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Individuals who interact with each other in social networks often exchange ideas and influence each other’s
opinions. A popular approach to study the spread of opinions on networks is by examining bounded-
confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode
their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound
of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-
known BCM, by examining the spread of opinions that coevolve with network structure. We propose an
adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when
they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion
tolerance threshold and then form new connections following the principle of homophily. This opinion
tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to
be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a
larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus
opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there
exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount.
In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate
opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence
time of our BCM.

Keywords: opinion dynamics; bounded-confidence models; coevolving networks; homophily.

1. Introduction

When individuals in a social network interact with each other, they often discuss and exchange ideas,
and they can thereby influence each other’s opinions. In social networks, similar individuals are more
likely than dissimilar individuals to engage with each other [1]. Such homophilic behaviour can lead to
homophilic communities and the formation of ‘echo chambers’ on social and political issues [2, 3].
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2 U. KAN ET AL.

Homophily is thus a key lens to use when studying the formation and spread of opinions on social
networks [4, 5]. See [6] for a review of homophily in social network analysis.

Researchers have developed many models of opinion dynamics [7, 8], and network structure can sig-
nificantly influence such dynamics [9, 10]. In a model of opinion dynamics, the opinions of the nodes
(which represent agents, such as individual humans or other entities) of a network can take either discrete
values (such as in a classical voter model [11], in which there are two possible node opinions) or contin-
uous values. Well-known examples of models with continuous-valued opinions are bounded-confidence
models (BCMs) [8], in which opinions take values either in an interval or in a higher-dimensional space.
Allowing the opinions of agents to be points in an interval is useful for modelling opinions on a liberal–
conservative political spectrum or on a single issue, and similar interpretations are possible when one
considers two or more opinion dimensions [12].

In a BCM, when two agents interact, they update their opinions by compromising by some amount if
the difference between their opinions is below a specified threshold (i.e. if it is below a ‘confidence
bound’). Otherwise, following standard practice, we suppose that the two agents do not adjust their
opinions when they interact with each other.1 One way to interpret an agent’s confidence bound is as
its willingness to engage with agents with different ideologies. (For example, perhaps it encodes their
open-mindedness.) The two most famous BCMs are the Deffuant–Weisbuch (DW) model [14] and the
Hegselmann–Krause (HK) model [15]. In the DW model, which we generalize in the present article, one
considers asynchronous updates of agent opinions and randomly chooses a single node pair (i.e. a dyad
of agents) to interact in each time step. One then applies the opinion-update rule that we described above.
In the HK model, agent opinions update synchronously.

Since the pioneering works of Deffuant et al. [14] and Hegselmann and Krause [15], there have been
many studies of BCMs (see e.g. [5, 16–19]), typically in the form of numerical investigations. Researchers
have extended BCMs and related models in a variety of ways, such as by incorporating content sharing
and media nodes [12], updating opinions based on the median opinion (instead of the mean opinion) of
interacting agents [20], and examining polyadic interactions of agents instead of only dyadic ones [21].

In the present article, we generalize the DW model by formulating and studying an adaptive net-
work model in which bounded-confidence opinion dynamics coevolve with network structure. Adaptive
models of opinion dynamics give a convenient framework to examine the effects of opinion tolerance
in idealized settings. There has been much research on opinion models in adaptive networks [22, 23],
especially in the form of adaptive voter models and their extensions (see e.g. [24–27]). Two recent
studies examined adaptive opinion models with homophilic rewiring [28, 29]. There has also been
research on network rewiring in the context of opinion tolerance, such as in an Axelrod model of cultural
dissemination [30].

Adaptive BCMs have been studied in a variety of contexts [5, 13, 31–35]. Kozma and Barrat [32,
33] examined DW dynamics on adaptive Erdős–Rényi (ER) networks. In their model, one chooses a
dyad uniformly at random. With probability p, if the difference in the opinions of the two agents in the
dyad is larger than some confidence bound, the edge between those two agents detaches from one of
them and rewires to an agent that one chooses uniformly at random. With probability 1 − p, the agent
opinions evolve according to the DW opinion-update rule. More recently, Parravano et al. [35] studied
an adaptive BCM with signed edges (so agents can either be friends or be enemies), with sign changes
that depend on the distances between agent opinions. Del Vicaro et al. [13] formulated two adaptive

1 Another possibility is for agents to ‘dig in their heels’ and perhaps adjust their opinions so that they are farther apart from
each other. For example, see one of the models in [13].
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 3

BCMs and used them to examine the coexistence of polarized opinions at steady state. Brede [31] used
an adaptive BCM to study the active participation of agents (who deliberately seek out other agents to try
to change the opinions of those agents) in consensus formation. Sasahara et al. [5] refashioned a BCM to
model opinion dynamics in the context of social-media platforms in which users can encounter messages,
boost messages, and unfollow users. Very recently, Pansanella et al. [34] used a bounded-confidence
mechanism and network rewiring to exam algorithmic bias in networks.

In our adaptive BCM, we incorporate an opinion tolerance threshold and a rewiring mechanism that
follows the principle of homophily. Our model thus incorporates two dynamical processes and has both
a tolerance threshold and a confidence bound. In each time step, we break the edges between probabilis-
tically selected neighbouring agents whose opinions are too far apart (because they exceed the opinion
tolerance threshold and are thus ‘discordant’), and we also update the opinions of some agents using a
standard bounded-confidence mechanism. When an edge breaks, one of its associated agents connects
to a new agent with a probability that depends on the similarity of their opinions (i.e. it is based on
homophily). In our numerical simulations, which employ ER networks, we observe that our adaptive
DW model requires a larger confidence bound than a baseline DW model for the agents of a network to
achieve a consensus. In one region of parameter space, we observe the emergence of a ‘pseudo-consensus’
state, in which we observe multiple subclusters within an ‘opinion cluster’ (i.e. a set of agents with very
similar or consensus opinions) that have opinions that differ from each other by a small amount. When
agents have a low tolerance for neighbours with different opinions than theirs, our adaptive DW model
behaves differently from the standard DW model. For small confidence bounds, our model has faster
cluster formation (and hence a faster convergence time) than our baseline DW model. For large confi-
dence bounds, our model has long convergence times, which is the opposite of what occurs in the baseline
DW model.

Our study has some similarities to [13, 32, 33], but a crucial difference is that our rewiring rule is
based on the sociological principle of homophily [6]. The connections that people form on social media
[36] (and elsewhere) are influenced heavily by homophily, and it is important to incorporate such ideas
into models of coevolving networks. In our BCM, agents both compromise their opinions with like-
minded agents (according to a bounded-confidence mechanism) and dissolve old connections and form
new connections based on the similarities of their opinions.2 New edges form between two agents with
a larger probability when their opinions are more similar, instead of agents forming connections to other
agents uniformly at random. In a similar spirit, studies of adaptive voter models have compared the effects
of rewiring to agents with the same opinion to rewiring to agents with any opinion [25]. An important
feature of our adaptive BCM is that the confidence bound and opinion tolerance threshold are distinct
parameters. The opinion tolerance threshold yields a notion of discordant edges.3

Our article proceeds as follows. In Section 2, we give background information about the DW model.
In Section 3, we present our adaptive DW model and discuss pertinent details of our implementation of it.
In Section 4, we discuss the results of our numerical simulations of our model. We conclude in Section 5.
Our code is available at https://gitlab.com/unchitta/coevolving-bc.

2. The Deffuant–Weisbuch (DW) model

We briefly review the DW model of bounded-confidence opinion dynamics [14]. Consider a network of
agents in which each agent i holds an opinion xi(t) that changes with time. The vector of opinions of a

2 It is also interesting to consider similarities in attributes (such as demographic characteristics or hobbies) other than opinions.
3 The concept of discordant edges has led to important insights in the study of adaptive voter models [25].
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4 U. KAN ET AL.

set of N agents is the ‘opinion profile’ X(t) = (x1(t), . . . , xN(t)). In the original DW model, the agents
mix completely, so the opinion dynamics occur on a complete graph.

In a time step (which has a duration �t), we choose two agents, i and j, uniformly at random to
interact with each other. If their opinions, xi(t) and xj(t), at time t satisfy |xi(t) − xj(t)| < C for some
confidence bound C (which one can interpret as the open-mindedness of the agents), they compromise
their opinions through the opinion-update rule

xi(t + �t) = xi(t) + α(xj(t) − xi(t)) ,

xj(t + �t) = xj(t) + α(xi(t) − xj(t)) , (2.1)

where α ∈ (0, 0.5] is a constant that is often called a ‘convergence parameter’ because it influences the
speed of convergence. The parameter α governs how much agents compromise when they update their
opinions. Larger values of α entail larger opinion changes, with α = 0.5 corresponding to a compromise
to a consensus opinion.

As is typical in studies of BCMs [18], we assume that all agents have the same confidence bound. In
this scenario, when the dynamics reach a steady state, researchers have observed the formation of con-
sensus and fragmented clusters of opinions, depending on the value of the confidence bound. Situations
with exactly two opinion clusters are ‘polarized’ and situations with three or more opinion clusters are
‘fragmented’. When agents are receptive to opinions that deviate more from theirs (i.e. when their con-
fidence bound is larger), they are willing to compromise with more of the other agents. As one increases
the confidence bound, there is a phase transition from polarized states to consensus states [16]. In the
adaptive DW model in [32, 33], this phase transition occurs at a larger confidence bound than in the
standard DW model. In the polarized and fragmented regimes, which occur when the confidence bound
is small, there are peaks (which indicate the presence of multiple opinion clusters) in the steady-state
distribution of opinions. The number of peaks and the distance(s) between the consensus opinions of
the clusters depend on the confidence bound [14]. The number of agents in a system affects the time to
converge to a steady state.

3. Our adaptive DW model

Consider an undirected and unweighted network (i.e. a graph) G = (V , E), where V is the set of nodes
of the network and E ⊆ V × V is the set of edges. The nodes represent agents, and the edges represent
social or communication ties between agents. The network coevolves with the opinions of the nodes, so
the set of edges can change with time; it is thus helpful to write E = E(t). The node set V is constant
in time, and N = |V| is the number of nodes of the network. Let C ∈ [0, 1] be the confidence bound,
and let xi(t) ∈ [0, 1] denote node i’s opinion about some issue. The set of discordant edges is Eβ

d (t) =
{(i, j) ∈ E(t) :

∣∣xi(t) − xj(t)
∣∣ > β}. That is, Eβ

d (t) is the set of dyads of the graph G = G(t) whose
constituent nodes have opinions that are farther apart than the opinion tolerance threshold β ∈ [0, 1] at
time t. We interpret the threshold β as a homophily parameter. A larger value of β entails a more stringent
requirement for an edge to be discordant. In many situations, it seems intuitive to require that β ≥ C
(which implies that an edge between two nodes can be discordant only when the difference between the
nodes’ opinions is at least as large as the confidence bound), but we do not include this requirement in
our model.

Time is discrete, and two processes occur in series in each time step. In the first process, nodes rewire;
in the second process, nodes update their opinions. In the rewiring process, we choose up to M discordant
edges to rewire according to a homophilic rewiring rule that typically changes the network structure. We
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 5

Fig. 1. A schematic illustration of the rewiring mechanism in our adaptive DW model. In this example, the confidence bound is
C = 0.3 and the opinion tolerance threshold is β = 0.2. In (a), we show the current network structure and node opinions. For
example, node 1 has an opinion of 0.5. In the depicted time step, we choose the edge (1, 2) uniformly at random from the set of
discordant edges and remove this edge (see (b)). As we illustrate in (c), we then choose node 1 to rewire to a new node. (We select
which of nodes 1 or 2 to rewire with equal probability.) The rewiring probabilities (with P(i → a) denoting the probability that
node i rewires to form an edge to node a) in this time step depend on the opinions of the nodes. In this example, we form the new
edge (1, 6) (see (d)).

describe this mechanism in Section 3.1. We then choose K dyads; the nodes in each dyad adjust their
opinions according to the update rule (2.1) of the DW model [14] if the difference in their opinions is
within a confidence bound. We give more details in Section 3.2.

In a real-world context, the first process may correspond to an individual ‘unfriending’ one of their
connections in a social network (e.g. on a social-media platform) and then establishing a connection
with someone else. Such unfriending occurs when an individual cannot tolerate the difference between
their opinion and that of the individual that they are unfriending. The individual then chooses to befriend
someone else. Based on the principle of homophily, the individual is more likely to befriend somebody
whose opinion is similar to theirs than somebody whose opinion differs greatly from theirs. We illustrate
this process in Fig. 1. After this rewiring process, we choose dyads for opinion updating; the agents in
these independently chosen dyads update their opinions according to (2.1) if the difference between their
opinions lies within the confidence bound.4

We simulate our model, with both processes occurring in each time step, until there are no further
noticeable changes in the opinions of the agents of a network. In our computational experiments, we
stop a simulation if the sum of the changes of the agent opinions is less than tol = 10−5 for each of 100

4 In our BCM, interacting agents compromise their opinions when the difference between their opinions is less than or equal to
the confidence bound; the standard DW model requires this difference to be strictly less than the confidence bound.
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6 U. KAN ET AL.

Algorithm 1 Pseudocode for our adaptive DW model
parameters: N, p, M, K, α, β, C, �t

1: t ← 0; G ← G(N, p)

2: for i ∈ G.nodes() do
3: xi(0) ← Unif[0, 1]
4: end for
5: while (time t < bailout time) and (sum of the magnitudes of the opinion changes < tol for fewer

than 100 consecutive steps) do
6: Eβ

d (t) ← ∅ [initialize the set of discordant edges]
7: for (i, j) in the edge set E(t) do
8: if |xi(t) − xj(t)| > β then Eβ

d (t) ← Eβ

d (t) ∪ {(i, j)}
9: end if

10: end for
11: if |Eβ

d (t)| > M then select M edges uniformly at random from Eβ

d (t)
12: else select all edges from Eβ

d (t)
13: end if
14: for each discordant edge (i, j) do
15: dissolve and remove the edge from the edge set E(t)
16: select node i or j with equal probability
17: compute probabilities to rewire to other nodes using (3.1)
18: randomly pick another node using the computed rewiring probabilities
19: connect the node to the previously selected node with an edge; add the new edge to E(t)
20: end for
21: select K edges uniformly at random from E(t)
22: for each selected edge (i, j) do
23: if |xi(t) − xj(t)| ≤ C then update the opinions of the nodes using (3.2)
24: [see the main text for further discussion]
25: end if
26: end for
27: compute the sum of the magnitudes of the opinion changes
28: t ← t + �t
29: end while

consecutive time steps. This is our numerical tolerance for convergence. Because a simulation may fail
to satisfy this termination criterion, we set a ‘bailout time’ and stop a simulation after 106 time steps (for
simulations with N = 1000 nodes) or 107 time steps (for simulations with N = 5000 nodes) if it has not
already stopped.

We give pseudocode for our adaptive DW model in Algorithm 1. Our code is available at
https://gitlab.com/unchitta/coevolving-bc.

3.1 Homophilic rewiring

In our BCM’s rewiring process, we select M edges uniformly at random from the set Eβ

d (t) of discordant
edges. If |Eβ

d (t)| ≤ M, then we select all of the discordant edges. We remove each edge (i, j) in this set, and
we select node i or j with equal probability to form an edge to a new node a. We choose the node a with
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 7

a probability that depends on the similarity between its opinion and the selected node’s opinion. To work
with mathematically well-defined similarities, we use a metric d(x, y) on the space of node opinions to
determine the similarities. One can also determine similarities using higher-dimensional opinion spaces
or in a way that incorporates both node attributes and node opinions (see e.g. [12]).

Suppose that we choose node i from the dyad (i, j). The probability that node i rewires to a node a is

P(i → a) = 1

D
(1 − d(xi, xa)) , (3.1)

where d(x, y) is a metric (e.g. the L1 norm or the L2 norm) and the normalization constant D, which we
calculate by solving

∑
z P(i → z) = 1

D

∑
z(1 − d(xi, xz)) = 1, ensures that P(i → a) is a probability. We

use the L2 norm, so d = ‖ · ‖2. We set P(i → i) to 0 to prevent self-edges, and we set the probability that
i rewires to one of its existing neighbours to 0 to avoid multi-edges.

After choosing a node a randomly according to the probabilities in (3.1) (while avoiding self-edges
and multi-edges), we add the new edge (i, a) to E(t). If the new edge is discordant, we also add it to
Eβ

d (t + �t). We allow i to rewire to j, even though the former just unfriended the latter. Sometimes, life
just works that way (and it is convenient for our computations).

In Fig. 1, we illustrate the rewiring process with example values of the confidence bound C and the
opinion tolerance threshold β.

3.2 Opinion updates

After the rewiring step, we select K dyads uniformly at random (without replacement), and we adjust
the opinions of the nodes in each dyad using the DW opinion-update rule (2.1). Specifically, at time t,
two interacting nodes i and j adjust their opinions if the difference between their opinions is less than
or equal to the confidence bound (i.e. if |xi(t) − xj(t)| ≤ C). In contrast to the traditional DW model,
interacting nodes compromise their opinions when the difference between their opinions is exactly equal
to the confidence bound. Nodes i and j change their opinions according to the update rule

xi(t + 1) = xi(t) + α(xj(t) − xi(t)) ,

xj(t + 1) = xj(t) + α(xi(t) − xj(t)) , (3.2)

where α is the convergence parameter. Equation (3.2) is the same as equation (2.1), except that we now
specify that the time s tep has duration �t = 1. (We use �t = 1 in all of our numerical computations.)
If the opinions of nodes i and j are not within the confidence bound C, then they do not change their
opinions. The parameters M (i.e. the number of discordant edges that we rewire in one time step) and K
(i.e. the number of dyads that we consider when updating opinions) also affect the rate of convergence to
a steady state. For example, a larger value of K signifies that there are more encounters between agents
in each time step, so more agents can compromise their opinions in a single time step.

It is possible for the same node h to be in more than one of the K dyads in a time step. We consider the
K dyads in an order that we select uniformly at random. For a given node, we apply only the final opinion
update (3.2) to the opinion that it holds at the beginning of this time step. For example, suppose that we
first select a dyad with nodes 1 and 2 and that we then select a dyad with nodes 2 and 3. Additionally,
suppose that the pairwise differences between the node opinions all lie within the confidence bound. At
the conclusion of the time step, node 1 has adjusted its opinion from its interaction with node 2, but node
2 has adjusted its opinion only from its interaction with node 3. Such an asymmetry in opinion updates
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8 U. KAN ET AL.

cannot occur in the standard DW model. Additionally, because of our convention and the associated
asymmetry in opinion updates, the sum of the opinions of the agents is not a conserved quantity in our
adaptive DW model.

We run our simulations—with first the rewiring process and then the opinion-update process in each
time step—until the system converges to a steady state (within the numerical tolerance level that we
discussed previously) or until we reach the bailout time. The steady state can include one or more
opinion clusters. The quantity M/K determines the relative time scales of the rewiring dynamics and
the opinion dynamics. When M/K � 1, the opinions of the nodes change much faster than the net-
work structure; by contrast, when M/K � 1, the network structure changes much faster than the node
opinions.

4. Numerical simulations

Because we need to consider both changes in opinions and changes in network structure, it is natural
to ask how these changes affect each other. We explore the interaction between these two aspects of
our model’s dynamics by examining network topology and node opinions as a function of time. We
numerically simulate our adaptive DW model on synthetic networks that we generate using the G(N, p)

ER random-graph model [37]. It is useful to recall the parameters of our adaptive DW model: the number
N of nodes of a network, the number M of edges that we rewire in one time step, the number K of dyads
that we consider when updating opinions, the convergence parameter α of the DW opinion-update rule
(3.2), the confidence bound C, the opinion tolerance threshold β, and the time-step duration �t = 1.
For a network that we construct using the G(N, p) model, the connection probability between nodes is
p = 〈k〉/N, where 〈k〉 is the expected mean degree of the network. We set p = 0.01 (which yields 〈k〉 = 10
in networks with N = 1000 nodes), M/K = 1/5, and α = 0.1. We draw the initial opinion xi(0) of each
node i randomly from the uniform distribution Unif[0, 1], so the initial opinion profile X(0) ∈ [0, 1]N .
In Fig. 2, we show the results of a single simulation of our model with N = 1000 nodes, C = 0.24, and
β = 0.32.

In most of our numerical computations (see Sections 4.1–4.4), we consider networks with N = 1000
nodes. For these simulations, we use M = 1 and K = 5. In these simulations, for each examined location
in the (β, C) parameter plane, we do 50 independent simulations5 and report sample means of them. All
of our results with N = 1000 nodes use the same set of simulations. The numerical tolerance is tol = 10−5

and the bailout time is 106 time steps. For some results, we focus on particular locations in the parameter
plane. To explore finite-size effects, we also simulate our model on networks with N = 5000 nodes
(see Section 4.5). In these simulations, it is still the case that M/K = 1/5, but we now use M = 5 and
K = 25. We still set p = 0.01, so the expected mean degree of our networks is now 〈k〉 = 50. The
time-step duration is again �t = 1 and the numerical tolerance is again tol = 10−5, but the bailout time
is now 107 time steps.

4.1 Concepts, definitions, and other specifications

Before presenting our computational results, we outline several concepts that are helpful for understand-
ing the behaviour of our model. In the standard DW model, agents are in consensus when they have the
same opinion. A state with two opinion clusters is polarized, and a state with at least three opinion clus-
ters is fragmented. In our adaptive DW model, it is convenient to relax these notions a bit. For example,

5 For (β, C) = (0.42, 0.22), there are only 49 simulations.
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 9

Fig. 2. Overview of one simulation of our adaptive DW model with a confidence bound of C = 0.24 and an opinion tolerance
threshold of β = 0.32. We show (a) three snapshots of the network structure as it changes with time, (b) the time evolution of the
opinions of the nodes of the network, (c) the distribution of the node opinions at steady state, and (d) the number of discordant
edges as a function of time. The colours in (a) indicate opinion values.

our notion of consensus includes situations in which nodes are almost (but not perfectly) in agreement.
When we observe a polarized or fragmented steady state in a network, it is also often the case that the
network has multiple connected components.

4.1.1 Transitions between polarization/fragmentation and consensus In the standard DW model, when
the confidence bound C is small and below some critical value C′, one obtains a steady state with multiple
opinion clusters. Intuitively, when C is small, the agents of a network are close-minded and only interact
with like-minded agents, so opinion clusters emerge. These opinion clusters are in different areas of
the space of opinions, so one can interpret them as echo chambers in a social network [2]. Typically,
we observe more opinion clusters as we consider more close-minded agents. As agents become more
open-minded (i.e. for larger values of C), more agents engage with each other, which leads to more
compromising and less fragmentation into different opinion clusters. If agents are sufficiently open-
minded (specifically, if C > C′), they can achieve a consensus, so our adaptive DW model appears to
have a phase transition at the critical value C′. Because C′ can depend on β, we denote putative transition
values in our model by C′

β
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10 U. KAN ET AL.

4.1.2 Polarization and fragmentation When consensus does not occur, it is useful to further character-
ize the opinion clusters. We use the term ‘major cluster’ for any opinion cluster that includes at least 5%
of the nodes of a network (e.g. at least 50 of N = 1000 nodes) and ‘minor cluster’ for any opinion cluster
with fewer than 5% of the nodes. We use the term ‘polarization’ for situations with exactly two major
clusters at steady state and ‘fragmentation’ for situations with three or more major clusters at steady state.

4.1.3 Consensus and pseudo-consensus In a consensus regime, there is only one major opinion cluster,
which either has a single consensus opinion or has opinions that are almost in perfect consensus. In
particular, we observe situations in which (upon close inspection) a major cluster has subclusters with
opinions that differ from each other by a small value ε. In our model, this situation has an associated
community structure. We refer to this type of consensus as a ‘pseudo-consensus’. In all examples that
we checked manually, the pseudo-consensus opinion clusters have exactly two major subclusters.

4.1.4 ‘Small’, ‘intermediate’, and ‘large’ values of β and C When discussing the results of our sim-
ulations, we often describe the values of the opinion tolerance threshold β and the confidence bound
C as ‘small’, ‘intermediate’, or ‘large’. When β is small, agents are more aggressive at cutting ties with
agents whose opinions differ from theirs and then befriending agents whose opinions are similar to theirs.
When C is small, agents are close-minded and are influenced only by agents whose opinions are similar
to theirs. These two key parameters affect the time scales of the rewiring and the opinion updates.

As we will see in our numerical experiments, different combinations of β and C can lead to very
different steady-state behaviours. In practice, we observe that agents cut ties frequently when β � 0.2,
so we refer to such values of β as ‘small’. We observe that agents are close-minded when C � 0.2, so we
refer to such values of C as ‘small’. Additionally, we view β as ‘intermediate’ when 0.2 � β � 0.4 and
C as ‘intermediate’ when 0.2 � C � 0.3. Finally, we view β as ‘large’ when β � 0.4 and C as ‘large’
when C � 0.3.

4.2 Baseline case (i.e. β = 1)

When β = 1 in our adaptive DW model, there is no rewiring because the set of discordant edges is always
empty, so our model reduces to a variant of the standard DW model. Therefore, we treat the results that
we obtain with β = 1 as a baseline. Our baseline DW model behaves like the standard DW model, but it
has faster convergence times because more of its nodes can change opinions in a single time step.

The baseline (i.e. non-coevolving) DW model appears to have a phase transition between consensus
and polarized/fragmented steady states at a critical value of the confidence bound. For the standard DW
model on a complete network, numerical computations in previous works suggest that this critical value
is C′ ≈ 0.26 [14, 16]. Kozma and Barrat [32] obtained C′ ≈ 0.256 in simulations of a DW model on time-
independent ER networks. In our adaptive DW model, C′ depends on β, so we denote putative transition
values by C′

β . In our baseline model (i.e. when β = 1), we observe a transition between consensus and
polarization at C′

β=1 ≈ 0.26.
In Fig. 3(a), we show the mean numbers of major opinion clusters at steady state in simulations

of our model on ER networks with 1000 nodes. The opinion profile fragments into 2–4 major clusters
when C ∈ [0.1, 0.16), and it is polarized when C ∈ [0.16, 0.26). When C � 0.26, the system reaches a
consensus, except for very small (i.e. minor) opinion clusters (some of which consist of isolated nodes).
In Fig. 3(b), we show the mean numbers of minor opinion clusters at steady state. In Fig. 4, we show the
mean numbers of nodes in the two largest opinion clusters at steady state; in the polarized regime, the
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 11

Fig. 3. The mean numbers of (a) major opinion clusters and (b) minor opinion clusters in our adaptive DW model at steady state
as a function of the confidence bound C for different values of the opinion tolerance threshold β. The results are means of 50
simulations. We initialize each simulation with an independently generated ER graph (with N = 1000 nodes) and a distinct
opinion profile that we draw from the uniform distribution Unif[0, 1]. We use the same set of simulations (sometimes with a focus
on particular locations in the (β, C) parameter plane) for all of our results with N = 1000 nodes.

Fig. 4. The mean numbers of agents in the largest opinion cluster (solid curves) and the second-largest opinion cluster (dashed
curves) in our adaptive DW model versus the confidence bound C for different values of the opinion tolerance threshold β. The
results are means of the same sets of 50 simulations as in Fig. 3.

two largest opinion clusters each have almost 500 nodes. In Fig. 5, we show the mean consensus opinions
of the largest major opinion clusters as a function of the confidence bound C.

4.3 Homophilic rewiring (i.e. β < 1)

4.3.1 Shifted critical value (i.e. shifted phase transition) When β < 1 (i.e. when there is homophilic
rewiring), and especially when β is small, we often observe that the transition between polariza-
tion/fragmentation and consensus occurs at a larger value of C than for the baseline DW model (i.e.
when β = 1). That is, consensus is harder to achieve when agents are intolerant of opinions that differ
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12 U. KAN ET AL.

Fig. 5. The means of the consensus opinions of the largest major opinion clusters in our adaptive DW model versus the confidence
bound C. Each panel gives results for a different value of the opinion tolerance threshold β; we show up to four clusters for each
value of β. (We show three major clusters in situations where there are only three such clusters.) The results are means of the same
sets of 50 simulations as in Fig. 3.

much from theirs, as edges are more readily discordant and nodes thus rewire more often. In particular,
although we observe a consensus steady state when C � 0.26 in the baseline DW model, our adaptive
DW model results in a polarized or fragmented steady state up to C′

β ≈ 0.34 when β is small. Addition-
ally, as we see in Fig. 4, the transition value C′

β depends on β in a complicated way. For example, the
simulations of our adaptive DW model with β ≈ 0.3 behave rather differently than those with β ≈ 0.2.

4.3.2 Pseudo-consensus: Competing time scales and the role of moderate agents By allowing nodes to
break connections based on an opinion tolerance threshold, we also observe other interesting phenomena.
For example, agents can still sometimes achieve a consensus—although sometimes it is technically in
the form of a pseudo-consensus—when C < C′

β for certain values of β. Figure 2 shows an example of a
pseudo-consensus state. In this example, opinions seemingly converge to one value near the centre of the
opinion space (see Fig. 2(b)). However, upon closer inspection (see Fig. 2(c)), we observe subclusters of
the depicted steady-state opinion cluster that differ from each other by a small value ε ≈ 0.0003. Our
visualization in Fig. 2(a) also suggests that there is some community structure.

It seems that a pseudo-consensus can arise from the presence of two competing processes (rewiring
and opinion changes) with comparable rates. We consider the interactions of these processes by examin-
ing the relationship between the confidence bound C and the opinion tolerance threshold β. Additionally,
the value of M/K affects the relative rates of rewiring and opinion changes in a network. When there
is rewiring, our BCM tends to yield homophilic communities (including situations in which networks
themselves fragment into multiple components), which one can interpret as echo chambers. The opinion
updates for C � 0.24 tend to encourage consensus because agents are open-minded, so many opin-
ion compromises can occur. If a network organizes into distinct communities faster than the agents can
compromise sufficiently, we expect to observe polarization or fragmentation. However, if the agents
compromise sufficiently quickly, we expect the system to reach a consensus. When the processes have
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 13

comparable rates, a pseudo-consensus may arise. In this case, we observe situations in which there is one
major opinion cluster, but there appears to be community structure in the cluster (see Fig. 2(a)).

Consider the case in which homophilic rewiring is faster than opinion changes. Specifically, suppose
that both β and C are small. When C is small (e.g. C < 0.2), nodes tend to begin with fewer neighbours
that can influence them than for larger values of C, so their opinions change much more slowly at the
beginning of a simulation. Calculating the total number of ‘influential neighbours’ (i.e. the number of
neighbours whose opinion is within C of a node) of each node versus time confirms this observation. If
β is also small (e.g. β < 0.2), nodes can quickly disconnect from neighbours whose opinions are too far
away from theirs and attach to nodes whose opinions are closer to theirs. This leads to the formation of
communities or even multiple connected components in a network. Once the nodes of a network organize
into such homophily-based communities, they then compromise their opinions within these communities
and quickly achieve an intra-community consensus. (The opinions of the nodes in a community are likely
to be within one another’s confidence bounds, so two nodes in the same community tend to compromise
when they interact.) By this time, there are very few or even no remaining discordant edges, so these
communities persist over time. However, when the opinions of a network’s nodes converge very quickly
(specifically, for large C), the nodes do not have many chances to disconnect from their discordant neigh-
bours to form communities. Therefore, it is reasonable that a pseudo-consensus (i.e. a consensus with
subclusters and community structure) emerges when the rates of opinion changes and rewiring are sim-
ilar. In Fig. 7, which we discuss in detail in Section 4.4, we identify the region in the (β, C) parameter
plane in which we observe pseudo-consensus states fairly often.

In a pseudo-consensus state, a small number of nodes in an opinion cluster have opinions that lie
somewhere between those in the subclusters of the cluster (see Fig. 2(c)). Such agents often have initially
moderate opinions (e.g. xi ≈ 0.5 ± 0.05). We hypothesize that (1) these initially moderate agents are
crucial to allow the agents of a network to reach a pseudo-consensus instead of becoming polarized or
fragmented and (2) initially moderate agents act like ‘bridges’ that keep a network connected. In our
model, when we observe a polarized or fragmented steady state in a network, we often also observe that
the network has multiple connected components.

4.3.3 Minor opinion clusters: Isolated and extreme agents In Fig. 3(b), we observed that the number
of minor opinion clusters is very different when there is rewiring (i.e. when β < 1) than when there is
not (i.e. when β = 1). Notably, there are very few minor opinion clusters when C and β are both small.
When C is small, agents tend to be influenced only by a few other agents and thus are likely to form small
groups or even become isolated. However, when there is rewiring, agents are able to replace discordant
neighbours with like-minded agents that potentially can become part of the same major opinion cluster.

When the opinion tolerance threshold β is very small (e.g. β = 0.1), the number of minor opinion
clusters at steady state increases with the confidence bound C. These minor clusters tend to consist of
isolated nodes or of 2–3 nodes. Most of the agents in these minor clusters have initially extreme opinions
(i.e. close to 0 or close to 1). The fast formation of a moderate-opinion consensus and the very small value
of β causes agents to disconnect from agents with extreme opinions (i.e. ‘extreme agents’) very early in
simulations when they become more moderate. The agents that remain extreme are in minor clusters at
steady state.

The outcomes that we observe in our simulations in the presence of homophilic rewiring have real-
world analogues. For example, when β is small, it is reasonably common in our simulations for small
minority groups of extreme agents to be sparsely connected to other parts of a network. These extreme
agents cannot be swayed by a majority with more moderate opinions. In the real world, it also seems that
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Fig. 6. The assortativity r of the final opinions of the agents in our adaptive DW model as a function of the opinion tolerance
threshold β for confidence bounds of (a) C = 0.1, (b) C = 0.2, (c) C = 0.3, and (d) C = 0.4. The results are means of the same
sets of 50 simulations as in Fig. 3.

many people in a population may dissociate from unpopular minorities. Interestingly, in our model, the
number of extreme minority groups increases when we increase the open-mindedness of the agents.

4.3.4 Homophily Because we base the rewiring process in our adaptive DW model on the principle of
homophily, it is sensible to compute a measure of homophily in our networks. For simplicity, we calculate
the scalar assortativity coefficient [37]

r =
∑

ij

(
Aij − kikj

2m

)
xixj

∑
ij

(
kiδij − kikj

2m

)
xixj

, (4.1)

where xi is an ordered scalar attribute that is associated with node i, the scalar ki is node i’s degree, m
is the total number of edges of a network, and δij is the Kronecker delta function. Equation (4.1) is a
normalized, network-based generalization of the Pearson correlation efficient. Its value ranges between
−1 and 1, and it equals 0 either when the attribute has only one value or when there is no linear correlation
between the attribute values at adjacent nodes. When r = 1, the network is perfectly assortative; when
r = −1, it is perfectly disassortative.

In Fig. 6, we show the mean values of the assortativity r of the opinions in the final networks of our
sets of 50 simulations. For each simulation, xi is the opinion of node i at the end of the simulation. As
expected, for any confidence bound C, the values of r are large when the opinion tolerance threshold β is
small. Although r ≈ 1 (i.e. almost perfectly assortative mixing) for all values of C when β is very small,
different values of C lead to different intervals of β with r ≈ 1. For example, when C ∈ [0.18, 0.24],
the final opinion assortativity r is very large for a large interval of β values; this interval is smaller when
C ≥ 0.3.

4.4 Convergence time

We roughly organize the (β, C) parameter plane into different steady-state regimes of our model by exam-
ining the convergence times of our simulations. In Fig. 7(a), we show a heat map of these convergence
times. It illustrates that the convergence times for intermediate values of the confidence bound C are
noticeably longer for small values of the opinion tolerance threshold β than they are for the baseline
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 15

Fig. 7. The (a) convergence times (i.e. the numbers of time steps to reach a steady state) and (b) fractions of simulations that reach
the bailout time (i.e. they do not converge within 106 steps) for our adaptive DW model. The results are means of the same sets of
50 simulations as in Fig. 3. An opinion tolerance threshold of β = 1 corresponds to baseline DW dynamics (i.e. without rewiring).

case β = 1 (i.e. when there is no rewiring). We label the associated region in the heat map with the term
‘Polarization’. In this region, our simulations reach the bailout time more frequently than in other regions
(see Fig. 7(b)).

When C is small, the convergence times of our simulations are much faster when there is a lot of
rewiring (i.e. for small β) than when there is not. See the bottom-left region of the heat map in Fig. 7(a).
As we discussed previously, in this regime, once the agents of a network organize into homophilic com-
munities through rewiring, they compromise their opinions to achieve intra-community consensus. The
region with pseudo-consensus states also has noticeably different convergence-time behaviour than the
β = 1 baseline. For a fixed value of C, it often takes longer to converge in the former region than in
the latter region. When agents can be influenced both by agents in their own community and by agents
in other communities, their opinions fluctuate before they reach a moderate-opinion consensus in their
community. As two opinion clusters move closer to forming a pseudo-consensus, the opinions of the
agents in them can keep changing by minuscule amounts before converging.

4.5 Numerical simulations with larger networks

To examine the possibility that some of our adaptive DW model’s key features—such as the presence
of pseudo-consensus states and the shifted phase-transition location in comparison to our baseline DW
model—arise from finite-size effects, we simulate it on networks with N = 5000 nodes. For these larger
networks, we simulate our model for selected locations in the (β, C) parameter plane. We again use
G(N, p) ER networks with p = 0.01, so the expected mean degree is now 〈k〉 = 50. We run one set of
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experiments in which we fix C ∈ {0.22, 0.26, 0.28, 0.30} and vary β, and we also run a set of experiments
in which we fix β ∈ {0.12, 0.28, 0.32, 1.0} and vary C. We again let α = 0.1. We also retain the ratio
M/K = 1/5, but we now take M = 5 and K = 25. For each examined value of (β, C), we perform 50
simulations and calculate sample means.

In these numerical simulations, we observe several of the same key phenomena as in our simulations
on 1000-node networks. First, the convergence times in our adaptive DW model again tend to deviate
from those in the baseline DW model (i.e. when β = 1). The convergence to steady state is faster in our
adaptive DW model than in the baseline DW model when β and C are both small, and it is slower in our
adaptive DW model than in the baseline DW model when β is small and C is large. Second, when β is
small, the number of minor opinion clusters (which include fewer than 5% of the nodes of a network)
increases with C. Third, we again observe pseudo-consensus steady states, which again tend to have long
convergence times. Fourth, opinion assortativity tends to decrease with β.

Our simulations on larger networks give some insight into possible finite-size effects. We observe a
transition from polarization to consensus as we increase C from C = 0.22 to C = 0.30, and a phase
transition appears to occur at C′

β ≈ 0.28 for all examined values of β (including β = 1). By contrast,
our simulations on 1000-node ER networks suggested that C′

β depends on β. (In those simulations, small
values of β shift the phase transition to values up to C′

β ≈ 0.34.) Nevertheless, in our simulations on
5000-node networks, homophilic rewiring (i.e. β < 1) can still influence the process to reach consensus.
On one hand, as in our simulations with 1000-node networks, homophilic rewiring can make it harder for
the system to reach a consensus. For example, when C = 0.26, almost half of our simulations with β = 1
for 5000-node networks result in consensus, but fewer than 20% of our simulations with β = 0.1 reach a
consensus. On the other hand, we also observe in our simulations on 5000-node networks that homophilic
rewiring can lead to pseudo-consensus states for values of C that are below the putative phase transition.
For example, many simulations with intermediate values of β result in pseudo-consensus states when
C = 0.26 < C′

β ≈ 0.28. Additionally, some simulations at the putative phase-transition value yield
pseudo-consensus states for intermediate values of β.

There are some issues to keep in mind in our numerical exploration of possible finite-size effects.
For example, we use larger values of M and K in our simulations with 5000-node networks than in our
simulations with 1000-node networks, and we need to be cognizant that this can also affect our results.
Although M/K = 1/5 in both cases, the change from M = 1 to M = 5 may speed up the rewiring process
by a different amount than the change from K = 5 to K = 25 speeds up the opinion-update process. We
also wonder whether or not pseudo-consensus states continue to exist in the infinite-node limit.

5. Conclusions and discussion

We developed an adaptive bounded-confidence model (BCM) on networks that generalizes the Deffuant–
Weisbuch (DW) model by allowing discordant edges to rewire based on opinion homophily. We studied
our adaptive DW model on G(N, p) Erdős–Rényi networks, and we found that it is harder for networks
to achieve consensus when there is rewiring than when there is not rewiring (and hence in a baseline DW
model). In one region of parameter space, we observed ‘pseudo-consensus’ steady states with two opinion
subclusters (with a minuscule difference between the opinions of the agents in the two subclusters) within
a consensus opinion group. We observed that the convergence times of the numerical simulations of our
model tend to be long near critical values C′

β of the confidence bound C that separate consensus steady
states from polarized and fragmented steady states. We also observed that the convergence times tend to
be short when both C and the opinion tolerance threshold β are small, in contrast to the typical behaviour
of the standard DW model. We obtained similar numbers of major opinion clusters at steady state with
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AN ADAPTIVE BOUNDED-CONFIDENCE MODEL OF OPINION DYNAMICS ON NETWORKS 17

and without rewiring, and we demonstrated that large values of C can encourage the formation of minor
opinion clusters, whose nodes tend to have extreme opinion values at the beginning of our simulations.

There are a variety of aspects of our adaptive DW model that will benefit from further exploration. For
example, we focused primarily on situations in which opinion changes are faster than network rewiring
(i.e. M < K). Our preliminary investigation (which we did not discuss previously) of situations with
rewiring rates that are faster than opinion dynamics (i.e. M > K) reveals scenarios with large confidence
bounds (such as C = 0.4, which is above the phase transition when M < K) with polarized and frag-
mented steady states. That is, for large confidence bounds, it is harder for agents to achieve consensus
when M > K than when M < K. It will also be valuable to further analyse the influence of moder-
ate agents on opinion dynamics. Moreover, it is important to further study potential finite-size effects,
compare different ways of selecting multiple agent pairs for possible opinion updates in a time step, and
analyse our model in the limit of infinitely many agents.

As with other models of opinion dynamics, our adaptive DW model includes various unrealistic
assumptions, which we made for simplicity. For example, we assumed that all agents have the same
confidence bound C and the same opinion tolerance threshold β, and it is more realistic to incorporate
heterogeneity in these parameters. Additionally, in our model, each agent that breaks a connection needs
to form a new edge, but people can unfriend someone on a social network (e.g. during hotly contested
political elections) without also connecting to someone else. Moreover, we did not constrain the number
of times that an agent can rewire or include a core group of agents that they will never unfriend. In reality,
some people may always remain connected to certain other people (e.g. family members or particularly
close friends). It is worthwhile to relax the assumptions of our adaptive DW model to help improve our
understanding of the spread of opinions in social networks in realistic situations.
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