplines, including the social sciences, finance, and biology [24, 40].
In neuroscience, the McKean model is a classical example [99] of a PWL system. In
the McKean model, one replaces the cubic nullcline of the FitzHugh—Nagumo model
[74] for action-potential (i.e., nerve impulse) generation with a PWL function that
preserves the original shape, allowing explicit calculations that one cannot perform
with the original smooth system. At its heart, PWL modeling allows one to obtain
analytical insight into a nonlinear model by (1) breaking down its phase space into
regions in which trajectories obey linear dynamical systems and (2) patching them
together across the boundaries between the regions. The approach can also handle
discontinuous dynamical systems, such as those that arise naturally when modeling
impacting mechanical oscillators, integrate-and-fire (IF) models of spiking neurons,
and cardiac oscillators with both state-dependent and time-dependent switching [152].
Although PWL modeling is a beautifully simplistic modeling perspective, the loss of
smoothness precludes the use of many results from the standard toolkit of smooth
dynamical systems [40], and one must be careful to correctly determine conditions for
the existence, uniqueness, and stability of solutions.

An important perspective in the applied dynamical-systems community is that
the piecewise nature of models is a much more generally applicable feature for many
modern applications in science than the smooth dynamical-systems approach that has
dominated to date [57]. We refer to the switches and discontinuities in such models
as threshold elements. The explicit analysis of PWL models at the network level
builds on results at the level of individual nodes (e.g., individual oscillatory units),
in disciplines ranging from engineering to biology, to reap benefits for understanding
network states. This approach opens up a new frontier in network science to address
the role of node dynamics in the interrelationships between the structure and function
of real-world networks [70].

Throughout the present review, we illustrate the above modeling approach with
applications to biological networks in neuroscience and cardiology. We also illustrate
these ideas with explorations of other systems, including Franklin bells and coordi-
nated behavior in cow herds.

We consider networks of NV identical oscillators of the general form

d
ami = f(x;) + gi(x1,22,...,2n), 1€{1,...,N}, =z € R™,

and we show how to gain insight into emergent network dynamics when the vector
field f (i.e., the local dynamics) is PWL and the interactions are pairwise. Each
oscillator is associated with a node of a structural network (which, most traditionally,
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takes the form of a graph [105]), and each interaction is associated with an edge of
that network. With only pairwise interactions, the coupling function is

N
(1.2) gi(@1, 72, an) = 0 Y wyGlw,a;)
j=1

where G(x;,2;) is the dynamics that expresses the coupling between nodes ¢ and j,
the relative strength of this interaction is w;;, and o sets the overall network coupling
strength. One achieves insight into network behavior with a merger of techniques
that have been developed for nonsmooth systems (see, e.g., [95]), as exemplified in the
books of di Bernardo et al. [40], Acary, Bonnefon, and Brogliato [1], and Jeffrey [76] for
low-dimensional systems with discontinuous behavior and by network-science tools,
especially weakly-coupled-oscillator theory [72] and the master stability function [118],
that have been developed to describe phase-locked states (i.e., states in which all pairs
of oscillators are frequency-locked with a constant phase lag between each pair) and
their bifurcations.

Our paper proceeds as follows. In section 2, we present the types of PWL
models—including PWL continuous, Filippov, and impacting systems—that we use as
nodes of a network. We partition the phase space of these PWL models using switch-
ing manifolds. We give a method to construct periodic orbits, and we describe and
employ an extension of Floquet theory to nonsmooth systems to determine a criterion
for the stability of a periodic orbit. We use saltation operators to describe the prop-
agation of perturbations through the switching manifolds. In section 3, we present
a reduction technique that allows one to describe a limit-cycle oscillator in terms of
a scalar phase variable and additional variables that encode directed distances. By
again exploiting saltation operators, we show how to calculate the infinitesimal phase
and amplitude responses for PWL models. We illustrate this approach for some PWL
neuron models. We first examine weakly coupled systems. In section 4, we consider
phase-only network descriptions (i.e., dropping the amplitude coordinates) and we
also describe the relevant phase-interaction function. We highlight the usefulness of a
phase-oscillator network description using a combination of theory (specifically, about
the stability of phase-locked network states) and numerical simulations, with a focus
on neural networks.! In section 5, we examine phase-amplitude networks, for which
one needs more functions to fully specify all of the interactions between units. We
use a simple two-node network to highlight the dangers of an overreliance on only
phase information and emphasize the benefits of using phase—amplitude coordinates
to correctly predict phase-locked behavior for moderate values of the network coupling
strength o. We then consider strongly coupled systems, for which we do not expect
to obtain good predictions of system behavior from approximations of the network
dynamics through either phase-only reductions or phase—amplitude network reduc-
tions. In section 6, we develop a theory of phase-locked states in networks of identical
PWL oscillators without recourse to any approximation. In essence, this theory is
based on an extension of the master stability function to nonsmooth systems. We use
saltation operators to develop this extension. We apply this theory to a variety of
distinct systems, with a focus on synchronous network states and solutions that can
arise when a synchronous state loses stability. Finally, in section 7, we summarize our
paper and then briefly discuss extensions and further applications of the methodology

IWhen we write “neural networks,” we are referring to networks in neuroscience, as opposed to
the use of the term “neural networks” in contexts such as machine learning.
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in it for analyzing the dynamics of coupled-oscillator networks.

2. Piecewise-Linear Oscillators. Planar PWL systems [43,55,138] have dynam-
ics on two regions (i.e., “zones”), with a line of discontinuity between those regions.
The dynamics of planar PWL systems can be complicated, but they are tractable to
study. Therefore, we start by considering them. We describe the dynamics in the two
zones by the variable = = (v,w) " € R? which satisfies

(2.1) T fo=Asr+by ifzeRy,

d.’L'_{f]_EA]_LE—i-b]_ ifz e Ry,
where A5 € R2*%2 are constant matrices and bio € R2 are constant vectors. The
regions Ry and Rs are

(2.2) Ry = {z € R?| h(z) >0} and Ry = {x € R?| h(x) <0},
where the indicator function h : R? — R is
(2.3) hz)=v—a.

Switching events occur when h(xz) = 0, which holds on the switching manifold ¥ =
{z € R?*| v = a}. The condition h(z(t;)) = 0 implicitly yields the event times ¢t = ¢;,
with 7 € Z. If an equilibrium point exists in the region R,,, one determines its stability
by the eigenvalues of A,, with p € {1,2}. When relevant, it is simple to partition
phase space into more regions and to thereby incorporate further switching manifolds,
so we describe only the simplest situation of two regions of phase space. However, we
also give an example of a system with three switching manifolds (see Figure 2).

Planar PWL systems of the form (2.1) have been studied for many years and can
have rich dynamics. For example, Freire et al. [54] considered continuous systems with
two zones and proposed a canonical form that captures many interesting oscillatory
behaviors, and Llibre and Zhang [93] studied the existence and maximum number of
limit cycles in systems with a discontinuity. Planar PWL systems can have almost
all types of dynamics that occur in smooth nonlinear dynamical systems, and they
can also support bifurcations that are not possible in smooth systems [40,41]. How-
ever, in comparison to smooth systems, knowledge of bifurcations in PWL systems
is largely limited to specific examples [27]. Nevertheless, we can start to develop a
picture of the theory of bifurcations in PWL systems by gathering results from the
differential inclusions of Filippov [50], the “C bifurcations” of Feigin [42,49], and the
nonsmooth equilibrium bifurcations of Andronov, Vitt, and Khaikin [3]. Examples of
well-known bifurcations that arise from discontinuities include grazing bifurcations,
sliding bifurcations, and discontinuous saddle-node bifurcations [40, 69].

One of the key advantages of PWL modeling is that it allows one to derive closed-
form expressions for periodic orbits? [125]. However, the analysis of such dynamics is
not trivial because one needs to match the solution pieces from separate linear regimes.
Deriving conditions for matching dynamics from different regions typically necessitates
the explicit knowledge of the times-of-flight (i.e., the time that is spent by the flow in a
zone of phase space before reaching the switching manifold) in each region. Essentially,
we solve the system (2.1) in each of its linear zones using matrix exponentials and
demand continuity of solutions to construct orbits of the full nonlinear flow. To clarify

2Every periodic orbit that we consider in this paper is also a limit cycle, so we use the terms
“periodic orbit” and “limit cycle” interchangeably.
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how to implement this procedure, we denote a trajectory in zone R, by z# and solve
(2.1) to obtain z#(t,t9) = x(t,to; Ay, b,) using the solution form

(2.4) x(t, to; A,b) = G(t — to; A)x(to) + K(t — to; A)b,

where tg is the initial time, t > tg, and
t
(2.5) G(t; A)=eM, Kt A) = / G(s; A)ds = A7HG(t; A) — L],
0

where I,,, is the mxm identity matrix. One can construct a closed orbit (i.e., a periodic
orbit) by connecting two trajectories. One starts from initial data x(0) = (a,w(0)) ",

which lies on the switching manifold, in each zone. One then writes

B 21(¢,0) ifte€[0,T1],
(2.6) x(t) = {xQ(t,Tl) if t € (11,7,

for some T' > T > 0. We obtain a periodic orbit by requiring that x have period T
(i.e., be T-periodic). The times T;, with ¢ € {1,2} and To = T — T3, give the times-
of-flight between switching events. To complete the procedure, we must determine
the unknowns (T}, Tz, w!(0)) by simultaneously solving a system of three equations:
a = v(T1), a = v¥(Ty), and w?(Tz) = w!(0). This is easy to do using a numerical
method for root finding, such as fsolve in MATLAB, along with a method to compute
matrix exponentials (e.g., exmp in MATLAB). Alternatively, one can readily perform
explicit calculations of G(t; A) and K (t; A) [29].

One can classify PWL systems into three different types, depending on their
degree of discontinuity [40,92]. These three types of PWL systems are as follows.

Continuous PWL systems. These systems have continuous states and continuous
vector fields (i.e., f1(z) = fa(z)) but discontinuities in the first derivative or
higher derivatives of the right-hand side functions (i.e., 9" f1 /0™ # O™ fo /Ox™
for an integer n > 1), across the switching manifold. These systems have a
degree of smoothness of 2 or more, but their Jacobian matrices are different
on different sides of a switching manifold (i.e., D fi(x) # D fa(z)).

Filippov systems [50]. These systems have continuous states but vector fields that
are different on different sides of a switching manifold (i.e., fi(z) # fa(x)).
These systems have a degree of smoothness of 1. The vector field of the system
(2.1) is not defined on the switching manifold ¥ = {z € R?| h(z) = 0}. One
completes the description of the dynamics on the switching manifold with a
set-valued extension f(x). The extended dynamical system is

d filz) if xz€ Ry,
(2.7) = €f@) = {®{A@), L)} if €T,
fo(x) if x€Rs,

where ©6(.A) denotes the smallest closed convex set that contains A. In (2.7),
we have

(2.8) 0 {f1(z), f2(x)} = {cfi(x) + (1 = <) fa(x) for all < €[0,1]},

where ¢ (which has no physical meaning) is a parameter that defines the
convex combination. The extension (i.e., convexification) of the discontinuous
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system (2.1) into a convex differential inclusion (2.7) is known as the Filippov
conver method [50]. If (Vh, f1)(Vh, f2) < 0, a Filippov system can have
sliding motion [75,78], with h = Vh - f = 0, along a switching manifold.> We
then have

Vh - fo

29) °T Vh-(f2=f1)

Impacting systems (i.e., impulsive systems). These systems have instantaneous dis-
continuities (i.e., “jumps”) in a solution at the switching boundary ¥ that are
governed by a smooth jump operator (i.e., a “switch rule”) z(t%) = J(z(t7)),
where ¢t~ denotes the time immediately before the impact and ¢t* denotes the
time immediately after the impact. These systems have a degree of smooth-
ness of 0. The jump operator J is often called an impact rule (or an impact
law), and the discontinuity boundary ¥ is often called an impact surface. De-
pending on the properties of J, many different types of dynamics can occur.
To further understand the behavior of impacting systems, see [20,21,40,41].

To illustrate this classification, we now briefly introduce five different models, each
of which has oscillatory behavior and can be written in the form (2.1). We defer the
detailed form of these models to Appendix A. In the present section, we emphasize
the qualitative aspects of each model with plots of their nullclines and typical periodic
orbits (which we construct using the method that we described in the present section).

Absolute model (continuous) [see Figure 1(a)]. The vector field is continuous
across the switching boundary, although its Jacobian is not. The equilib-
rium point in zone R; is an unstable focus, and the equilibrium point in zone
R is a stable focus. A nonsmooth Andronov—Hopf bifurcation [77,141,143]
occurs when an equilibrium crosses from R; to Ry and the eigenvalues of the
Jacobian jump across the imaginary axis.

PWL homoclinic model (continuous) [see Figure 1(b)]. There is a saddle point
for x € Ry and an unstable focus for x € Ry, with a vector field that crosses
the switching boundary in a continuous manner. There is a homoclinic orbit
that tangentially touches the unstable and stable eigendirections of the sad-
dle point in Ry. This orbit encloses the unstable focus in R;. See [167] for a
detailed discussion of the conditions that ensure existence of a limit cycle or
a homoclinic orbit.

PWL Morris-Lecar model (continuous) [see Figure 2]. The Morris—Lecar model
is a planar conductance-based single-neuron model that captures many im-
portant features (such as low firing rates) of neuronal firing [103]. One can
simplify it to obtain a PWL system with four zones and three switching mani-
folds [29]. (By contrast, our other examples have two zones and one switching
manifold.) For full details, see Appendix A.

McKean model (Filippov) [see Figure 1(c)]. The McKean model is a well-known
planar PWL model for action-potential generation [99]. There are two vari-
eties of McKean model. One variety has a PWL approximation of a cubic
nonlinearity (to capture the behavior of the FitzZHugh—Nagumo model) with

3We use (-,-) and - interchangeably to denote the standard vector inner product.
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the associated nullcline broken into three pieces. In the other variety, the
PWL approximation of the cubic nonlinearity has two pieces [153]. We dis-
cuss the latter, which requires a set-valued extension on the switching man-
ifold (see (2.7)—(2.8)). For some parameter values, a stable periodic orbit
coexists with a stable equilibrium point (i.e., an attracting focus). In all of
those situations, they are separated by an unstable sliding periodic orbit.

Planar IF model (impacting) [see Figure 1(d)]. In the planar IF model, which is a

single-neuron model, whenever the voltage variable v reaches a firing thresh-
old vy, the system resets according to z(t7) = J(z(t7)) = (v, w(t™) + /7).
Namely, the voltage v resets to v, and the recovery variable w is kicked by
the amount x/7, where & is the kick strength and 7 is the time scale of the
recovery variable.

(@) | (b)

(d)

Fig. |

Nullclines and periodic orbits in a variety of planar PWL models. The region Ri (respec-
tively, Ra) is the zone with v > a (respectively, v < a). We show the stable (respectively,
unstable) periodic orbits with solid (respectively, dotted) black curves. We show each v-
nullcline (i.e., the curve v = 0) with a dotted gray curve and each w-nullcline (i.e., the
curve 1w = 0) with a dashed-dotted gray curve. We indicate switching manifolds (v = a) with
solid gray lines. (a) Absolute model. The unstable equilibrium point, which we indicate with
an unfilled circle, is in zone Ry. The parameter values are a = 0, w = —0.1, v = 0.1, and
d=0.5. (b) PWL homoclinic model. The repelling focus, which we indicate with an unfilled
circle, is in zone R1. The saddle point, which we indicate with a half-filled circle, is in zone
Rs. The parameter values are a = 0, §1 = 2, 02 = —0.3667, 71 = 0.5, and T2 = —0.6333. (c)
McKean model. The unstable periodic orbit is of sliding type. The stable equilibrium point,
which we indicate with a filled black circle and is a focus, is in zone Ro. The parameter
values are a = 0.3, b=2, vy =1, and I = 3. (d) Planar IF model. We indicate the firing
threshold with a dashed-dotted black line and indicate the reset value with a dashed gray line.
The parameter values are vy, = 1, v, = 0.2, ayw = 0, by = —1, a1 = 1, a2 = —1, and
I =0.1. For further details about these models, see section 2 and Appendiz A.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/08/24 to 131.179.222.1 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

OSCILLATORY NETWORKS: INSIGHTS FROM PIECEWISE-LINEAR MODELING 627

o)
@/

0.6 / ,
w /7\
6

£."

0.4+ P

ot
/
’
/
5
/
’

0.2+

’
/
’
/
5

0 ;;.::0-7,‘
Ry

Ry Ry Ry
0.2 0.4 0

Fig. 2 Phase plane of the PWL Morris—Lecar model, with a stable periodic orbit in black. The
periodic orbit has four pieces, with the first and third pieces in Ra2, the second piece in R,
and the fourth piece in R3. We show the v-nullcline with a dotted gray curve, the w-nullcline
with a dashed-dotted gray curve, and the switching manifolds 31, X2, and X3 with solid gray
lines. The nullclines are PWL approximations of those of the original smooth Morris—Lecar
model. The open black circle indicates an unstable equilibrium point, the half-filled black
circle indicates a saddle point, and the filled black circle indicates a stable equilibrium point
(which is in zone Ry = {x € R%| v < a/2}). The parameter values are C = 0.825, I = 0.1,
a=0.25b=0.5, b* =0.2, y1 =2, and v2 = 0.25. For further details about this model, see
section 2 and Appendiz A.

2.1. Floquet Theory for Nonsmooth Systems. Floquet theory [122] is a pop-
ular and well-developed technique to study the stability and bifurcations of periodic
orbits of smooth dynamical systems da/dt = f(x), where z € R™ and f(z) is a con-
tinuously differentiable function. If we write a T-periodic solution in the form z7(t),
the variational equation for this solution is

(2.10) d=Df( ()P, ®0)=1,.

Equation (2.10) has an associated monodromy matrix ®(T). The eigenvalues of ®(T),
which are A\, = e+ for all k € {0,...,m — 1}, are the so-called “Floquet multipliers”
of the limit cycle, and the values kj are their associated “Floquet exponents.” For
a planar system, for which z € R?, one of the Floquet multipliers is equal to 1
(corresponding to perturbations that are tangent to the periodic orbit) and the other
is Asmooth = exp(ﬁsmoothT)a where

T
(2.11) Ksmooth = %/O Tr (Df(27(t)))dt.

One determines the stability of periodic orbits from the sign of Kgmooth. An orbit is
linearly stable if Ksmooth < 0 and unstable if Kgmootn > 0.

For dynamical systems with nonsmooth or even discontinuous vector fields, one
cannot directly use standard Floquet theory [79,80]. It is also necessary to carefully
evolve a perturbation across the switching boundaries. We revisit the adaptation of
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standard Floquet theory (for nonsliding periodic orbits) to PWL systems [31,40] of
the form & = A,z(t) + by, where A, € R™*™ b, € R™, and the phase space has P
distinct regions R,, (with p € {1,..., P}). Switching events have associated indicator
functions h,(z). They occur when h,(z(¢;)) = 0 and have switching times ¢;, with ¢ €
Z. The state of the system immediately after the switch event is z(t}) = J,.(z(t;)),
where 7, : R™ — R™ is the switch rule, t7 = lim._q+ (t; & €), and x(¢;) denotes
the state immediately before the switch event. We construct a periodic orbit a7 (¢)
by patching solutions (built from matrix exponentials) across the boundaries of the
regions R,.
Away from switching events, the variational equation for a periodic orbit is

(2.12) %61 =A,0x for z7(t)+dx(t) € R,,

where dz(t) is a perturbation of the periodic orbit. The evolution of perturbations in
each region is governed by the matrix exponential form dx(t) = G(t — to; A,)dz(to),
where t > ¢y and tg denotes the time at which the trajectory crosses into region R,,. To
map perturbations across a switching manifold, we use a saltation operator [53,104].
This allows us to evaluate perturbations during the boundary crossing in which either
the solution or the vector field (or both) has a discontinuity. Miiller [104] used saltation
operators to calculate Lyapunov exponents of discontinuous systems, and Fredriksson
and Nordmark [53] used them in a normal-form derivation for impact oscillators.
See [81] for a recent review of saltation operators and their use in engineering. In our
context, saltation operators admit an explicit matrix construction of the form

N — ey o B ) = DI (67))37 (4] [Vl (27 (8))]
(2.13)  S,(ti) =DTu(z(t;)) + V@ () 2 .
We derive (2.13) in Appendix B.

Equation (2.13) allows us to write

(2.14) Se(t}) = 5,(t)0a(ty), a7(t]) +5a(ty) € R,

to describe how perturbations are mapped across a switching manifold at the bound-
ary of region R,. Combining (2.12) and (2.14) allows us to evaluate dx(t) over one
oscillation period T using M separate times-of-flight. We thus write T' = Zf\il T,
with dx(T") = ¥dz(0), where ¥ is the product

(2.15) U = S(tM)G(TM)S(tM_l)G(TM_l) X X S(tQ)G(TQ)S(tl)G(Tl) s

where G(T;) = G(Ti; Auiy) and S(t;) = S,)(t:). The index p(i) € {1,..., P}
indicates the region that the periodic orbit is in at time ¢;. The periodic orbit
is linearly stable if all of its nontrivial eigenvalues (i.e., Floquet multipliers) of the
matrix ¥ have moduli less than 1 and, equivalently, if the corresponding Floquet
exponents (kr = In(A\;)/T) all have negative real parts. One (trivial) eigenvalue of
U is equal to 1, corresponding to perturbations that are tangential to the periodic
orbit. For planar systems, one calculates the lone nontrivial Floquet exponent using
the formula

(2.16) =~

T [Tz TrA#(i) —|—1n|det S(tz)u .

NE

i=1
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The logarithmic term in (2.16) reflects the contribution of discontinuous switching to
the stability of an orbit. If S = I (i.e., there is no saltation), the logarithmic term
vanishes and we recover the formula (2.11) for a smooth system. In Appendix C,
we derive the Floquet-exponent formula (2.16) for planar PWL systems. We use
this formula to compute the stability of periodic orbits in all numerical studies of
single-oscillator PWL models.

3. Isochrons and Isostables. We now examine networks of interacting PWL os-
cillators. We start by generalizing results from the theory of weakly coupled systems
of smooth oscillators.

The theory of weakly coupled oscillators allows us to obtain insights into the
phase relationships between the nodes of a network [72]. Historically, the theory
of weakly coupled oscillators has focused on phase-reduction techniques using the
notion of isochrons, which extend the phase variable for a limit-cycle attractor to its
basin of attraction [64,166]. More recent research has emphasized the importance of
distance from a limit cycle using isostable coordinates (which we call “isostables” as
a shorthand) [66,97,98,162]. Employing isochrons and isostables yields reductions to
phase networks and phase—amplitude networks, respectively, although the theory for
the latter is far less developed than the theory for the former.

To introduce the concepts of an isochron and an isostable, it is sufficient to con-
sider the dynamical system & = f(z) + g(t), with x € R™.

3.1. Phase Response and Amplitude Response. Consider a T-periodic hyper-
bolic limit cycle for the case g(t) = 0. Following Pérez-Cervera, Huguet, and Seara
[121], we parametrize the limit cycle and its (m — 1)-dimensional stable invariant
manifold by writing

(3.1) %9:w7 %wkzl‘ﬁk’d)k, ke{l,....m—1},

where w = 27 /T and kg, is the kth Floquet exponent of the limit cycle. The dynamics
for 6 is uniform rotation, and the dynamics for 1, is contraction at a rate of k;. There
exists an analytic map K : T x R™~1 — R™ such that = K(6,¢1,...,%mn_1) [23].
From the map K, we define a scalar function ©(z) that assigns a phase to any point in
a neighborhood € of the limit cycle. The function ©(z) = 6 if there exists 5, € R such
that @ = K (0,41, ...,%m—1). This function satisfies O(z(t)) = O(x(to)) + w(t — to),
and the isochrons are the level curves of O(z). An isochron extends the notion of a
phase (which occurs on a cycle) to the neighborhood €. Similarly, we define a set
of functions Y (z) that assign a value of the amplitude variable to a point z € Q
by setting 3y (z) = vy, if there exists § € T such that x = K(6,¢1,...,%m—1). This
function satisfies ¥y (x(t)) = S (z(to))e™ (¢=%)  and the isostables are the level curves
of ¥ (x). Intuitively, one can consider each 1y, coordinate to be a signed distance from
the limit cycle in a direction that is specified by vy, which is the right eigenvector
of ®(T) with corresponding eigenvalue \;. See [85,163] for more details. As an
illustration, we show a limit cycle of the absolute model in Figure 3 along with some
isochrons and isostables in its neighborhood.

Knowledge of isochrons and isostables allows us to compute corresponding changes
in phase and amplitude under a small perturbation of x to x + Az. The change in
phase is AO(z) = O(z + Az) — O(x) = V,O(z) - Az, and the change in amplitude
is AXg(x) = Zp(r + Az) — Zp(x) = V. Z(z) - Az. Tt is challenging to determine
the map K, although it is not necessary to know it to compute the (m-dimensional)
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Fig. 3 Isochrons and isostables for a stable periodic orbit x7(t) (thick black curve), with Floquet
exponent k = —0.1534, of the absolute model. We calculate the isochrons, which we show as
thin black curves, using the numerical technique in [96]. We compute the isostables 1 = 0.04
(dotted gray curve) and ¢ = —0.04 (dashed-dotted gray curve) in the neighborhood of the limit
cycle using the method that we describe in subsection 3.2. This yields x(t) = x7 (t) + ¢¥p(t),
where p(t) is the Floquet mode. The parameter values are the same as those in Figure 1(a).

infinitesimal phase response Z and amplitude response Zy, which are
(3.2) Z=V,0(x), Ip = Ve Zi(x).

We obtain the infinitesimal phase response (iPRC*) Z as the T-periodic solution of
the adjoint equation

(3.3) —Z=-Dfa"(t))" Z,

with the normalization condition Z(0) - f(z7(0)) = w [46,47,72]. Similarly, the
infinitesimal isostable responses (iIRCs*) Z;, satisfy the adjoint equation

(3.4) - (nklm —Df (aﬂ(t))T) I,

with the normalization condition Zx(0) - vy = 1, where vy, is the right eigenvector that
is associated with the kth Floquet exponent of the monodromy matrix [102,160,162].

For a nonsmooth system, one needs to augment the above adjoint equations for
Z (see (3.3)) and Zj (see (3.4)) to examine the behavior at any event time. For
example, Coombes, Thul, and Wedgwood [32] determined the discontinuous iPRC for
the planar PWL integrate-and-fire (IF) model by enforcing normalization conditions
on both sides of a switching manifold. Additionally, for piecewise-smooth systems,
Park et al. [112] and Wilson [159] developed a jump operator to map the iPRC through
an event by using the normalization condition above and certain linear matching
conditions. This jump operator is equal to the inverse transpose of the saltation
matrix, and related studies [33, Chapter 5] have also made this observation. Using a

4The “C” in iPRC (and iIRC) is a historical hangover from the phrase “infinitesimal phase
response curve,” even though the phase response and amplitude response are vector-valued functions.
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similar approach, Chartrand, Goldman, and Lewis [25] constructed a discontinuous
iPRC for the resonate-and-fire model and Shirasaka, Kurebayashi, and Nakao [139]
showed how to analyze “hybrid dynamical systems,” which include both continuous
and discrete state variables [2]. Ermentrout, Park, and Wilson [44] computed the
iPRC of the Izhikevich neuron using a mixture of a jump operator and numerical
computations. Wang et al. [157] determined the iPRC for several planar nonsmooth
systems for a limit cycle with sliding dynamics. To do so, they used a modified
saltation matrix and then related it to the the jump operator at the point where a
sliding motion begins and terminates. Wang et al. subsequently applied their approach
to neuromechanical control problems [158].

Suppose that one has a matrix representation of the iPRC’s jump operator of the
form RTZ+t = Z~, where Z~ denotes the iPRC immediately before an event and
Z7T denotes the iPRC immediately after it. It is then perhaps simplest to construct
the jump operator by enforcing normalization across the switching manifold. This
balancing of normalization conditions at an event time t; requires (Z+,#7(¢])) =
(Z-,@7(t7)), 0

(3.5) (2487(t)) = (RT2%,47(t7)) = (27, R (7)),

which yields

(3.6) (2,875 —Ri(¢;)) = 0.

Equation (3.6) holds for any Z*. Therefore, 27(¢;) = Ri#7(¢; ). Additionally, the

action of the saltation matrix on #7(¢; ) satisfies acl"y(tl ) = S(t;)&"7(t; ). To see this,
we multiply (2.13) on the right by ©7(¢;") to obtain
S(t)a7(t77) = DIy (27 (87)27 (8
N (27 (") = DTy (27 (£))a7 (8 [ Vo (27 ()] 737 (&)
Vahyi (27 (7)) - &7(87)
= Do) (27 (t7))37(t7) + 27 (1) = DTy (27 ()37 (1)
(3.7) =a7(th).
This implies that R = S, which in turn yields

(3.8) Zt=(ST(t;) 'z

An analogous argument for the iIRC gives
(3.9) T = (87 () ',

All that remains is to determine Z and Z; between events. As usual, the PWL nature
of (3.3) and (3.4) implies that one can use matrix exponentials to obtain closed-form
solutions. For example, the iPRC Z and iIRC Zj of the McKean, absolute, and
homoclinic models are

_ Gt -A])Z(0), 0<t<Ti,
(3.10) 20 = {G(t —Ty;—A7)(S))'G(T:; —A[)Z(0), Th<t<T
and
_[G#:Q0)T(0), 0<t<Ty,
(311) ) = {G(t —T1;Q2)(SY ) 'G(T1;Q1;)Z(0), Th<t<T,
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where @, = (kl; — A]). One still needs to determine the initial data Z(0) and
Z(0). To do so, one satisfies the normalization condition and the requirement that
responses are periodic. For example, for (3.10), it is necessary that Z(0) =
(S9 ) LG (To; —AJ)(ST)~1G(Ty; —AT)Z(0) and Z,(0)07(0) + 22(0)1”(0) = w. One
then solves this pair of simultaneous linear equations (e.g., using Cramer’s rule, as was
done in [29]) to determine the initial data Z(0) = (£1(0), £2(0)). One analogously de-
termines Z(0) using Z(0) = (S5 ) 71G(T%; Q2) (ST ) ~1G(T1; Q1)Z(0) and Zj(0) - vy, = 1.
One can follow the same procedure for models with as many regions as desired (e.g.,
for the PWL Morris-Lecar model, which has four regions). In Figures 4 and 5, we
show plots of iPRCs and iIRCs, respectively, that we construct using this method
for several PWL models. Sayli [135] used direct numerical computations to confirm
the shapes of these responses. The similarity between the shapes of some iPRCs and
iIRCs, such as that between Figure 4(d) and Figure 5(d) for the PWL Morris—Lecar
model, was seen previously in studies of certain smooth models [62]. Indeed, com-
paring the responses that we have constructed with those for smooth models [62,101]
illustrates that a PWL approach can successfully capture the qualitative response
features of their smooth counterparts.

NG
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Fig. 4 The v-component of the iPRC (solid black curve) and underlying shape of the periodic v-
component (dashed gray curve) for (a) the absolute model with the same parameters as in
Figure 1(a), (b) the PWL homoclinic model with the same parameters as in Figure 1(b), (c)
the McKean model with the same parameters as in Figure 1(c), and (d) the PWL Morris—
Lecar model with the same parameters as in Figure 2.

3.2. Phase-Amplitude Dynamics. With the results from subsection 3.1, we are
in a position to construct the phase dynamics and amplitude dynamics for weak forcing
with g # 0. In the neighborhood of a stable limit cycle, we expand the gradients of
O(z) and X(z) and write

(3.13) Va0 Sk(®@) = Tu(0) + Hy, or Az + O (|| Az ),
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Fig. 5 The v-component of the {IRC (solid black curve) and underlying shape of the periodic v-
component (dashed gray curve) for (a) the absolute model with the same parameters as in
Figure 1(a), (b) the PWL homoclinic model with the same parameters as in Figure 1(b), (c)
the McKean model with the same parameters as in Figure 1(c), and (d) the PWL Morris—
Lecar model with the same parameters as in Figure 2.

where Hg -+ and Hy;, ,~ are the Hessian matrices of second derivatives of © and ¥y,
respectively, evaluated at the limit cycle 7. Close to a periodic orbit, we use Floquet
theory [122] to write

m—1
(3.14) Az (0,91, m-1) = Y Yepr(0/w),
k=1

where py(t) = e " ®(t)vy

Using the chain rule, we see that § = V(zr+a2)0O(7) -2 and U = V(@r+az) Zk(T)-
& in the neighborhood of the limit cycle. Therefore, (3.12)—(3.14) yield a phase—
amplitude approximation of the full dynamics that is accurate to second order. This
approximation is

(3.15) % =w+ (Z(t) + - [Bk(t)w]) -g(t),
k=1
dyy, = 1
(3.16) o = e+ (Ik(t) + [Ck(t)wz]> g(t),
=1

where we define the notation B*(t) = He .~ pi(t) and C(t) = Hy, ,~pi(t) and enforce
the conditions

(3.17) —Z(0(t) " Df (27(1)) pi(t) = f (27(1)) " B*(t),
(3.18) Ti(0(8) T (R =D (@ () pi(t) = f (27(8) " CL(E) -
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Following Wilson [159], one can show that B* and Cl satisfy

(3.19) %B’“ =—(Df" (27(t)) + kilm) BF,
(3.20) Sl =~ (DT @)+ (vt~ rx) 1)

and we have used the fact that the Hessian of a vector field vanishes for PWL dy-
namical systems. Importantly, because the system is PWL, we again use matrix
exponentials to construct explicit formulas for pg(t) (by first solving the variational
equation (2.10) for ®(t)), B¥(t), and C! () (which are all T-periodic), being mindful
to incorporate appropriate jump conditions.

As we show in Appendix D, the jump condition on B for the transition across a
switching manifold is

(3.21) BY = (ST (t;)™'B~ + O~ (t:)n(ts),
where we have suppressed the k indices, C(¢;) and 7(¢;) are
(3.22)

V[ e [E Aap) = 2 (Aunp(t)
C(tz)[ 0 1 ] i) = S Al Z Al 2 (0.1)

Y
oY (t; ®

for a planar system, and p” denotes the v-component of p. Similarly, the jump con-
dition for C for the transition across a switching boundary is

(3.23) Ct=(ST(t:)'C™ +C (t)((ta),
where we have again suppressed the k indices and

It [(kIy = APt =T - (k12 — Ap(i))p(ti_)]]

VU (AT — RI)T™ — (A uz)zﬂ -(0,1)

(3.24) C(t:) =

T _
01t u(it1)

For example, for PWL models with two zones (such as the McKean model), the
above method yields the following explicit formulas:

—Kt A ’Te < T
(3.25) p(t) _ eimG(t, 1)’0, N 0 <t<Ty s
(§] G(t7T1;A2)S(t1)G(T1;A1)’U, T1 §t<T,

where v is the right eigenvector that is associated with the nontrivial Floquet expo-
nent;

(3.26)
B(t) = {G(t;Kl)B(O), 0<t<Ty,
G(t — Ty; K)[(ST (1)) 7' G(Th; K1)B(0) + Cr M (t)n(t)], Th <t <T,
where K, = —(A;Lr + kl3); and
(3.27)
) = {G(t; —A7)e(0), 0<t<Ty,
=Gt — Tus —AD)(ST (1)) G(Tw; —AT)C(0) + O (1)C()], Ty <t<T.

For B(t) and C(t), one can determine initial data in an analogous fashion as for
(3.10) by simultaneously enforcing the periodicity constraints and conditions (3.17)
and (3.20). For further details, see [135]. In Figures 6 and 7, we show example plots
of B(t) and C(t) that we obtain with the above approach.

We are now ready to examine how to use the phase and amplitude to describe
the dynamics of networks of the form (1.1).
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Fig. 6 Plots of B(t), with the v- and w-components on the left and right vertical axes, respectively.
(a) The McKean model with the same parameters as in Figure 1(c). (b) The PWL Morris—
Lecar model with the same parameters as in Figure 2.

(@) (b)
0.4 cv
CU
0
0
-0.4
-0.8
-0.8
0 2 4 ¢ 6 8 0 1 2 ¢+ 3 4

Fig. 7 Plots of C(t), with the v- and w-components on the left and right vertical axes, respectively.
(a) The absolute model with the same parameters as in Figure 1(a). (b) The McKean model
with the same parameters as in Figure 1(c).

4. Phase-Oscillator Networks. We first consider the case of strong attraction
to a limit cycle. Therefore, to leading order, we do not need to consider amplitude
coordinates. Using (3.15), we take a leading-order approximation of (1.1) with (1.2)
and |o| < 1 to obtain

N
(4.1) %07; =w+o0Z(0;/w) - ZwijG(:cV(ﬂi/w),xV(Gj/w)) , ie{l,...,N},
j=1

with @; € [0,27). This reduced dynamical system evolves on TV, whereas the original
dynamical system evolves on RN *™. We obtain a further (and pragmatic) reduction to
a model in terms of phase differences (rather than products of phases) after averaging
over one oscillation period. See, e.g., [46] and the review [8]. We obtain the Kuramoto-
like model [83]

d N 1 (7
(12) S0 =wto Y wiH(6;~6), H(@):T/O Z()- G (1), 27 (1+0/w)) dt,

j=1

where the phase-interaction function H is 2mw-periodic. We write it as a Fourier
series H(0) = Y, .5 Hne™?, where the complex Fourier coefficients H,, take the form
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H, =2, -G_, and Z, and G,, are the corresponding vector Fourier coefficients of
Z and G, respectively. For computationally useful representations of the coefficients,
see [29].

Using (4.2), it is straightforward to construct relative equilibria (which correspond
to oscillatory network states) and determine their stability in terms of both local
dynamics and structural connectivity [45]. The structural connectivity is encoded in
a graph (i.e., a structural network) with a weighted adjacency matriz. For a graph with
N nodes, one specifies the connectivity pattern by an adjacency matrix w € RV*N
(which is sometimes also called a “coupling matrix” or a “connectivity matrix”) with
entries w;;. The spectrum of the graph is the set of eigenvalues of w. This spectrum
also determines the eigenvalues of the associated combinatorial graph Laplacian £. We
denote the eigenvalues of w by A;, with € {0, ..., N—1}; we denote the corresponding
right eigenvectors by w;.

For a phase-locked state 0;(t) = Qt + ¢; (where ¢; is the constant phase of each
oscillator), one determines stability in terms of the eigenvalues of the Jacobian matrix

~

H(®) of (4.2), where ® = (¢1,...,¢n) and its components are

~

N
(4.3) [H(®@)]ij = o |H'(¢; — di)wi; —6i; > H' () — ¢i)wik:| ,
k=1

The globally synchronous steady state, ¢; = ¢ for all 7, exists in a network with a
phase-interaction function that vanishes at the origin (i.e., H(0) = 0) or for a network
with a constant row sum (i.e., Y. w;; = constant for all 7). Using the Jacobian (4.3),
synchrony is linearly stable if ¢ H'(0) > 0 and all of the eigenvalues of the structural
network’s combinatorial graph Laplacian [105], which has entries

N
(44) Eij = —wg; + 5”‘ Z Wik
k=1

lie on the right-hand side of the complex plane. Because the eigenvalues of a graph
Laplacian all have the same sign (apart from a single 0 value), stability is determined
entirely by the sign of o H'(0).

In a globally coupled network with w;; = 1/N, the graph Laplacian £ has
one 0 eigenvalue and N — 1 degenerate eigenvalues at —1, so synchrony is stable
if cH'(0) > 0. In a globally connected network, one also expects the splay state
¢; = 2mi/N to exist generically [10]. Additionally, in the limit N — oo, the eigenval-
ues to determine stability are related to the Fourier coefficients of H by the equation
An = —2winoH_,, [83]. To illustrate these results in a concrete setting, it is informa-
tive to consider a globally coupled network of PWL Morris—Lecar neurons. In this
case, w;; = 1/N and G(z;, ;) = vj—v; = v((0; —0;)/w)—v(0) for some common orbit
v(t). This yields H(0) = 3, o Zov_n[e~ "¢ — 1], where the superscript v denotes
voltage component and we can readily calculate the Fourier coefficients of the phase
response Z and orbit v for a PWL system [29]. In the upper-left panel of Figure 13, we
show a plot of the phase-interaction function. By visually inspecting the plot, we see
that H'(0) < 0. Therefore, for o > 0, the synchronous state is unstable. See [82] for a
geometric argument for why synchrony is unstable for gap-junction coupling when the
uncoupled oscillators are near a homoclinic bifurcation (as is the case here). A numer-
ical calculation of this splay state’s eigenvalues also illustrates that the synchronous
state is unstable. Direct numerical simulations with large networks of oscillators illus-
trate an interesting long-time-scale rhythm for which the Kuramoto synchrony order
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parameter R = |[N~! Zjvzl e'%| fluctuates (possibly chaotically) between the value

R =1 for complete synchrony and the value R = 0 [29,67]. In Figure 8, we illustrate
these dynamics.

0
1000 1500 t 2000

Fig. 8 FEvolution of the Kuramoto order parameter for the dynamics of a weakly-coupled phase-
oscillator network of N = 1000 PWL Morris—Lecar neurons with linear voltage coupling.
The evolution of the Kuramoto order parameter R = |[N~1! Z;VII ' | illustrates that the
system fluctuates between unstable states of synchrony (R =1) and asynchrony (R=10). In
the upper-left panel of Figure 13, we show the phase-interaction function.

4.1. An Application to the Structure-Function Relationship in Large-Scale
Brain Dynamics. The weakly-coupled-oscillator theory that we described in section 4
is natural for exploring relationships between the brain’s structural connectivity (SC)
and the associated supported neural activity (i.e., its function). There are studies of
the SC of the human brain, and graph-theoretic approaches have revealed a variety of
features, including a small-world architecture [11], hub regions and cores [108], rich-
club organization [16], a hierarchical-like modular structure [147], and cost-efficient
wiring [17]. One can evaluate the emergent brain activity that SC supports using
functional connectivity (FC) network analyses [13], which describe patterns of tem-
poral coherence between brain regions. Researchers have associated disruptions in SC
network and FC networks with many psychiatric and neurological diseases [12]. A
measure of FC that is especially appropriate for network models of the form (4.2) is
the pairwise phase coherence

(4.5) R =

t—oo t

1
lim 7/0 cos(0;(s) —0;(s))ds| .

Models of interacting neural masses yield natural choices of the phase-interaction
function [51,71]. For simplicity, we use a biharmonic phase-interaction function [68]

(4.6) H(0) = —sin(f — 2ma) + rsin(26)

to illustrate how SC can influence FC. Using the results of the present section, we find
that the stability boundary for the synchronous state is H'(0) = 0, which yields r =
r. = cos(a)/2. Direct simulations of the phase-oscillator network (4.2) using human
connectome data (parcellated into 68 brain regions) beyond the point of instability
of the synchronous state reveal very rich patterns of pairwise coherence (4.5). These
complicated FC dynamics reflect the fact that all eigenmodes of the graph Laplacian £
are unstable, leading to network dynamics that mixes all of these states. In Figure 9,
we show plots of the emergent FC matrix from the network model (4.2) and the
interactions that are prescribed by the SC matrix.
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Fig. 9 (a) A structural connectivity (SC) matriz from diffusion magnetic resonance imaging (MRI)
data that was made available through the Human Connectome Project [48]. The data was
processed using a probabilistic-tractography approach [56]. In this data set, the pairwise
connectivity strength in a dense 60,000-node network is equal to the fraction of streams that
propagate from each vozel i on the white/gray matter boundary and terminate at vozel j.
This network was then parcellated to create a 68-node network, which we employ. See [151]
for further details. (b) A functional connectivity (FC) matriz that uses the phase-coherence
measure (4.5) from a phase-oscillator network with the SC pattern in (a) and the biharmonic
phase-interaction function (4.6). The parameter values are 0 = 1, w = 1, a = 0.1, and
r=rc.—1/2=cos(a)/2 —1/2.

4.2. Dead Zones in Networks with Refractoriness. Consider once again a
phase-oscillator network (4.2) that one obtains from a phase reduction of a weakly
coupled system (1.1) with coupling function (1.2). The phase-interaction function
H(0) has a dead zone U if U C [0,27) is an open interval on which H(U) = 0 [6].
Let DZ(H) denote the union of all dead zones of H. When the phase difference
; — 0; € DZ(H), oscillator i does not respond to changes in oscillator j because the
connection between them is temporarily absent. Therefore, dead zones of the interac-
tion function H lead to an effective decoupling of network nodes for certain network
states 0 = (01,...,0n). For a state 0, the effective interaction graph is a subgraph
of the underlying structural network (which is defined by the connection strengths
w;;) that includes only the edges j — i for which 6; — 0; ¢ DZ(H). Along solution
trajectories, the effective interaction graph evolves with time. The set of subgraphs
of the underlying structural network (i.e., graph) that are realizeable by trajectories
of the system depends on the dead zones of the coupling function H. Ashwin, Bick,
and Poignard [6] explored the interplay between dead zones of coupling functions and
the realization of particular effective interaction graphs, and they began to explore
how the dynamics of the associated coupled system corresponds to changing effective
interactions along a trajectory.

Because one derives the phase-oscillator network (4.2) from the original nonlinear-
oscillator network described by (1.1)—(1.2), it is natural to examine conditions on the
nonlinear oscillator dynamics that yield a dead zone of the phase-interaction function
H. Both the coupling function G and the iPRC Z influence whether or not there is
an open interval A € [0,27) with H(#) = 0 for all § € A. See Ashwin, Bick, and
Poignard [7] for conditions for dead zones for relaxation oscillators with a separable
coupling that acts only through one component of x; € R™. Here a coupling function
G is separable if it can be written as

(4.7) G(xi,25) = G™ (w;) © G™(xy),
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where G'" is an input function, G is the response function, and v ® w denotes
the Hadamard (elementwise) product of the vectors v and w. They also showed that
pulsatile coupling can yield &-approximate dead zones Ug, on which sup{|H(6)|: 6 €
U} < €.

In the present section, we show how to obtain £-approximate dead zones in the
phase-interaction function for networks of synaptically-coupled PWL neuron models
with refractoriness. Many neural oscillators have a refractory period after emitting an
action potential (i.e., a nerve impulse). During this time, the neuron does not respond
to input. For a phase oscillator, during the refractory period, input does not cause the
oscillator phase to advance, thereby preventing further firing events. Therefore, the
iPRC Z(t) is approximately 0 for one or more intervals (t1,¢2) C [0,7"), where T is the
oscillator period. An example of a planar PWL model with such a refractory period is
the continuous McKean model with “three pieces” [29,99]. This is a PWL caricature
of the FHN model, with the v-nullcline broken into three pieces, that partitions the
phase space into three zones with two switching manifolds. The dynamics of the
system satisfies

(4.8) Co=pv)—w+1, w=v—~yw,

where C' > 0, v > 0, and (to approximate the cubic v-nullcline) p(v) is given by (A.2).
The dynamical system (4.8) has a stable periodic orbit when there is a single unstable
equilibrium on the center branch of the cubic v-nullcline. In Figure 10, we show the
phase portrait for parameter values with a stable periodic orbit. See Appendix A for
further details about the model.

0.8 ' ‘ 22 @ 21

0.6

04 @

0.2+ R; @ R, R
-0.5 0 v 0.5

Fig. 10 The phase plane for the McKean model has a v-nullcline that is a PWL approzimation of
a cubic (dotted curve) and a linear w-nullcline (dashed-dotted line). The parameters are
C =001, 1=0,v=0, and a = —0.5. The solid black curve indicates a stable periodic
orbit.

For C <« 1, the dynamics of the voltage v are fast and the dynamics of the
recovery variable w are slow. Therefore, as C' — 0, the system spends most of its time
on the left and right branches of the v-nullcline, with fast switching between the two
branches. Consequently, Z¥ (i.e., the v-component of the iPRC) is approximately 0
for much of the limit cycle, with peaks corresponding to locations near the switching
planes. In Figure 11, we show Z¥ (and v on the limit cycle) for C' = 0.01. In the
singular C' — 0 limit, the iPRC for this model is discontinuous [28, 73].
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Fig. Il The v-component Z¥ of the iPRC of the continuous McKean model (solid black curve) and
the corresponding value of v on the limit cycle (dashed gray curve). The parameter values
are C =0.01, I =0, v =0, and a = —0.5. Observe that Z" is approximately 0 for much
of the limit cycle, with peaks corresponding to locations near the switching planes.

We now compute the phase-interaction function for a network of N synaptically-
coupled continuous McKean neurons with time-dependent forcing:

N
(49) Cl'}i:p(Ui)—wi—l-I-‘rUZ’wiij(t), w; = v; — Yw; , iE{l,...,N}.

j=1

Suppose that the synaptic input from neuron j takes the standard “event-driven”
form

(4.10) si(t) =Y _n(t—15),

PEZL

where tf denotes the pth firing time of neuron j and the causal synaptic filter n
describes the shape of the postsynaptic response.

For a phase-locked system, one writes the firing times tf as tf =pT — ¢;/w for a
phase offset ¢; € [0, 27). Therefore, the phase-interaction function is

T 0o
(4.11) H(9) = %/0 Z%(wt — 0)P(wt) dt = % ; Z%(u— 0)n(u/w) du,

where P(¢) = >_ ., 1(¢/w — pT'). Because Z is 2m-periodic, we can write Z%(u) =
> ez Zoe™, where Z = (2m) ! fOQﬂ Z(u)e™ " du. Consequently,

(4.12) H(O) = 7 Y 22,600/ T),
nez

where 7)(k) = [ e2™#*p(t) dt is the Fourier transform of the causal synaptic filter 7).
That is, H(0) =, ., Hne™’, where H,, = Z¥,7(n/T)/T. If we adopt the common
choice

ne

(4.13) n(t) = o’te" 'O (1),
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where o > 0 and © is a Heaviside step function, then

(4.14) H— 2%
' " T(a+2min/T)2"

In Figure 12, we show the phase-interaction function H () for two values of «. This
interaction function has two large dead zones. The larger the value of «, the larger
the dead zones of H(#). For the chosen parameter values, the dead zones of H are
symmetric for large values of « [6]. (That is, if § € DZ(H), then —0 € DZ(H) also.
Such a coupling function is “dead-zone symmetric.”) This symmetry places restric-
tions on the effective interaction graphs that can be realized by the trajectories of the
model. For example, if H is dead-zone symmetric, then all of the effective interaction
graphs for H are undirected [6, Proposition 3.7]. In the limit & — oo, we also ob-
serve that H(0) is a scaled version of the v-component of the iPRC. This follows from
H(9) = 2¥(—0)/T and the fact that lim,_,~ 7(t) = d(t), giving pulsatile coupling.

0.5

-0.5+ 1

0 /2 ™ 3m/2 2m

Fig. 12 The phase-interaction function H(0) for the continuous McKean model with synaptic cou-
pling for e = 1000 (black curve, fast synapses) and o = 10 (gray curve, slow synapses).
Synapse-firing events occur when v = 0.6 and v > 0. The other parameter values are I = 0,
v =0, and a = —0.5. The larger value of o results in a larger dead zone of H(0).

5. Phase-Amplitude Networks. We now consider the second-order approxima-
tion (3.15)—(3.16), which allows us to use both phase and amplitude coordinates to
treat oscillatory network dynamics. In contrast to the phase-only approach in sec-
tion 4, there has been much less work on the theory and applications of phase—
amplitude networks. However, this is now changing, as exemplified by [161]. Because
of this and to facilitate our exposition, we focus on a small network of two identical
planar oscillators with linear coupling through the v-component. Pairs and larger
networks of linearly coupled smooth Morris—Lecar neurons were considered by Nicks,
Allen, and Coombes [106], who also derived conditions for the linear stability of
various phase-locked states in globally coupled phase—amplitude networks. Our dis-
cussion parallels that of Ermentrout, Park, and Wilson [44] for a smooth model of
synaptically-coupled thalamic neurons [132].

Specifically, we consider (1.1) with N = 2 oscillators, a coupling strength of
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lo] < 1, and

5.1) g1(x1,29) = vy —v1,0] ",
' g2(w1,29) = ooy — v9,0] "

To determine the form of g(t) in the phase-amplitude equations (3.15)—(3.16) to
obtain the corresponding phase—amplitude reduction of the network equations (1.1),
we write v;(t) = v7 (6;(t)) + ¥i(t)p® (0;(t)) and assume that the amplitudes v; are
O(o). Substituting this expression into (3.15) and (3.16) and keeping terms up to
order O(c?) yields the phase-amplitude-reduced network equations

(5.2) 01 = w + 0 [hy (01,02) + rhs (01, 02) + bahs (61,62)]
U1 = Kby + 0 [ha (01,02) + Pihs (61, 02) + ohe (61,602)]

0> = w+ 0 [hy (02,61) + oha (02,61) + Y1hs (02,601)]
Yo = Ko + 0 [hy (02, 01) + ohs (02,01) + P1he (02,61)]

where we give the detailed forms of the doubly 27-periodic functions hq,...,hg in
Appendix E.
To further reduce the system (5.2) to a phase-difference form, we use averaging

(see section 4) and write H;(y) = (2m)~! fo% hi(s,y + s)ds and x = 03 — 6;. This

yields

(5.3)  x=o[Hi(=x) — Hi(x) +¥1 (H3(=x) — Ha(x)) + ¥2 (Ha(—x) — H3(x))] ,
Un = kpy + o [Ha(x) + Y1 Hs(x) + ¥2Hs(X)]
Uy = kg + 0 [Hy(—X) + oH5(—x) + Y1 He(—X)] -

In Figure 13, we show the six interaction functions Hi, ..., Hg for the PWL Morris—
Lecar model. We compute these functions using the Fourier representation that we
described in section 4. Note that these six functions are all that is needed to describe
the phase—amplitude-reduced dynamics of networks of any finite size N [106,113].

For the synchronous 0-amplitude solution [x,%1,%2]" = [0,0,0]T, the Jacobian
of (5.3) has the form

—QO‘H{(O) 20’H3(0) —20’H3(0)
(5.4) J=| oH}(0) «r—0cHg(0) o Hg(0) ,
—oH}(0) o Hg(0) k — o Hg(0)
where we have used the fact that linear coupling gives H5(0) = —H3(0) and H5(0) =
—Hg(0). All eigenvalues have negative real part, so the synchronous solution is
linearly stable when x < 0 (which we assume to obtain a stable periodic orbit),
Kk < 20(H{(0) + Hg(0)), and H{(0)(k — 20Hg(0)) + 20H5(0)H}(0) < 0. Reducing
to the phase-only description by taking Ha, ..., Hg = 0 recovers the result that the
synchronous solution is linearly stable when o H7(0) > 0. One can similarly deter-
mine stability conditions for the antisynchronous state (for which the phase difference
between the two oscillators is x = 7). For the antisynchronous state, the shared orbit
satisfies 1 = 19 = 1, where ¢p = —oHy(w)/(k+0(Hs(mw)+ Hg(m))), which is constant
(so that the orbit coincides with an isostable of the node dynamics) [106].
Importantly, for both solutions, the phase-only reduction does not predict any
bifurcations from changing ¢ > 0, whereas the phase—amplitude approach does allow
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Fig. 13 The interaction functions Hi,...,Hg for the PWL Morris—Lecar model. The parameters

are the same as those in Figure 2.

this possibility. This is the case because the eigenvalues of both (5.4) and the Jacobian
for the antisynchronous state have a richer dependence on the coupling strength o.
See Figure 14 for an interesting bifurcation diagram for the PWL Morris—Lecar model
that we obtain by varying o. We see that we can restabilize the synchronous state
by increasing o when o Z 0.2. Moreover, at smaller values of o, stable periodic
orbits arise from an Andronov—Hopf bifurcation of the antisynchronous state. In one
region, for which 0.15 o < 0.2, our analysis predicts that there are no stable solution
branches. Direct numerical simulations (see Figure 16) of the full model (A.1) confirm
this prediction.

Although the qualitative predictions of the phase—amplitude formalism are better
than those of the phase-only formalism, it remains to be seen if these predictions can
also give successful quantitative insights. We explore this issue in section 6.

6. Strongly-Coupled-Oscillator Networks. In previous sections, we explored
how collective behavior (such as phase-locked states) arises in weakly coupled net-
works. We considered the dynamics of the system (1.1) on a reduced phase space
that is given by the Cartesian product of each oscillator’s phase and possibly a sub-
set of the oscillator amplitudes. However, the assumption of weak coupling is not
valid in many real-world situations. There are far fewer results for strongly-coupled-
oscillator networks than for weakly-coupled-oscillator networks, and the former are
often restricted to special states such as synchrony [33, Chapter 7).

One popular approach to obtaining insights into the behavior of strongly cou-
pled oscillators in the context of smooth dynamical systems is the master stability
function (MSF) approach. The MSF approach® of Pecora and Carroll [117] to assess
the stability of synchronous states of a network in terms of the spectral properties
of the network’s adjacency matrix is exact. It does not rely on any approximations,
aside from those in numerical implementations (to construct periodic orbits and com-

5At least on occasion, MSF approaches were used before they were officially invented in the
1990s. See Segel and Levin [137] (a conference-proceedings paper from 1976).
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Fig. 14 Bifurcation diagram for two linearly coupled PWL Morris—Lecar models (see (A.1)) showing
the phase difference x under variation in the overall coupling strength o. The solid (re-
spectively, dashed) curves indicate stable (respectively, unstable) branches of steady-state
solutions. The filled (respectively, empty) circles indicate the amplitude of stable (respec-
tively, unstable) periodic orbits. Two branches with phase difference x # 0,7 meet at
o0 £ 0.15. These branches both terminate in a limit point, so the apparent change of stabil-
ity is just an artifact of this coincidence. For 0.15 < o < 0.2, we do not obtain any stable
solution branches. The parameters are the same as those in Figure 2.

pute Floquet exponents). In the present section, we describe how to augment this
MSF approach for PWL systems using the saltation operators that we described in
subsection 2.1. For PWL systems, one can use semi-analytical approaches (with nu-
merical computations only for times-of-flight between switching manifolds) instead of
the numerical computations (i.e., simulations of differential equations) that are used
for smooth nonlinear systems.5

6.1. The Master Stability Function for Nonsmooth Systems. To introduce the
MSF formalism, we start with an arbitrary connected network of N coupled identical
oscillators (1.1)—(1.2) with G(x;, ;) = H(z;) — H(z;). The output for each oscillator
is determined by a vector function H : R™ — R™ (which can be either linear or
nonlinear). The network dynamics satisfies

N

v = f(x:) =0 ) LiH(z)),

J=1

d

(6.1) =

SRecently, Corragio, De Lellis, and di Bernardo [34] used an alternative approach for systems
with a so-called “o-QUAD property” (such systems include many discontinuous neural, genetic,
and impact networks) to prove global asymptotic convergence to synchronization in networks of
piecewise-smooth dynamical systems.
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where the matrix £ € RV*N | with entries £;;, is the graph Laplacian (4.4). By
construction, the matrix £ has 0 row sums. The N — 1 constraints x1(t) = z2(t) =
- = xn(t) = s(t) define the invariant synchronization manifold, where s(t) is a
solution in R™ of the associated uncoupled system. That is, ds(t)/dt = f(s(t)). Any
motion that begins on the synchronization manifold remains there, so the associated
synchronized state is flow-invariant.
When all oscillators are initially on the synchronization manifold with identi-
cal initial conditions, they always remain synchronized. To assess the stability of a
synchronized state, we perform a linear stability analysis by inserting a perturbed
solution z;(t) = s(t) + dz;(t) into (6.1) to obtain the variational equation

(6.2) =Df(s)ox; — oDH(s) Y _ Li;ox;,
j=1

dt

where Df(s) € R™*™ and DH(s) € R™*™  respectively, denote the Jacobians of
f(s) and H(s), which one evaluates at the synchronous solution s(t). We introduce
U = (61,629, ...,6xx) € R™Y and use the tensor product (i.e., Kronecker product)
® for matrices to write the variational equation as

dU
(6.3) T [In @ Df(s) —o(LRDH(s))]U.

We organize the normalized right eigenvectors of £ into a matrix P such that
P71L = AP7! with A = diag(\1, A2, ..., An), where ), (with n € {1,...,N}) are
the corresponding eigenvalues of £. We introduce a new variable Y using the linear
transformation Y = (P ® I,,,) "1U to obtain a block-diagonal system

dy
(6.4) i [In @ Df(s) — o(A®DH(s))]Y,
where Iy is the N x N identity matrix. This yields a set of N decoupled m-dimensional

equations,

(6.5) % = [Df(s) — oADH(s)] &, 1€ {L,....N},

that are parametrized by the eigenvalues of the graph Laplacian £. The Jacobians
Df(s) and DH(s) are independent of the block label I. Because the row sums of £ are
0, there is always a 0 eigenvalue \; = 0, with a corresponding eigenvector [1,1,...,1]T
that characterizes a perturbation that is tangential to the synchronization manifold.
The remaining N — 1 transversal perturbations (which are associated with the other
N — 1 solutions of (6.5)) must damp out for the synchronous state to be linearly
stable. In general, some eigenvalues \; of £ may be complex. (For example, this can
occur when the adjacency matrix is not symmetric.) This leads us to consider the
system

dg

(6.6) 5 — [Df(s) —uDH(s)lg, neC, geC™.

All of the individual variational equations in the system (6.5) have the same structure
as that of the system (6.6). The only difference is that © = o)\;. Equation (6.6) is
the so-called master variational equation. To determine its stability, we calculate its
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largest Floquet exponent [65] as a function of pu. The resulting function is the so-
called master stability function (MSF). More explicitly, for a given s(t), the MSF is
the function that maps the complex number p to the largest Floquet exponent of the
dynamical system (6.6). The synchronized state of a network of coupled oscillators is
linearly stable if the MSF is negative at ;. = o\;, where \; ranges over all eigenvalues
of the matrix £ except for \; = 0.

The Laplacian form of the coupling in (6.1) guarantees that there exists a syn-
chronous state. However, other forms of coupling are also natural. For example,
consider

dz;
(6.7) da: = f(x; —|—02:wU

Substituting x;(t) = s(t), with ¢ € {1,2,..., N}, into (6.7) yields

ds
(6.8) 5 =)+ (s Zwu

To guarantee that all oscillators have the same behavior, we assume that Z Wi =
constant for all 7. If the constant is 0, then we say that the system is balanced
[39,131,133,155]. In a balanced network, the existence of a synchronous network
state is independent of the interaction parameters, so varying these parameters cannot
induce any nonsmooth bifurcations (arising from a change of the orbit shape and its
possible tangential intersection with a switching manifold).

One can apply the MSF framework to chaotic systems, for which one calcu-
lates Liapunov exponents instead of Floquet exponents [37,117,119]. One can also
generalize the MSF formalism to network settings in which the coupling between
oscillators includes a time delay [38,86]. A synchronous solution is a very special
network state, and more elaborate types of behavior can occur. An example is a
“chimera state” (see [31,94]), in which some oscillators are synchronized but others
behave asynchronously [111]. The original MSF approach allows one to investigate
the stability of networks of identical oscillators, but it has been extended to study
stability in networks of almost identical oscillators [148]. For other discussions of the
MSF formalism and its applications, see [4,8,118,127].

One cannot directly apply the MSF methodology to networks of nonsmooth oscil-
lators, yet it is desirable to extend it to such systems. We first review a technique that
adapts the MSF to PWL systems [31], and we then apply this approach to the models
in section 2. We seek to show how the linear stability of the synchronous solution
changes under variations of the coupling strength in networks of coupled oscillators.

For networks of the form (6.1) with linear vector functions A (including the “linear
diffusive case” H(x!',z% 23,...,2™) = (2%,0,0,...,0)) that one builds from PWL
systems of the form (2.1), both Df(s) and DH(s) are piecewise-constant matrices.
Therefore, in each region R, the system (6.6) takes the form

de,

(6.9) b

:[AM_ﬁJ]§u7 BE(C,
where J = DH(s) and &, € C™. We solve (6.9) using matrix exponentials. This

yields £, (t) = G (t; A, — BJ) €,(0), where G(t; A) is given by (2.5), although we need
to be careful when evolving perturbations through the switching manifolds. Using
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the notation U = (0z1,07a,...,0xyn) € RVN™ we write Ut = (Iy ® S(t;)) U™ at
each event time ¢;. We then use the transformation Y = (P ® I,,,)~'U and obtain
Y+ = (Iy ® S(t;))Y ~, which has m x m dimensions and an N-block structure. The
action of the saltation operator on each block is £(tf) = S(t;)€(t;). We use the
technique in Appendix B to treat perturbations across a switching boundary. After
one period of motion (with M switching events), this yields {(T') = W£(0), where

(6.10) U = S(tM)G(TM)S(thl)G(TMfl) X X S(tz)G(Tg)S(tl)G(Tl)

and G(T;) = G(T3; Apy — BJ) (see (2.15)). For PWL systems, all of the individual
variational equations, which take the form (6.5), have the same structure as that of
the system (6.9). The only difference is that now there is an additional term 8 = o A;.
Therefore, by choosing a reasonable value of 5 in the complex plane, we can determine
the stability of (6.5) by checking that the MSF of (6.9) is negative for each 8 = o A;.
Alternatively, we can calculate ¥ for each [; we use the notation ¥(l) to emphasize
this. We then obtain that the synchronous state is linearly stable if the periodic
solution of a single oscillator is linearly stable and the eigenvalues of ¥(l) for each
I €{2,...,n} lie within the unit disk.

The power of the MSF approach is that it allows one to treat the stability of
synchronous states for all possible networks. One first computes the MSF and then
uses the spectrum of the chosen network to determine stability. Unlike in weakly-
coupled-oscillator theory, one can perform the MSF stability analysis without making
any approximations.

6.2. MSF versus Weakly-Coupled-Oscillator Theory for Systems of N = 2
Oscillators. Before we present applications of the augmented MSF to a few example
nonsmooth systems, we compare and contrast this exact approach to results from
weakly-coupled-oscillator theory without focusing too much on network structure.
Consider a simple reciprocal network (i.e., all coupling is bidirectional) of two nodes
with an interaction that is described by (5.1). The nonzero eigenvalue of the graph
Laplacian £ of this network is +2. For the phase-only description, the synchronous
state is linearly stable if c H'(0) > 0 (see section 4). For the phase—amplitude descrip-
tion, the synchronous state is linearly stable if the three eigenvalues of (5.4) are all in
the left-hand side of the complex plane (see section 5). For the exact approach of the
present section, the synchronous state is linearly stable if the MSF is negative at 20
(see subsection 6.1). Using the same oscillator parameters as those in Figures 1 and 2,
we find that weakly-coupled-oscillator theory sometimes fails to capture the behavior
that is predicted by the exact (MSF) approach. For the McKean and absolute models,
all three approaches give the same qualitative prediction that the synchronous state
is linearly stable for small positive o (i.e., weak coupling) and this stability persists
for larger o (i.e., strong coupling).

For the PWL Morris-Lecar model (see (A.1)), the prediction from the phase-
only approximation is that synchrony is always unstable for weak positive coupling.
By contrast, the phase-amplitude approximation and MSF approach predict that
synchrony can restabilize with increasing coupling strength o, although they predict
somewhat different values for the critical coupling strength ¢ = o, at which the net-
work restabilizes. In Figure 15, we plot the real part Kmax = Re(ln(MSF(5)))/T
(where 8 = 20) of the largest Floquet exponent from the MSF as a function of ¢. In
the same figure, we plot the the real part Apax = max{Re(A1),Re(A2),Re(A3)} of the
largest eigenvalue from the phase—amplitude approximation. The phase—amplitude
prediction is that o, = 0.2071, whereas the (exact) MSF prediction is that o. & 0.272.
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Fig. 15 Predictions of linear stability of the synchronous state for the PWL Morris—Lecar model
(see (A.1)) on a reciprocal two-oscillator network using the phase—amplitude approzima-
tion (from weakly-coupled-oscillator theory) and MSF approaches. We plot the real part
of the largest eigenvalue Amaz = Amaz(0) of the Jacobian from the phase—amplitude re-
duction, which predicts that the synchronous state restabilizes at o. =~ 0.2071 as one in-
creases the coupling strength o. The largest Floquet exponent from the MSF approach is
Kmaz = Kmaz(0), which gives a more accurate prediction of restabilization at oc = 0.272.
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Fig. 16 Direct numerical simulations of two reciprocally coupled PWL Morris—Lecar oscillators (see
(A.1)) for coupling strengths of (a, b) o = 0.1, (¢, d) o = 0.18, (e, f) o0 = 0.25, and (g, h)
o =0.28. In panels (a, c, e, g), we show network activity in the (vn,wn) plane. In panels
(b, d, £, h), we show the corresponding time series for vi and va. For all o Z 0.272, the
synchronous state is always stable. For o 5 0.272, we observe different frequency-locked
patterns. The oscillator parameters are the same as those in Figure 2.

The phase-only theory is incorrect qualitatively, the phase—amplitude theory is correct
qualitatively, and the MSF approach (which agrees with direct numerical simulations)
is correct both qualitatively and quantitatively. In Figure 14, we explored the behav-
ior of the PWL Morris—Lecar model in the phase-amplitude reduction for coupling
strengths o € (0,0.) (where synchrony is unstable) using bifurcation analysis, which
predicts the existence of a stable antisynchronous state (for which there is a relative
phase of m between the two oscillators) and of frequency-locked states (i.e., states
in which oscillators are synchronized at the same frequency) of different amplitudes.
Direct numerical simulations (see Figure 16) confirm these predictions.

For the PWL homoclinic model, both the phase-only approximation and the
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Fig. 17 Predictions from the MSF approach of the stability of the synchronous state in the PWL
homoclinic model for a reciprocal two-node network. (a) The MSF has a nontrivial struc-
ture, with two ellipsoidal Tegions where it is negative (which we color in white). The region
near the origin is very small and not visible with the employed scales. It is easier to see this
small region of stability in (b), in which we plot the real part of the largest network Floguet
exponent for o = /2 with B € R. One region of stability is 0.0395 < o < 0.0439 and the
other is 1.178 < o < 2.226. The oscillator parameters are the same as those in Figure 1.

phase—amplitude approximation predict that synchrony is always unstable for weak
positive coupling o in a two-oscillator reciprocal network. Both of these predictions are
inconsistent with the MSF prediction (which agrees with direct numerical simulations)
of two windows of positive coupling with stable synchronous states. In Figure 17, we
show a plot of the MSF that reveals a nontrivial structure, with two ellipsoidal regions
where it is negative. (There is a very small ellipsoidal region near the origin that is
not visible with the employed scales.) We also show a slice through 8 along the real
axis that illustrates where the real part of the largest network Floquet exponent is
negative, generating two regions in which the synchronous state is stable.

6.3. A Brief Note about Graph Spectra. As we have seen in our discussions,
the spectrum of a graph is important for determining the stability of the synchronous
state in both the weakly-coupled-oscillator approach and the MSF approach. We thus
briefly discuss the spectra of a few simple but notable types of graphs. See [154] for
a thorough exploration of graph spectra.

For a network (i.e., a graph) with N nodes, one specifies the connectivity pattern
by a coupling matrix w € RV*Y (which is often called an “adjacency matrix”) with
entries w;;. The spectrum of the graph is the set of eigenvalues of the matrix w.
This spectrum also determines the eigenvalues of the associated combinatorial graph
Laplacian £. In our discussion, we denote the eigenvalues of w by \;, with [ €
{0,..., N — 1}, and we denote the corresponding right eigenvectors by ;.

Global. The simplest type of network with global coupling has adjacency-matrix en-
tries wy; = N —1. The associated network is fully connected with homoge-
neous coupling. The matrix w has an eigenvector (1,1,...,1) with eigenvalue
Ao =1 and N — 1 degenerate eigenvalues \; = 0, for [ € {1,..., N — 1}, with

1

corresponding eigenvectors u that satisfy the constraint sz\i_o u; = 0.

Star. A star network has a hub-and-spoke structure with a central oscillator that is
adjacent to N — 1 leaf nodes (which are not adjacent to each other). Star
networks arise in computer-network topologies in which one central com-
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puter acts as a conduit to transmit messages (providing a common connec-
tion point for all nodes through a hub). This star-graph architecture has the
adjacency matrix

0 1)K 1/K --- 1/K
1 0
(6.11) w= |1 0
1 0 o - 0

for some constant K. If K = N — 1, the matrix w has an eigenvalue A\g = 1
with corresponding eigenvector [1,1,...,1]7, an eigenvalue \; = —1 with
corresponding eigenvector [—1,1,...,1]T, and N — 2 degenerate eigenvalues
A =0forle{3,...,N — 1}, with corresponding eigenvectors u; of the form
[0,u1,...,un_1]" that satisfy the constraint Zf\;l u; = 0.

Circulant. A circulant network’s adjacency matrix has entries w;; = wj;_;. Its rows
are shifted versions of the column vector [wy, ..., wy_1]". Its eigenvalues are
A= Z;V:_Ol wj(|j|)wlj, where w; = exp(27il/N) is an Nth root of unity. The
eigenvectors are u; = [1,wy,w?, ..., wi' 7.

6.4. Network Symmetries and Cluster States. Perfect global synchronization
is just one of many states that can emerge in networks of oscillators. Indeed, one
expects instabilities of the synchronous state to generically yield “cluster states,” in
which subpopulations synchronize, but not necessarily with each other. Such cluster
synchronization has been relatively well explored in phase-oscillator networks [9,22],
although less is known about it in networks of limit-cycle oscillators. For this more
general scenario, researchers have made progress in networks with symmetry or when
the coupling has a linear diffusive (i.e., Laplacian) form [15,58,60,123,124].

Pecora et al. [120] and Sorrentino et al. [146] extended the MSF approach (see
subsection 6.1) to analyze the stability of cluster states that stem either from network
symmetries or from Laplacian coupling (see (6.1) and (6.7)). Cluster states arise
naturally in networks with symmetry, and cluster synchronization can also occur in
networks without symmetry when some of the nodes have synchronous input patterns
[61]. For networks of identical oscillators that satisfy (6.1), a symmetry of the network
is a permutation -y of the nodes that does not change the governing equations. These
permutations are precisely the ones that satisfy M, L = LM.,, where £ € RN * is the
graph Laplacian (4.4) and M., is the N x N permutation matrix for the permutation
v € Sy. The network symmetries form a group I' C Sy that is isomorphic to the
group of automorphisms of the graph that underlies the network.

For a given adjacency matrix, one can identify the automorphism group I' using
computer-algebra routines (such as those that are implemented in SageMath [134]).
One can then apply the algorithms in [146] to enumerate all possible cluster states for
the associated network structure. Some of these correspond to isotropy subgroups’
Y C T and thus arise from network symmetries. The orbit under ¥ of node 7 is the
set {7(i) : v € X}. The orbits permute subsets of nodes among each other (i.e., they
permute nodes only within clusters) and thereby partition the nodes into clusters.
Nodes that are part of the same orbit (i.e., in the same cluster) have synchronized

7A subgroup of a Lie group I is an isotropy subgroup for the action of I" on a vector space V if
it is the largest subgroup that leaves invariant some vector in V' [58,59].
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dynamics ;) = x; for any v € ¥ (see [61, Theorem III.2]). Isotropy subgroups
that are conjugate in I' lead to cluster states with identical existence and stability
criteria [8,59]. The remaining possible cluster states arise from the specific choice
of Laplacian coupling. One can determine them using an algorithm that considers
whether or not merging two clusters in a state that is determined by symmetry yields
a dynamically valid state (i.e., whether or not it yields consistent equations of motion
when z; is the same for all nodes in the merged cluster). Sorrentino et al. [146] referred
to such cluster states as “Laplacian clusters.” See [146] for a detailed explanation of
the algorithm to determine these clusters, and see [107] for an illustration of this
algorithm. One can automate this algorithm using computer-algebra tools [134].

The above steps yield a list of possible cluster states. The existence and stability
of these states depends on the node dynamics f, the output function #, and the
coupling strength o. The presence of symmetry in a system imposes constraints
on the form of the Jacobian matrix, which one can use to greatly simplify stability
calculations. For periodic cluster states that one predicts from symmetry, there are
well-established methods for stability calculations in symmetric systems to block-
diagonalize the Jacobian and generalize the MSF formalism [58,59]. Sorrentino et
al. [146] extended these techniques to Laplacian cluster states. We follow [107,146]
and summarize this analysis.

Consider a periodic cluster state that arises from a network symmetry with the
corresponding isotropy subgroup ¥ C I'. The fixed-point subspace of ¥ is T =
Fix(%), which is the synchrony subspace of the cluster state. The cluster state consists
of M clusters Cy, with k£ € {1,..., M}, where M = dim(Fix(X)) = dim(Y). Let
sk(t) denote the synchronized state of nodes in cluster Cj and recall the notation of
subsection 6.1. The variational equation of (6.1) about the cluster state is

(6.12) dU ZE<k>®Df(sk —UZ(,CE(k)@DH(sk( ))

U,

where E(*) is the diagonal N x N matrix with entries Ez(zk) =1ifieC, and Efik) =0
otherwise. To determine the stability of the periodic cluster state, we need to com-
pute the Floquet exponents of (6.12). We block-diagonalize the variational equation
(6.12) using the system’s symmetries to simplify this task. One can decompose the
action of ¥ on the phase space RV™ into a collection of irreducible representations
of ¥ (i.e., the most trivial invariant subspaces under the action of ¥). Some of these
subspaces are isomorphic to each other; we combine these subspaces to obtain “iso-
typic components” [58,59]. Each isotypic component is invariant under the variational
equation (6.12), so one can determine the Floquet exponents by considering the re-
striction of this equation to each isotypic component. Therefore, the decomposition
puts the variational equations into block-diagonal form. We then compute Floquet
exponents for each block to determine the stability of the cluster state. See [59] for
a detailed discussion of the process of isotypic decomposition and its use in stability
computations. Pecora et al. [120] presented an explicit algorithm to (1) determine
the isotypic decomposition for a given cluster state from symmetry and (2) compute
a transformation matrix @) so that £ = QLQ~! is block diagonal. Applying this
transformation to the variational equation (6.12) yields the block-diagonal system

dV

(6.13) Zﬂk @ Df(si(t 702(£J )®D7—L(sk(t)) Vv,
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where V() = (Q ® I,,,)U(t) and J*) = QE®Q~!. The isotypic component of the
trivial representation is Fix(X) = T, which is the synchronization manifold. This
gives an M x M block in £’ that corresponds to perturbations within the synchro-
nization manifold; one of the Floquet exponents will be 0 and the remaining M — 1
correspond to intercluster perturbations. The remaining blocks correspond to the
isotypic components of other irreducible representations of ¥. When the node-space
representation has [ > 1 isomorphic copies of a particular irreducible representation,
we obtain a block of size [ x [. Such a block corresponds to a perturbation that is
transverse to the synchronization manifold (intracluster perturbations); the associated
Floquet multipliers determine the stability under a synchrony-breaking perturbation.
For a cluster state to be linearly stable, all Floquet exponents (except the one that is
always 0) must have a negative real part.

For a periodic Laplacian cluster state, the synchronization manifold is an invari-
ant subspace, but it is not the fixed-point subspace of any subgroup of I'. However, we
can still block-diagonalize the Laplacian £ so that the top-left block corresponds to
perturbations within the synchronization manifold. To do this, we use the algorithm
of Sorrentino et al. [146]. Suppose that we start with a cluster state from symmetry
with isotropy group ¥ that has M clusters and a variational equation that is block-
diagonalized by the matrix ). Suppose that we merge two clusters in this state to
obtain a Laplacian cluster state. Upon this merger, the dimension of the synchroniza-
tion manifold decreases by 1 and the dimension of the transverse manifold increases
by 1. We obtain new coordinates on the synchronization manifold by transforming
the new synchronization vector in the node-set coordinates (this vector has 1 entries
in the position of each node in the new merged cluster and 0 entries everywhere else)
into the coordinates of the block-diagonalization of the cluster state with isotropy
group Y. The orthogonal complement of the new synchronization vector gives the
new transverse direction. We normalize the resulting vectors and use them as rows
of an orthogonal matrix ' whose other rows satisfy Q’ij = d;;. The matrix x = Q'Q
block-diagonalizes £ to a matrix £ that has a top-left block of size (M —1) x (M —1).
Therefore, the transformation matrix x block-diagonalizes the variational equation for
the Laplacian cluster state, facilitating the ability to determine both the m(M — 1)
Floquet exponents within the synchronization manifold and the m(M + 1) transverse
Floquet exponents. This process for computing the required matrix x is illustrated
with examples in [146] and [107].

For PWL systems of the form (6.1) with linear vector function H, it is relatively
straightforward to construct the periodic orbits s (¢) for a cluster state and to de-
termine its stability by applying the modified Floquet theory (which accounts for
the lack of smoothness of the dynamics) of subsection 2.1 to the block-diagonalized
system. For example, suppose that we have a small network of linearly coupled os-
cillators whose dynamics satisfy the absolute PWL model (see Figure 1(a)). As an
illustration, consider the five-node network in [146] with graph Laplacian matrix

3 -1 0 -1 -1
-1 3 -1 0 -1
(6.14) £=]|0 -1 3 -1 -1
-1 0 -1 3 -1
-1 -1 -1 -1 4

The network supports a Laplacian cluster state with clusters C; = {1,3,5} and C3 =
{2,4} [107,146]. For this cluster state, 1 = x5 = x5 = $1 and x5 = x4 = $o, where
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Fig. 18 The v-components of the orbits s; and sz over one period. One needs to solve seven
nonlinear algebraic equations to determine the unknown initial data w1 (0), v2(0), and w2(0)
and the switching times Ty 1, 12,1, T2,2, and T1 2 = A.

x; = [v;,w;]T for i € {1,...,5} and the invariant-subspace equations have the form
$ = Ay, 11pS + by o, Where s = [sq,82] " and

(6.15)

A _ |A,, —20DH 20DH b b, )l vi>0,
ke = 30DH Ay, —30DH| 0 T2 T (p, |0 T Y9 <o,

and we define A;, Ay, by, and by in Table 1. Additionally, let H(z) = [v,0]" so that
the coupling acts only through the first component. This is a 4-dimensional PWL
system with two switching planes, v; = 0 and v = 0. One can construct the periodic
orbit on the 4-dimensional synchronous manifold by following the method that we
outlined in section 2. Starting from the initial data s(0) = [0,w7(0),v2(0), w2 (0)] T,
we now have to solve a system of seven nonlinear algebraic equations for wy (0), v2(0),
and wz(0) and the four switching times T4 1, T2 1, T2,2, and T} 2 = A (see Figure 18).

With the block-diagonalization of the variational equation (6.13), one uses the
initial data and switching times to explicitly compute the Floquet multipliers of the
periodic orbit. One can compute Floquet multipliers that correspond to perturbations
within the synchronization manifold without using the block-diagonalization. We have

d
(6.16) aés = A, 1,08,

which one can solve using matrix exponentials, being careful to use saltation matri-
ces to evolve perturbations through switching manifolds. After one period, ds(A) =
U:ds(0), where ¥y is the monodromy matrix on the synchronization manifold. Con-
sidering all evolutions and transitions through switching manifolds, we obtain

(6.17) Wy = 51281 (A =T11)S11E11(T11 — T2,2)522€1,2(To 2 — T2,1)521€1,1(T2,1)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/08/24 to 131.179.222.1 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

654 S. COOMBES, M. SAYLI, R. THUL, R. NICKS, M. A. PORTER, AND Y. M. LAI

with saltation matrices
Sij = P ®8:(T; ),

1 0 0 0

N T B
(6.19) Er s (t) = eturnat ) i € {1,2}.

The Floquet multipliers for perturbations within the synchronization manifold are
the eigenvalues of the monodromy matrix Ws. One of these eigenvalues is always 1,
corresponding to perturbations along the periodic orbit.

The block-diagonalization of £ for the cluster state that we have been discussing
is [107,146]

(6.20) L=

O O uto O
O w o o o
w o oo o

In the directions that are transverse to the synchronization manifold, this block-
diagonalization yields the three decoupled Floquet problems

(Df(s1) =30 DH)Vs,

(Df(s2) =30 DH)Vy,

(Df(s1) =50 DH) V5,

(6.21)

=SS
Il

which (as usual) one can solve using matrix exponentials and saltation matrices.
This yields V;(A) = ¥, V;(0), where the monodromy matrices ¥,, for the transverse
directions are

Uy, = S1(A)EL(A = T1,1)S1(T1,1)ER(Th )
(6.22) Uy, = ER(A — T22)S2(T1,2)E7 (Ta,2 — To1)S2(T21)ER (Th,1)

W, = S1(A)EL(A = T1,1)S1(T1,1)ER(Th )

and
B(+\ — (A, —BoDH
(6.23) E8(t) = e )t

The eigenvalues of the mondromy matrices ¥,,, with i € {3,4,5}, give the Floquet
multipliers for directions that are transverse to the synchronization manifold.

The change of basis from U coordinates to V coordinates has no effect on the
action of the saltation matrices. (Recall that V = (Q ® I,,)U.) To evolve U through
a discontinuity, we write Ut = SU~, where

M
(6.24) S=> EM S,
k=1
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Fig. 19 Bifurcations between cluster states from wvarying the coupling strength o in a five-node
network of absolute-model oscillators for the same parameters as in Figure 1(a). We in-
dicate stable periodic orbits with solid curves and unstable solutions with dotted curves.
We color each branch according to the circle with its associated cluster state. We
show only one branch of the L3 solutions, where we expect a branch of conjugate solu-
tions with identical stability properties. In the inset, we show the mean-field dynamics
[(v), (w)] = Zle[vi,wi]/5 for o = —0.05. This shows an A3 cluster state with dynamics
that blow up in finite time. This behavior dominates for o L —0.0477, where the L3 branch
loses stability. All of the depicted bifurcations from stable states are tangent bifurcations,
in which a Floquet multiplier passes through the value +1.

Therefore, V+ = SV, where

E

®Sk

M:

(625) S=(Q&I)SQ@L,) ' =Y (QEMQ ' ®8) =

k=1 k:l

Because the vector field of the absolute model is continuous, all saltation matrices
are the identity matrix. One then does an algebraic calculation to show that the clus-
ter state is stable for the choice of parameters in Figure 1(a). One finds bifurcations
of the periodic orbit by determining when the Floquet multipliers leave the unit disk.
As one varies the parameters, the order of the times at which trajectories cross the
switching planes can also change. One constructs bifurcation diagrams by similarly
treating all types of cluster states from network symmetries and Laplacian clustering.

For the absolute model with the choice of parameters in Figure 1(a) and inter-
action function H(z) = [v,0]T, we show the bifurcations from varying the coupling
strength o in Figure 19. All of the bifurcations from stable states are tangent bifur-
cations [84], in which a Floquet multiplier passes through the value +1.

One can use the above approach to determine the stability of cluster states in any
network of PWL nodes; see [107] for more examples. The computational difficulty of
applying the MSF approach for a cluster state scales with the number of clusters in
the state and with the number of switching planes in the PWL model of the individual
oscillators. It does not scale with the size (i.e., the number of nodes) of a network.
Finally, we note that one can view synchrony as a single-cluster state, for which the
above methodology reduces to the standard MSF approach in subsection 6.1.
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6.5. An Application to Synaptically-Coupled, Spiking Neural Networks. It
is common to model spiking neural networks using integrate-and-fire (IF) neurons.
Coombes, Thul, and Wedgwood [32] explored the nonsmooth nature of systems of IF
neurons. The MSF approach has been used to study synaptically-coupled networks
of nonlinear (specifically, adaptive exponential) IF neurons [87], for which one uses
numerical computations to obtain periodic orbits. Nicks, Chambon, and Coombes
[107] showed how to make analytical progress on the dynamics of PWL planar IF
neurons.

We follow [107] and consider a network of N synaptically-coupled planar IF neu-
rons with the time-dependent forcing I — I+0 ) ; Wij s;j(t). The synaptic input from
neuron j takes the standard event-driven form (4.10) We adopt the common choice
of a continuous a-function, so that n(¢) is (4.13). We can then express s;(t) as the
solution to the impulsively forced linear system

1d) 1d) »
(6.26) <1+adt>si—uz, (1+adt>ul—26(t Y.

PEZL

We exploit the linearity of the synaptic dynamics between firing events to write
the network model in the form (6.7) with &; = f(x;), where z; = (v;, w;, s;,u;) and f
has the form (2.1), with

a2 -1 0 0
ayw/T by/T 0 0
0 0 —-a «
0 0 0 -«

(6.27) A2 =

and b; = [I,0,0,0]T = by, and one applies the jump operator J(z;) = (ve,w; +
K/T,s;,u; + ) whenever h(z;) = v; — vgn = 0. The vector function that specifies the
interaction is H(z;) = [s4,0,0,0] .

For a synchronous orbit of the type in Figure 1(d) (so that a trajectory only visits
the region of phase space that is described by As and the T-periodic trajectory satisfies
the constraints v(T) = v, w(0) = w(T) + k/7, s(0) = s(T), and u(0) = w(T) + «),
we only need to consider saltation at firing events and the saltation matrix takes the
explicit form

(6.28) S(t) = ((t*) —w(t))/o(t)

—~
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—

~

+
—_— — —

|

—

i
— —

Nt

~

<

—

i

~—
OO = O
O = OO
—_ 0 O O

See Appendix B for the general formula for the saltation operator of a PWL system.
In this case, the expression for ¥ in (6.10) reduces to

(6.29) U = S(T)exp{(A2 + SDH)T'},

where 8 = o); and ) is the [th eigenvalue of w. The matrix DH is a constant matrix
with entries [DH];; = 1 if ¢ = 1 and j = 3 and [D#H];; = 0 otherwise. Therefore,
using (6.29) and the prescription in subsection 6.1, we are able to construct MSF (see
Figure 20).

As a particular realization of a network architecture that guarantees synchrony,
we use a balanced ring network with odd N and w;; = w(]i — j|). We calculate the
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Fig. 20 The MSF for a network of synaptically-coupled, planar IF neurons for the synchronous
tonic orbit in Figure 1(d). The shaded regions indicate where the MSF is negative for
various values of the synaptic rate parameter o. The largest depicted region is for o = 0.1,
with progressively smaller areas for a = 0.2, o = 0.3, and o = 0.4. The synchronous
solution is stable if all of the eigenvalues of ow lie within a shaded area for a given value
of a.

distances |i — j| modulo (N —1)/2 and use w(zx) = (1 —alz|/d)e~*I/4. We choose the
parameter a so that Zjv:l w;; = 0 (a balance condition) for the network size N and

a scale d. The eigenvalues \; of the associated (symmetric and circulant) adjacency

matrix are real and given by \; = Z;V;Ol w(|j |)wlj . The balance condition enforces

Ao = 0. Additionally, Ay_; = A for [ € {1,...,(N — 1)/2}, so any excited pattern
(which arises from an instability) is given by a combination e, + e_,, = 2Re(e;,) for
some m € {1,...,(N —1)/2}. Given the shape of the MSF function in Figure 20,
one determines the value of m using \,, = max; ;. In Figure 21, we compare direct
simulations of a network versus the predictions of the MSF. When the network’s
eigenvalues lie within the region where the MSF is negative, small perturbations of
synchronous initial data decay away and the system settles to a synchronous periodic
orbit, as expected. When one of the eigenvalues crosses the 0 level set of the MSF
from negative to positive, two types of instability emerge. One of them leads to
a spatiotemporal pattern of spike doublets (i.e., a burst of two spikes), which arise
because an eigenvalue of I' leaves the unit disk at —1 (through a period-doubling
bifurcation), and the other yields a periodic traveling wave (with asynchronous firing)
because an eigenvalue of " leaves the unit disk at +1 (through a tangent bifurcation).

6.6. An Application to Neural-Mass Networks. The human brain has roughly
10'* neurons and roughly 10'® synapses. Although there is general consensus that
the synaptic interactions between neurons drive brain dynamics, these astronomical
numbers prohibit the construction, analysis, and simulation of an entire brain network
that is built from single-neuron models such as the absolute model or the Morris—Lecar
model (see section 2). Instead, it is instructive to coarse-grain neural behavior by
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Fig. 21 Raster plots of spike times from direct numerical simulations of a network of synaptically-
coupled, planar IF neurons with N = 31 oscillators, d = 3, and a = 0.4. A raster plot
allows us to convey neuron-by-neuron variations in spike times. In the insets, we plot
the MSF and superimpose the eigenvalues of ow. In (a), o = —0.1 and synchrony is
unstable. In (b), o = —0.025 and synchrony is stable. In (c), o = 0.1 and synchrony is
unstable. The predicted instability borders (at o = 0 and o =~ —0.05) are in good agreement
with the predictions from the nonsmooth MSF analysis. For o > 0, the typical pattern of
firing activity beyond an instability of the synchronous state is a periodic traveling wave.
For o < 0, a spatiotemporal pattern emerges via a period-doubling instability of the firing
times.

grouping neurons and studying the interactions between these groups. This idea led
to neural-mass models [8], which describe the average dynamics of large populations
of neurons.

One of the most influential neural-mass models is the Wilson-Cowan model [164,
165]

d , d ,
(6.30) (TZL = —u+ F(l, + w""u —w"v), Td—: =—v+ F(I, + w"u — w"v),

where u and v, respectively, indicate the activity of excitatory and inhibitory popula-
tions of neurons. A firing-rate function F(x), which researchers often take to have a
sigmoidal shape, mediates the interactions between the two populations. The quanti-
ties I, , represent background inputs, and w*? (with a, 8 € {u,v}) denote connection
strengths between populations. The positive constant 7 encodes the relative time scale
between the dynamics of the two populations.

To make analytical progress, Coombes et al. [30] considered a PWL firing-rate
function of the form

0, z <0,
(6.31) Flz)=qetlz, 0<z<e,
1, xr > €.

With this choice, it is straightforward to compute periodic orbits of the dynami-
cal system (6.30) and to determine their linear stability using the techniques that
we described in section 2. One can think of the system (6.30) as modeling an ap-
propriately chosen brain region, so coupling oscillators that satisfy (6.30) lets one
investigate the dynamics of interacting brain regions. By introducing the coupling
matrices W € RV*N  with «, 8 € {u,v}, we obtain a network of N interacting
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oscillators with dynamics

N N
dul uu VU
(6.32) 3 = wtF |t S oW = Wit |
j=1 j=1
dvs N N
(6.33) 7 dtl = v+ F [ L+ Wiu—Y Wiv; |, ie{l,...,N}.
j=1 j=1

Although the dynamical system (6.33) is not exactly in the form that we described
in subsection 6.1, one can analyze this network using essentially the same MSF tech-
niques. For simplicity and to guarantee the existence of a synchronous network state,
we impose the row-sum constraint Z;‘V:1 Wgﬂ = w* for a, 3 € {u,v}. These row-
sum constraints are natural for networks arranged on a ring, because the coupling
matrix is circulant (see subsection 6.3). The synchronous network state satisfies
[ui(t),v;(t)] = [m(t),v(¢)] for all s € {1,..., N}, where [u(t),v(t)] satisfies (6.30).

It is convenient to introduce the vector X = [uy,vy,us,vs,. .. 7uN7vN]—r € RN
and change variables by writing Y = WX + C, where

wo o |0 0 w o |00
[sweal] Ol-wes o 4],

10
0 0

0 1

(6.34) W=W ®[ 00

ol

the matrix C = 1y ® [I,,I,]7, and 1y is an N-dimensional vector with all entries
equal to 1. One can then succinctly describe the switching manifolds by the relations
Y; =0 and Y; = ¢, and the dynamics takes the form

(6.35) %Y =AY -C)+WJIF(Y), J=IN® B 197] !

here A = —WJIW~!. We denote the synchronous solution by Y (t) = [U(t), V(t),
(1), V(). O(t), V1)), with

Ut)]  [w™ —wv™] [u(t) I,
(630 7o) = Lo ][50+ 2]
and we consider small perturbations such that Y =Y + §Y. We thereby obtain

4
dt

Sl =

(6.37) §Y = ASY + WIDF(Y)6Y ,

where DF(Y)) is the Jacobian of F evaluated along the periodic orbit.
As we showed in subsection 6.1, we need to appropriately diagonalize (6.37).
Suppose that we can diagonalize all W*? with respect to the same basis, and let

P =le; ez ... en] be the matrix whose columns consist of the basis vectors. Such
simultaneous diagonalization is feasible for circulant matrices, which naturally obey
the above row-sum constraint. Let {V?ﬁ}, with j € {1,..., N}, denote the eigenvalues
of WP, We then write
(6.38) (PR L) "W(P ® L) = diag(A1,As, ..., Ax) = A,
where
(6.39) A, = [”I;W _”I:w} , pe{l,2,...,N}.

Vp Y

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/08/24 to 131.179.222.1 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

660 S. COOMBES, M. SAYLI, R. THUL, R. NICKS, M. A. PORTER, AND Y. M. LAI

Additionally, (P ® I,) " A(P ® I,) = ~A(Iy ® J)A~L.
Consider perturbations of the form 6Z = (P ® I5)~16Y. Equation (6.37) then
implies that the linearized dynamics satisfies

(6.40) %52 =AIy®J)[-A"'+(Iy®D)]éZ,

where D € R2*2 is the Jacobian of (F(U),F(V)). The matrix D is a piecewise-
constant matrix that is nonzero only if either 0 < U(t) < € or 0 < V(¢) < e. Analo-
gously to (6.5), the system (6.40) has a block structure in which the dynamics in each
of N 2 x 2 blocks satisfies

d

(6.41) T

¢=[4,+A,JDIE, pe{l,...,N}, (eR?,
with A, = —A,JAST

The problem that is defined by (6.41) is time-independent between switching
manifolds, so one can construct a solution in a piecewise fashion from matrix expo-
nentials and write {(t) = exp[(Ap +ApJD)t]£(0). One can then construct a perturbed
trajectory over one period of oscillation in the form £(A) = I',£(0), where ¥, € R?*?
is

(6.42) v, = eAr B AL (A7 (ApAG AL () A5 (ApAs eA;r(e)A3 eArB2 AL (A ’
with
1 0 0 0
+/\ -1 + + -
R (Lo BEE A | P e A

Note (and see (6.10)) that there is no saltation (i.e., S =1I).

As an illustration, consider a network of Wilson—Cowan oscillators on a ring graph
with an odd number of nodes. Let dist(7,j) = min{|i — j|, N — |i — j|} be the distance
between nodes ¢ and j. We then define a set of exponentially decaying connectivity
matrices

e dist(4,5)/0ap

afB _ . af
(6.44) Wi =w SV L dist(05)/as

In this example, there are four circulant matrices; they are parametrized by the four
quantities 0,8, which respect the row-sum constraints Z;V:1 qujﬁ = w*’. In Fig-
ure 22, we plot the eigenvalues of ¥, for p € {1,..., N} for two different parameter
choices. In Figure 22(a), all of the eigenvalues (excluding the one at (1,0) that arises
from time-translation invariance) lie within the unit disk. In Figure 22(b), one eigen-
value leaves the unit disk along the negative real axis. This latter scenario predicts
an instability of the synchronous state. In the inset of panel (b), we show the eigen-
vector that is associated with the eigenvalue that crosses to the outside of the unit
disk. The prediction of this instability is in excellent agreement with direct numerical
simulations [30].

6.7. An Application to Cardiac Alternans. One can conceptualize a beating
heart as a network of muscle cells in which each heartbeat results from their coor-
dinated contraction and subsequent relaxation. Because the dynamics of an organ
results from the orchestrated behavior of individual cells, a major avenue in cardiac
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Fig. 22 Plots of the eigenvalues of (6.42) for a ring of N = 31 Wilson—Cowan oscillators, with
0ap = 0 for all a and B. The parameter values are ¢ = 0.04, 7 = 0.6, I, = —0.05,
I, = =03, w*% =1, w¥ = 2, w* =1, and W’ = 0.25 for coupling strengths of (a)
o =0.15 and (b) o0 = 0.191. The inset of (a) shows the synchronous network state, and the
inset of (b) shows the eigenvector that is associated with the eigenvalue that lies outside the
unit disk.

research is the investigation of the dynamical repertoire of individual cardiac mus-
cle cells [128]. Molecular changes at the individual cell level can yield irregular cell
behavior, which then feeds forward to pathological heart dynamics (such as cardiac
arrhythmias). A vital component that determines the behavior of cardiac muscle cells
is the intracellular calcium (Ca") concentration. In basic terms, rises and falls of the
cytosolic Ca®T concentration are responsible for muscle contraction, and irregularities
and abnormalities of the intracellular Ca** dynamics have been linked to a plethora
of cardiac pathologies [90].

The intracellular Ca?™ concentration in cardiac muscle cells has rich spatiotempo-
ral patterns that arise from the interplay of diffusively coupled calcium-release units
(CRUs). One can decompose each CRU into compartments with Ca*" fluxes be-
tween them, so a cardiac muscle cell corresponds to a network of networks. In other
words, each node of the cellular network is itself a network (i.e., a CRU). Using a
5-dimensional PWL representation of a well-established cardiac Ca®" model [152],
one can express the dynamics of a network of N CRUs as

dx

(6.45) EzA:E—kF(t)—FE@Hm,

where © = (21,%2,...,2n) is a 5N-dimensional vector. Each entry z,, with p €
{1,..., N}, is the 5-dimensional state vector of a single CRU. The matrix A € R?N*5N
is constant and block diagonal with entries in the set {A4;}. The constant matrices
A; € R?*? are associated with a single CRU, analogously to the matrices A; and A,
n (2.1). As usual, the matrix £ € N¥*¥ denotes the combinatorial graph Laplacian
matrix of the network and the matrix H € R>*5 encodes which variables are coupled
and how strongly they are coupled. The time-dependence F(t) = 1y ® v(t) € R®N
distinguishes the present example from the other examples in this section. The explicit
time-dependent drive v(t), which is A-periodic, models an experimental condition
that is known as a voltage clamp, which is often used to disentangle the different
cellular mechanisms that contribute to the complex spatiotemporal patterns of the
intracellular Ca®" concentration of cardiac cells.

Because of the explicit time-dependence in (6.45), the switching manifolds are
not only state-dependent (as in all of the previous examples in this section), but some
of them are also time-dependent. This leads to a system in which any trajectory is
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determined by a sequence of state-dependent and time-dependent switches [88, 152,
156]. As demonstrated in section 2, one can readily compute the synchronous network
state s(t) of (6.45) using matrix exponentials. One can then linearize (6.45) around
the synchronous network state s(t) by using the ansatz z(t) = 1y ® s(t) + dz and
following the general approach in section 6. Analogously to (6.5), this yields

4~ nm)g,

(6.46) =

where & € R® and )\; are the eigenvalues of £. Because we are perturbing from the
synchronous network state, we assume that all CRUs have the same associated A; to
obtain (6.46).

The dynamical system (6.46) is continuous at the switching manifolds, so one
can obtain its solution using matrix exponentials. Let A; denote the time-of-flight
for when the dynamics are associated with A;, let A = ", A; denote the period of
the synchronous state, and let £(0) denote an initial perturbation. According to the
relation (6.10) and noting that there is no saltation (i.e., S = I), the perturbation
after one period is §(A) = U(A)&(0), where

(6.47) T(N) = exp [(Apm — MH)AN] % -+ x exp [(A1 — N H)A] .

As we showed in subsection 6.1, one can use the relation (6.47) to construct the MSF.
In Figure 23, we illustrate that the topology of the MSF can vary substantially across
different coupling regimes. In the left panel of Figure 23, the zero contour of the MSF
forms a closed loop; the MSF is negative inside the loop and positive outside it. On
the contrary, in the right panel of Figure 23, there are two distinct regions in which
the MSF is negative. The colors reveal that if the MSF changes sign along the real
axis, then the only instabilities are either a period-doubling bifurcation (i.e., a —1
bifurcation) or a tangent bifurcation (i.e., a +1 bifurcation).

U 7 S
05 S =2 057
= =, S
£° E°
0.5 0.5
1 05 o0

2 15 - 15 1 05 0 05 1
Re(n) Re(n)

cos(arg(a(n)
cos(arg(q(n)))

Fig. 23 Zero contours of the MSF for A = 0.9 and two different coupling regimes. The MSF is
negative in regions that we label by “S” and positive in regions that we label by “U”. The
color indicates the value of cos (arg (q (n))), where q is the largest eigenvalue of ¥(n) and ¥
is given by (6.47). The synchronous solution is stable if all of the points with n = \; lie in
the region S, where A\; are the eigenvalues of the graph Laplacian £ (which also incorporates
the coupling strength of the network). For more details, see [88].

As was demonstrated by Lai et al. [88], MSF plots like those in Figure 23 allow

one to understand abrupt changes in spatial Ca®" patterns from small changes of
a single parameter. In Figure 24, we illustrate the behavior that emerges when the
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synchronous solution destabilizes via a period-doubling bifurcation or a tangent bifur-
cation. In Figure 24(a), we show the peak Ca®" concentration during one period of
the A-periodic drive v(t) for a period-doubling bifurcation. The CRUs are arranged
on a regular 2-dimensional grid, so one can reference each CRU by a row and column
index. Each small rectangle represents the Ca*" concentration of a single CRU. One
can clearly see a spatially alternating pattern, which is more pronounced near the
center of the figure than it is near the edges. This spatially alternating pattern also
alternates in time: when a CRU has a large peak during one pacing period, it has a
small peak during the next pacing period (and vice versa). In other words, each CRU
exhibits a period-2 orbit and adjacent CRUs oscillate out of phase with each other.
This phenomenon is known as “subcellular Ca?' alternans” and is a precursor to
severe cardiac arrhythmia. For the behavior in Figure 24(a), only one eigenvalue lies
outside the unit disk. In Figure 24(b), we show the corresponding right eigenvector,
which is in excellent agreement with direct numerical simulations. When an eigenvalue
leaves the unit disk along the positive real axis, one observes a pattern like the one in
Figure 24(c). As with the period-doubling bifurcation, the peak Ca’" concentrations
exhibit an alternating spatial pattern. However, in contrast to the period-doubling
bifurcation, each CRU follows a period-1 orbit, so the peak amplitude is the same
across pacing periods, rather than alternating from one pacing period to the next. In
Figure 24(d), we show the eigenvector that is associated with the only eigenvalue that
lies outside the unit disk for the behavior in Figure 24(b). This eigenvector is also in
excellent agreement with direct numerical simulations.
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5 O = w £
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Fig. 24 Instabilities of the synchronous network state induced by (a, b) a period-doubling bifurcation
and (c, d) a tangent bifurcation. Panels (a, ¢) show the peak Ca’T concentration during
one period A in one of the CRU compartments, while panels (b, d) depict the eigenvectors
that correspond to the only eigenvalue that lies outside the unit disk for the patterns in
panels (a, ¢). For more details, see [88].
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6.8. An Application to Franklin-Bell Networks. Benjamin Franklin was one
of the leading political figures of his time, and he was also a prolific inventor and
scientist. To facilitate his studies into the nature of electricity, he employed lightning
as an electrical power source. To be notified when an iron rod outside his house
was sufficiently electrified by lighting, Franklin employed what is now known as a
“Franklin bell” [52]. A Franklin bell is a metal ball that oscillates between two
metal plates, which are driven by electrical charge. A Franklin bell is an example of
an impacting system; the ball velocity changes nonsmoothly when it contacts either
plate. A network of N Franklin bells satisfies the dynamical system [136,140]

N
(6.48) by, + Y1Uy + Youy + 0 Z W, (U, — Up) = 8g0(Up)f, t# tn,,
m=1
(6.49) Un(th) = —kin(t,), t=tn,,

where u,, denotes the position of the ball of the nth Franklin bell, which is restricted
between two impacting manifolds at +a. One implicitly determines the time t,,, of
the ith impacting event of the nth oscillator using the relation w,(t,,) = ta. The
parameter o is a global coupling strength, and the network structure is encoded by
a matrix with elements w,,,,. The constant k € RT is the coefficient of restitution
upon impact, f is a constant force (which is determined by a sum of the repelling and
attracting electrostatic forces), v1 > 0 is a damping coefficient, and 2 > 0 sets the
natural frequency of the pendulum.

It is convenient to write the dynamical system (6.48)—(6.49) as a system of first-
order differential equations (i.e., in the standard form of a dynamical system) by
introducing the state vector z,, = [u,,v,]", where v,, = 1,,. This yields

N
(6.50) in =F(zn) +0 Z Wnm [H(xm) — H(zn)],  t#tn,,

m=1

(6.51) e (th) =g (zn(ty)) ., t=tn,.

The vector field F : R? — R? is F(x,) = Az, + f., , where

0 1 0
6.52 A= . o= 1o .
s KRN P
The function H : R? — R? is H[u,v]) = [0,u])". The form of the coupling in (6.50)
ensures the existence of the synchronous network state s(¢). To determine its linear
stability, we rewrite (6.50) using the graph Laplacian £ (see subsection 6.1). The
dynamics between impacts is

N

(6.53) n(t) = F(n(t) — 0 Y LomHM(Tm),

m=1

which has the form (6.1). Consequently, after diagonalization, the Floquet problem
for the linear stability of the synchronous network state becomes &(A) = ¥(1)&(0)
(with 1 € {1,...,N}), where

(6.54) U(l) = K(ty)eM 22K (t)eM™ | Aj=A—o\NDH,
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and the saltation operator is

—k 0
(6.55) K(t) = | kot )ro0th) :
iy Tk

As we showed in subsection 6.1, we obtain the MSF from (6.54) with the replace-

ment o\; — n € C. In Figure 25, we illustrate the dynamics of a network of 15
Franklin bells when the adjacency matrix has entries

(656) Wnm = Cn((sn,m—l + §N—n+l,1) + Cn—lén,m—l-l + CN(sl,N—m—i-l 5 Cn € R>

for n,m € {1,2,...,N}. The MSF (see Figure 25(a)) is negative for only one n,
so the synchronous state is unstable. In Figure 25(b), we show the eigenvector that
corresponds to the critical value n;. We see in Figure 25(c) that we obtain excellent
agreement with direct numerical simulations. Because the adjacency matrix with the
entries (6.56) is symmetric, all of the eigenvalues are real, so 7; is real. See Sayli
et al. [136] for a discussion of the predictive power of the MSF for an example with
complex eigenvalues.

b ©

0.4 \ 0.4
e u_
' \ Tl
0 0
0.4l : -0.4
0 1.5 Re(n) 3 1 5 mn 10 15 1 5 n 10 15

Fig. 25 (a) MSF and the values of n; (black dots) for a Franklin-bell network with 15 nodes, where
cn =1 4fn is odd and cn, = 0.1 if n is even, except for co = —0.1. The MSF is negative
in the white region and positive in the gray region. (b) Normalized eigenvector ey that
corresponds to the eigenvalue in panel (a) for which the MSF is negative (the leftmost black
dot). (c) Normalized position un at a fized time for each oscillator n in the network. For
the other parameter values, see [136).

6.9. An Application to Coordination in Cow Herds. Grazing animals, such as
cows, protect themselves from predators by living in herds [100], and synchronizing
their behavior (by tending to eat and lie down at the same time) helps them remain
together as a herd [130]. Sun et al. [149] developed a PWL dynamical system as a
simplistic model to study collective behavior in herds of cattle. One can treat some
aspects of their model—both for a single cow and for a network of cows—using the
focal techniques of the present paper.

Cows are ruminants. They eat plant food, swallow it, and regurgitate it at some
later stage; they then again chew the partly digested plant food. During the first
stage (standing/feeding), they stand up to graze. However, they typically lie down
and ruminate (i.e., chew the cud) in a second stage (lying/ruminating). A cow thus
oscillates between two stages. One can construct a simplistic caricature of a cow
by separately considering its observable state (eating, lying down, or standing) and
its unobservable level of hunger or desire to lie down. Sun et al. [149] formulated a
model in terms of a variable z(¢; 0), where = (v, w) € [4,1] x [d, 1] with a parameter
0 € (0,1) and an observable state § € {£€,R,S}. The variables v and w, respectively,
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represent the extent of the desire of a cow to eat and lie down. The variable 6
represents the state of a cow, which can be eating (&), lying down (R), or standing
(8). The dynamics in the (v, w) plane is confined to a box, and a cow switches between
states whenever a trajectory intersects with the edge of the box.

The dynamics of © = x(¢;0) takes the simple form & = a(f)z, where

o =0 1[G 5® ][ o 5]

with hunger parameters a; 2 > 0 and lying parameters ;2 > 0. The parameter a;
represents the rate of increase of hunger, ao represents the decay rate of hunger, 51
represents the rate of increase of the desire to lie down, and 5 represents the decay
rate of the desire to lie down. One prescribes switching conditions (at the four edges
of the box) using four indicator functions: hi(z) =v—1, ha(z) = w—1, h3(z) = v—9,
and hy(z) = w — 6. The model’s four state-transition rules take the form 6 — ¢;(9),
where ¢1(0) = £, g2(0) = R, and g¢3(0) = ¢g4(0) = S. If a trajectory intersects the
corner of the box, one can apply a state-tiebreaker rule [149], although we will not
consider such scenarios.

The general prescription in (2.13) yields saltation matrices at each of the four
possible state transitions. They take the explicit forms

R R T I
510 =50 = |y o o) 1)
L (o(th) —o(t™))/wt™

(6.58) So(t) = Sa(t) = {O (o U?J(t‘*)(/u'}zg{) ( )} .
For a given state, one readily obtains phase-space trajectories as convex curves w =
EvP@0)/a0)  with k = w(to; ) /v(te; 0)P@/@)  The associated time evolution is
(v(t;0),w(t;0)) = (e*Op(0;0),e w(0;0)) for t > to. Many periodic orbits are
possible, and one can catalogue them in terms of state-transition sequences. Sun
et al. [149] identified four low-period orbits, which have the following cyclic state-
transition sequences: (a) E > R =&, D) E-R S =&, () E—-S >R =€,
and (d) £ =S - R — S — &. For example, consider a periodic orbit of type (b).
Starting from z(0) = (1,w(0;&)), we obtain the time-of-flight Ty = —f; * log w(0; €)
from the relation ho(x(71)) = 0. This, in turn, allows one to determine the initial data
for the next piece of the trajectory. This piece of the orbit is z(Ty) = (v(T1;€), 1),
from which we obtain the time-of-flight T = —35 ! logd. The third and final piece
of the orbit has initial data (77 + T2) = (v(T; R),0) and a time-of-flight of T3 =
—a; logv(Ty; R). To determine the value of w(0;&), one enforces the periodicity
condition w(T;8) = w(0;E), where T = T} + T» + T3 is the period of the periodic
orbit. One thus obtains

1*%

(6.59) w(0;E) =51

To ensure that § < w(0;€) < 1, § < v(T1;€) < 1, and 6 < v(Ty;R) < 1, the
trajectory needs to satisfy the inequality (ao/aq) - (82/51) > 1 and it also needs to
satisfy al_l + a;l > 61_1 + 52—1 when 1 < ag. In Figure 26, we show an example of
an orbit that one constructs in this fashion.

To determine the stability of this orbit, we calculate the Floquet exponent (2.16)
and obtain

1 1
(660) K = Ksmooth T T In |det S1 (T) det Sy (Tl + TQ) det Sy (T1)| = T In (zf) ,
1
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0.75¢+

0.25 |

0.25 0.5 0.75 1

Fig. 26 A periodic orbit with a cyclic state-transition sequence €& — R — S in the model for
cow dynamics. The parameters are § = 0.25, a; = 0.05, 81 = 0.05, as = 0.95a1, and
B2 = 0.125.

where we use the fact that gsmooth = [T1(—as + 81) + Ta(ay — B2) + Ts(aq + 51)] /T
= 0. Therefore, the orbit (if it exists) is linearly stable for ¢ = as/a; < 1. The
Floquet multiplier is —g < 0, so one can lose stability only through a period-doubling
instability.

To model a herd (i.e., a network) of N identical cows, we suppose that each cow
has an associated variable z;(t; 0;) that evolves according to

N
(6.61) dd? = a(b;)z; +Uzwin<9j)xj= x(0) = [Xgo(e) XRO(e)} ’

where Xy is the indicator function

(6.62) xl0) = {1 e

0 otherwise.

For w;; > 0, this network model describes the case that a cow feels hungrier when it
notices other cows eating and feels a greater desire to lie down when it notices other
cows lying down. Because the indicator functions change with time, the network has
a time-dependent coupling, so one cannot use our previous MSF for it. Nonethe-
less, the PWL nature of the dynamics allows one to obtain analytical insights into
the model’s behavior. Assuming the row-sum normalization Zjvzl w;; = 1 for all 4,
a synchronous orbit (if it exists) satisfies the equation z;(t) = s(¢) for all 4, where
$ =a(f,0)s and a(f,0) = a(f) + ox(0). Therefore, one can use the approach that
we described above for a single cow to construct a synchronous orbit under the re-
placement a(6) — a(f,0). For perturbations that do not change the order (i.e., the
total number of states, including repetitions) in a state-transition sequence, lineariza-
tion around the synchronous state leads to the evolution of the network perturbation
U = (§x1,07a,...,0zy) € R?N over one period of the form U(T) = WU(0), where

(663) v = K1 (T)GA(S’J)T3K4(T1 —+ TQ)GA(R’U)T2K2(Tl)eA(S’U)Tl s
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with A(f,0) = Iy ® a(f) + ow ® x(0) and K,(t;) = Iy ® Su(t;). Therefore, the
synchronous state is linearly stable if all of the eigenvalues of ¥ € R2V*2N lie within
the unit disk.

The above analysis allows one to generate a quantitative answer to the following
question: Can herd interactions promote synchrony? Consider the choice ¢ > 1, so
that an isolated cow (i.e., ¢ = 0) cannot achieve a stable £ - R — § — & cycle.
One can numerically calculate the eigenvalues of ¥ (6.63) to determine whether or
not there is a critical value of o that brings all of the eigenvalues back inside the
unit disk. Numerical calculations for several types of row-normalized networks (e.g.,
star networks and nearest-neighbor circulant networks) suggest that this is indeed
the case, with a common critical value of o = o, that is independent of N. For the
parameters in Figure 26 with ¢ = 1.5, we find that o. ~ 0.025.

7. Discussion. In this review, we discussed several popular mathematical frame-
works for analyzing synchronized states in coupled networks of identical oscillators.
We focused on oscillator dynamics that take the form of piecewise-linear (PWL)
ordinary-differential-equation models. This choice allows the semi-analytical construc-
tion of periodic orbits without the need to employ numerical ordinary-differential-
equation solvers. We demonstrated that it is also mathematically tractable to de-
termine the stability of periodic states in networks of such coupled oscillators. The
key augmentation to standard theoretical approaches is the use of saltation operators
to treat the nonsmooth nature of the individual oscillator models and the network
models. We thereby highlighted the usefulness of combining techniques from smooth
dynamical systems—in particular, weakly-coupled-oscillator theory and the master
stability function (MSF)—with techniques from nonsmooth modeling and analysis to
deliver new tools for the analysis of dynamical systems on networks.

Given the prevalence of nonsmooth models in mechanics and biology (as well as
in other areas), it is very appealing to further apply and extend these approaches. For
example, one can apply such methodology to networks of scalar-valued nodes with
threshold-linear nonlinearities (of ReLU type, which is now ubiquitous in machine
learning [150]), which have become very popular for developing ideas about so-called
“sequential attractors” [14,35,36,114,115]. Additionally, Cho, Nishikawa, and Motter
[26] have connected synchronized cluster states and “chimera states” [111] (in which
a subpopulation of oscillators synchronizes in an otherwise incoherent sea). Their
research was formulated in a smooth setting, and it would be fascinating to explore
it using a PWL perspective.

The extension of the methodology to treat various complexities—including non-
identical oscillators, oscillators with high-dimensional (nonplanar) dynamics, excitable
systems, coupling delays, adaptive networks (in which a dynamical process on a net-
work is coupled to the dynamics of the network’s structure), temporal networks (in
which a network’s entities and/or their interactions change with time), multilayer
networks (which can incorporate multiple types of interactions, multiple subsystems,
and other complexities), and oscillator networks with polyadic (i.e., beyond pairwise)
interactions—is mathematically interesting and can build naturally on existing in-
roads on these challenges that have been made for smooth networks [126]. Relevant
studies to extend to a PWL framework include investigations of networks of Ku-
ramoto oscillators with heterogeneous frequencies [109] and modular structures [145],
an extension of the MSF for coupled nearly-identical dynamical systems [148] and
dynamical systems with delays [86,110], and extension of coupled-oscillator theory
to networks with polyadic interactions (which are sometimes called “higher-order”
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interactions) [18,19,63,89]. It is also worth extending the analysis of models of noisy
PWL oscillators to networks of such systems [142]. The further development of tech-
niques for analyzing nonsmooth network dynamics is extremely relevant for systems
with switches or thresholds, which arise in models of social-influence-driven opinion
changes [144] and contagions [91]. There are numerous outstanding challenges in the
study of dynamics on networks that may benefit from the perspective of nonsmooth
modeling and analysis.

Appendix A. Piecewise-Linear Models. In Table 1, we summarize the compo-
nents A, and b, (with g € {1,2}) of the PWL models in section 2 when they are
written in the form (2.1).

Table | Components of the examined models in the form (2.1). We complete the definition of the
McKean model by using the Filippov convention.

Model Ay As b1 b
McKean model with _b’y _01 } _b’y _01 :| (I] ] 8 :|
s(w) = (ya + w)/I and L L
w € [—vya,—ya + I] on
v =a.
(1 -1 [ -1 -1 —a a
The absolute model |1 —d } 1 —d } | dww-7 D — T
. [ 7 -1 [ -1 [ o [ o
PWL homoclinic model | 5 0 } | 5 0 ] | -1 } | 1 }
[ a1 -1 [ as -1 [T [T
Planar IF model | aw/T  bu/T :| i aw/T  bu/T ] | o ] | o ]

The dynamics of the PWL Morris-Lecar model with three zones is

(A1) Co=pv)—w+1I, w=g,w),

with a continuous p(v) (to approximate a cubic v-nullcline) of the form

—v if v<a/2,
(A.2) pv) =2 v—a if a/2<v<(1+4+a)/2,
1—v if v>(14a)/2

and continuous ¢ function

_ ) w=—mw+bn—b)/n if v<b,
(A.3) g(uw)—{ (v —rw+b"y2 —b)/v if v>0,

with the constraints —a/2 < b* < (1—a)/2,a/2<b< (14+a)/2,v2 > 0,and 7; € R.
To construct periodic solutions, such as the one in Figure 2, we use the formalism in
section 2. We break the periodic orbit into pieces such that each one is governed by
a linear dynamical system. This is similar to the system (2.1), but now the orbit has
four distinct pieces that evolve according to dz/dt = A,z +0b,, with p € {1,2,3,4}, in
three linear regimes Ry = {z € R?| v > (14+a)/2}, Ro = {z € R?| b< v < (14a)/2},
and R3 = {z € R?| a/2 < v < b}. Therefore,

(Ad) A= [11//% 1/10] , Ap = {1%20 1/10} » Ae= [11//701 1/10}
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and

D A P [ B (A B

with As = A; and b3 = b;. Let T, denote the time-of-flight for each piece, and
let T = Zileu denote the corresponding period of the orbit. To build a closed
orbit, we use the boundary-crossing values of the voltage variable (i.e., v = b and
v=(14a)/2) and (2.4), and we enforce periodicity of the solution. Choosing initial
data x1(0) = (b,w!(0))" and enforcing continuity of solutions by using the matching
conditions z#*1(0) = z#(T},) for p € {1,2,3} determines 7}, and w(0) through the
simultaneous solution of the equations v!(T1) = (1+a)/2, v*(T2) = (1+a)/2, v3(13) =

b, v4(Ty) = b, and w'(0) = w(Ty).

Appendix B. Saltation Operator. Using the notation of subsection 2.1, we de-
note a periodic orbit by x7, a perturbed orbit by z, an event time by ¢y, and a per-
turbed event time by #o. We obtain the last two from the equations h,, (7 (o)) = 0 and
h,.(Z(to)) = 0, respectively. The difference between the perturbed and unperturbed
events times is 0ty = fo — tg. The periodic and perturbed states after the switching
event are z7(td) = J,(27(ty)) and Z(td) = J.(2(f;)), where J, is the switch rule.
Without loss of generality, we consider dtg > 0 so 27 (t) and Z(¢) are on opposite sides
of the switching manifold (because 27 (t) has already crossed the switching boundary).
We then have that Z(f;) = Z(t; + dto) = 27 (ty ) + dxz(ty ) + &7 (¢ )Sto.

We do a first-order Taylor expansion of J,, and obtain

F(E) = Tu(@i5)) ~ Tu(a(t5) + dalty) + &7 (t5 )to)
~ J(27(tg) + DI (1) [dalty ) + &7 (tg )3to]
(B.1) = (1) + DI, (7 (1) Ba(ty ) + &7 (1)t

where DJ), is the Jacobian matrix of 7,,. The first-order Taylor expansion of h,, (i (t; ))
is

b (#(05)) = h(F(tg + 0to)) = hy (a7 (tg + Oto) + 6x(ty + oto))
~ hy (27 (t5) + 37 (t5 )0to) + Vahy (27 (g + to)) - dx(ty + dto)
(B.2) ~hu(27(ty)) + Vahu (@7 (ty)) - 27 (tg )dto + Vahu(z7(ty)) - dx(ty ) -

Using (B.2) and the fact that h,(z7(tg)) = 0 = h,(i(f)), we obtain

Vahu (27 (tg)) - 02ty )

(B.3) Oto = Vb (2 (ty)) i ()

We approximate Z(t1) as
(B4)  z(t) ~&(t]) — 2(t5)0t = 2(E]) — 27 (t§ + 0to)dto = T(E]) — &7 (t7)dto -
Using (B.1) and (B.4) yields

Sx(td) =(ty) — 2 (td) = T(t) — 2V (td)oto — 27 ()
~ 2 (tg) + DJu(2” (tg)) 0x(ty ) + 37 (tg )dto] — [27(tg) + 27 (tg )dto]
(B.5) =DJ.(a7(ty))dx(ty ) + DT (27 (t5 )2 (tg ) — &7 (t)]6to -
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Therefore, using (B.3) and (B.5), we write dz(t) in the form (2.14), where S, (t) is
the saltation matrix

[#7(t7) = D27 (¢7))3" (¢7)][Vahu (2 ()]

(B.6)  S,(t) = Du(a”(t7)) + S ) B

Appendix C. The Nontrivial Floquet Exponent for Planar PWL Systems. For
planar systems, one eigenvalue of the monodromy matrix ¥ is 1. Let ¢*7 denote the
nontrivial Floquet multiplier. Using the relation det ¥ = "7 x 1 and (2.15), we obtain

GHT = det [S(tM>G(TM)S(tM,1)G(TMfl) X oo X S(tQ)G(Tg)S(tl)G(Tl)]
=det S(tar) x --- x det S(t1) det G(Thr) % - - - x det G(T1)
(C.1) =det S(tpr) % -+ x det S(t;) det e 1™ x ... x det e Tt

TrA

Using the well-known fact det e = e™™4, we obtain the useful formula

M
1
(02) K= TZ [ﬂ TrAM(i) +1n|det S(tl)u .
i=1

Appendix D. Derivation of the Jump Condition in B(t). Using (3.14), we con-
sider a perturbed solution of the form x(t) = a7 + ¢p(t), where ¢ = O(o) has a
small value, that crosses the switching manifolds at the perturbed switching times
t; = t; + gi(¥), which we obtain by solving h,(z(t; + g;(¢))) = 0. In general, g;(¢)
depends on the geometry of a switching manifold and on the displacement ¢p(t). For
the PWL models that we consider, one can calculate g;() explicitly. To first order,

the Taylor expansion of h,(Z(t;)) is
(D.1) hyu(2(E;)) = hu(2” (67)) +Vahu (27 (67)) -7 (t7)9i(¥) + Vahu (27 (67)) - dp(t;) -
Because h,, (27 (t;)) = 0 = h,(Z(%;)), we obtain

_ Vahy (@ (t0) Wp(ti) __ypt(t)

Vahy (27(7)) - 27(8;) vI(t)

(D.2) g9:(¢) =

where p¥(t) is the v-component of p(¢). Equation (3.12) implies that
(D.3) V(ﬂ({;pr(g;))@(x) ~Z(t; +9i(¥) + Bt + gi(v))

immediately before the switching event. We obtain a similar equation by evaluating
(3.12) at £ =t + g; ().

We follow the technique that was proposed by Wilson [159] to derive a jump
condition in the iIRC, B(t), and C(¢) for an m-dimensional piecewise-smooth system
with an (m — 1)-dimensional switching manifold ¥, that is transverse to z7(t). We
make four assumptions. First, for all k, the phase function () is continuous in an
open neighborhood of z7(t). Second, for all k, the function vy (x) is at least twice
differentiable in the interior of each region R,,. Third, each boundary ¥, is at least C 1
(i.e., continuously differentiable) in an open ball B(p,,, R) that is centered at p, (the
intersection point of ¥, and x7(t)) with radius R. Consequently, at each intersection
point p,, there exists a tangent hyperplane II that is spanned by an orthonormal
set of (m — 1)-dimensional vectors wy, for k € {1,...,m — 1}. Fourth, for all k, the
directional derivatives of ¥y, exist on II in all tangential directions wy, and are identical
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from both sides. (Otherwise, the associated coordinate of 1y is not continuous [159].)
For the planar PWL models that we consider, h,(z) = v—a,, where a, is a constant.
Therefore, wy = [0,1] .

Using the continuity of ©(z) and the fourth assumption about the phase function
Y (x), approaching from either side of the switching manifold yields

(D4) (de:)wmf:))@(x)) Wy = (Vuwf?)wp(fr))@(f”)) Swy,

where we drop the subscript on ¥ for convenience. Equivalently,
(D.5)
[Z(t; 4+ 9:(¥)) +¥B(t; + gi(¥))] - w1 = [Z(t] + g:(¥)) + Bt + g:(¥))] - wy -

We Taylor expand equation (D.5) in ¢ to obtain
dz
Z(t, —
(1) + ( =
dz

Z(tH) + (dt

We set the O(¢°) terms equal on the two sides of equation (D.6) and use the nor-
malization conditions to obtain the jump operator for Z at ¢;. This jump operator is
the same one that we obtained in subsection 3.1. Collecting the O(1)) terms in (D.6)
yields

- Wy

) 9i(¥) +vB(t))

t=t

(D.6) -

) gi(¥) + VB (t?)} ‘w40 (¥7) .

e
t=t;

(D.7) (%f t_t._> 9i(¥) +YB™ | -wy = (C(f t_ﬁ) 9i() + ¥BY| cwy .
We use (3.3) and (D.2) to rewrite (D.7) to obtain

(D.8) (0 B:EZ:;A;(Z)Z + B] cwy = {izéii:;AI(iJrl)Z* + B*] “wy .

The condition (3.17) holds on both sides of a switching manifold, so

(D) Z - (Auopltr ) + fry - B~ = 0= 2 (Auppt) + £l - BY,

where fu_(i) is the vector field evaluated on the limit cycle immediately before a switch-

ing event and f;ri is the vector field evaluated on the limit cycle immediately after
it. Combining (D.9) and (D.8) yields

(D.10) B fiw =B fuw + 27 - (Auapti) = 27 (Auarnyp(t))
e PU(t) [ 4T o= 4T
(D.11) B =B wn+ s 4} 2 = Al 2] -

Therefore, the jump condition on B during a transition across a switching manifold is
(D.12) B = (ST(t:))'B™ + C™ (tan(t:) ,

where C(t;) and n(t;) are given by (3.22).
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Appendix E. Interaction Functions. The interaction functions in the dynamical

system

(5.2) are
h1 (w917w92) =Zv (91) (7]FY (92) — Y (91)) s
ha (Wb, wha) = B” (61) (v7 (62) — v7 (61)) — 2" (61) p”(61)
h3 (w017w02) =Zv (gl)pv(QQ) y
h4 (w917w02) =7" (91) (’U’Y (92) — 7 (91)) 5
hs (wbh,wba) = C (61) (v7 (02) — v (61)) — IV (61) p"(61),

where ZV, 7%, BY, and C" are the v-components of the corresponding vectors.
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