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SUMMARY

Motor chunking facilitates movement production by
combining motor elements into integrated units of
behavior. Previous research suggests that chunking
involves two processes: concatenation, aimed at
the formation of motor-motor associations between
elements or sets of elements, and segmentation,
aimed at the parsing of multiple contiguous elements
into shorter action sets. We used fMRI to measure
the trial-wise recruitment of brain regions associated
with these chunking processes as healthy subjects
performed a cued-sequence production task. A
dynamic network analysis identified chunking struc-
ture for a set of motor sequences acquired during
fMRI and collected over 3 days of training. Activity
in the bilateral sensorimotor putamen positively
correlated with chunk concatenation, whereas a
left-hemisphere frontoparietal network was corre-
lated with chunk segmentation. Across subjects,
there was an aggregate increase in chunk strength
(concatenation) with training, suggesting that sub-
cortical circuits play a direct role in the creation of
fluid transitions across chunks.

INTRODUCTION

Motor-sequence learning refers to the process by which

temporally ordered movements are prepared and executed

with increasing speed and accuracy (Willingham, 1998). For

this type of learning to occur, the processing demands associ-

ated with the rapid planning of multiple serial movements within

a sequence must be reconciled. The traditional notion is that the

individual motor commands that constitute new sequences

become temporally integrated into elementary memory struc-
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tures or ‘‘chunks’’ (Gallistel, 1980; Lashley, 1951; Book, 1908).

Chunking inmotor sequencing allows groups of individual move-

ments to be prepared and executed as a single motor program

facilitating the performance of complex and extended sets

of sequences at lower cost (Halford et al., 1998). The grouping

of distinct elements into a single unit is a general performance

strategy that is also observed in nonmotor tasks (Gobet and

Simon, 1998; Ericsson et al., 1980).

A host of behavioral studies of sequence learning support

a hierarchical model of sequencing, in which long sequences of

finger movements are segmented into shorter chunks (Verwey

et al., 2009; Bo and Seidler, 2009; Kennerley et al., 2004; Verwey

and Eikelboom, 2003; Sakai et al., 2003). The temporal pattern

commonly observed is the production of one slow key press

that is followedby several key pressesproduced in quick succes-

sion (Sakai et al., 2003; Verwey and Eikelboom, 2003). Recent

studies suggest that individuals will spontaneously segment

sequences into a set of subject-specific chunks (Verwey et al.,

2009; Bo and Seidler, 2009; Kennerley et al., 2004; Sakai et al.,

2003; Verwey and Eikelboom, 2003). The benefit of such

segmentation is that it reduces memory load during ongoing

performance (Bo and Seidler, 2009; Ericsson et al., 1980). With

extended practice, short chunk segments can be concatenated

into longer segments (Sakai et al., 2003; Verwey, 1996), suggest-

ing that concatenation can operate on pairs of individual motor

elements or between two sets of motor elements.

The aforementioned findings suggest that two chunking

processes are at play during sequence learning. One process

concatenates adjacent motor elements so that sequences can

be expressed as a unified action, and the other process parses

sequences into shorter groups. Both processes could lead to

the pattern observed in chunking. In concert, they impart com-

peting strategies for enhancing performance in the production

of long motor sequences, presumably driven by the formation

of motor-motor associations and the strategic control over

sequence segmentation (e.g., Verwey, 2001).

Evidence suggests that the basal ganglia support the con-

catenation of multiple motor elements of a sequence. Studies
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Figure 1. Multitrial Sequence Network

Construction

(A) A trial started with the onset of a static image

depicting a sequence of 12 notes arranged in the

style of sheet music. Presentation served as the

signal to report the sequence of notes, which were

read left to right proceeding from one note to the

next. Subjects reported the sequences using their

nondominant left hand, with the leftmost finger

corresponding to notes on the top line and the

rightmost finger corresponding to notes on the

bottom line.

(B–E) Construction of a trial-by-trial sequence

network for multitrial community detection: Using

the IKI between button presses, we constructed

single-trial sequence networks by converting each

IKI into a node (B), which is linked to another node

using undirected edges. The weight (C) of an edge

is defined as the normalized absolute value of the

difference between the two IKIs that it connects

(see Experimental Procedures). We applied mul-

titrial community detection to these sequence

networks and incorporated information between

consecutive trials by linking each node in one trial network to itself in contiguous trials (D). Utilizing information from linked nodes in consecutive trials, we

partitioned IKIs into chunks using a multitrial community detection (E) that grouped nodes that were strongly connected to one another.

Neuron

Cortical and Subcortical Involvement in Chunking
from individuals with Parkinson’s disease (Tremblay et al., 2010)

and stroke patients (Boyd et al., 2009) found that damage to the

basal ganglia impairs one’s ability to integrate motor elements

into chunks. Further support comes from rodent and nonhuman

primate research (Graybiel, 2008; Yin and Knowlton, 2006).

As rats learn to navigate a T-maze for reward, neurons in the

nigrostriatal circuit gradually represent motor sequences as

chunks by firing preferentially at the beginning and end of action

sequences, yielding concurrent improvements in performance

(Thorn et al., 2010; Barnes at al., 2005). The disruption of this

phasic nigrostriatal activity also leads to the impairment of

sequence learning in mice (Jin and Costa, 2010). Similarly,

subcutaneous injections of raclopride, a dopamine antagonist

of the D2 receptor, disrupt sequence consolidation and chunking

behavior in cebusmonkeys (Levesque et al., 2007), which can be

reversed by administration of a dopamine agonist (Tremblay

et al., 2009).

Several recent studies have argued that a frontoparietal

network is critical for the segmentation of long sequences into

multiple chunks (Pammi et al., 2012; Verwey et al., 2010,

2011). The ability to segment long sequences into chunks is

greatly diminished in older adults (Verwey et al., 2010, 2011),

possibly due to decreasing cortical capacity (Raz et al., 2005;

Resnick et al., 2003). Moreover, a frontoparietal network was

recruited when subjects produced long sequences that could

be segmented into chunks relative to those that could not

(Pammi et al., 2012). Further, transcranial magnetic stimulation

of the presupplementary motor area, a part of the prefrontal

cortex, disrupts the selection of chunks that are held in memory

during the production of newly learned sequences (Kennerley

et al., 2004).

Of critical importance, the aforementioned experiments exam-

ined either the concatenation or the parsing process of chunking,

but not both processes simultaneously. By contrast, the experi-

ment that we report here investigated the dynamics of both
aspects of chunking over the course of extensive motor

sequence learning. Subjects learned a set of 12-element explic-

itly cued sequences using the four fingers of the left hand (Fig-

ure 1A) during the collection of functional magnetic resonance

imaging (fMRI) data over 3 days of scanning. Our goal was to

examine whether both concatenation and parsing processes

enhance performance during sequence learning and to identify

the underlying neural activity. To achieve this, it was critical to

establish a method that overcame some of the limitations of

existing methods for chunk identification.

When subjects retrieve chunks from memory, it is common to

observe a nonrandom subset of prolonged interkey intervals

(IKIs) that are assumed to represent boundaries between sepa-

rable chunks (Sakai et al., 2003; Verwey and Eikelboom, 2003).

A common test for determining chunk boundaries is to compare

response times at a subjectively identified pause relative to the

IKIs between these pauses (Kennerley et al., 2004; Verwey and

Eikelboom, 2003). This technique facilitates the extraction of

putative sequence segments but relies on assumptions that

during training (1) chunk boundaries are static and (2) short

chunks are not combined into larger chunks. Further, this

approach averages IKIs over multiple elements within each

sequence, obscuring movement-by-movement contributions

to chunking. Thus, this approach is not sensitive enough to

measure the chunking structure that unfolds with training. These

limitations underscore the need to develop a more flexible

method for the identification of chunking structure, so that no

constraints are made as to where or when chunks occur, and

further, that it allows for changes to occur in the degree of

parsing, where parsing occurs, and the strength of motor-motor

associations of adjacent elements.

To model chunking behavior, we modified a network-based

community detection algorithm (Bassett et al., 2011; Mucha

et al., 2010). We modeled each trial as a network with nodes

representing individual IKIs (Figure 1B) in a simple chain
Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc. 937



Figure 2. Behavior Effects of Sequence Learning

The time needed to complete each frequently trained sequence.

(A) Decreasing groupMT pattern, collapsed across the three frequently trained

sequences. We combined trials for each participant separately for each scan

session into 10 equally sized trial bins (preserving temporal order) and then

averaged within each bin.

(B) Group MT change during each scan session. Each sequence is shown

separately. Using an ANOVA, we found a significant effect of session

(p < 0.00001) but did not find any significant effect of sequence or interaction.

This result confirms that performance was substantially improved over the

three scan sessions and that all three frequent sequenceswere learned equally

well. Error bars give the SEM.
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structure connecting neighboring IKIs with weights indicating

their similarity (Figure 1C). The networks were constrained to

this simple chain structure to allow only interactions between

adjacent movements within a sequence. To identify chunks,

we performed community detection (a form of data clustering)

using a multitrial extension (Mucha et al., 2010) of the modu-

larity-optimization approach (Fortunato, 2010; Porter et al.,

2009; Newman, 2004) by linking each node in one trial network

to itself in the trials that followed thereafter (Figure 1D). Modu-

larity-optimization algorithms seek groups of nodes that are

more tightly connected to each other relative to their connec-

tions to nodes in other groups, and the multitrial extension

allowed us to consider both intratrial and intertrial relationships

between nodes, resulting in the partitioning of IKIs for each

sequence into chunks (Figure 1E). We then quantified the

strength of trial-specific network modularity (Qsingle-trial; see

Experimental Procedures). Network modularity (Q) can be

conceptualized as the ease with which a network can be

divided into smaller communities. We define chunk magnitude

as 1=Qsingle-trial, which we denote by 4. To determine the rela-

tive strength of 4 for a given trial, we normalized 4 with respect

to 4 for each participant and sequence. Thus, for trials with

a high 4, it was computationally more difficult to parse the

entire sequence into smaller groups (i.e., chunks). Conversely,

trials with a low 4 corresponded to sequences that were

more easily divisible into chunks. We chose model parameters

such that trials had between two and four chunks over each

sequence. Our method is flexible in the sense that it imposes

no constraints on where or when these chunk boundaries

occur in a given trial. Furthermore, it allows for the identification

of different chunking patterns in each individual and the identi-

fication of changes in chunking patterns over the course of

training.

To measure the trial-by-trial contributions of the brain

to chunking during sequence learning, we correlated blood-

oxygenated-level-dependent (BOLD) estimates with 4. The aim

of the fMRI experiment was to determine which brain regions

support trials characterized by concatenation or by parsing.

We used normalized values of 4 as weights in a parametric anal-

ysis correlating 4with the regional change of the BOLD signal on

a trial-by-trial basis. We predicted that trials with low 4, and thus

having easily separable chunks, would correlate with activity in

a frontoparietal network previously shown to be sensitive to

sequence segmentation (Pammi et al., 2012; Kennerley et al.,

2004). Conversely, trials with high 4, or those dominated by

the concatenation process, would correlate with the sensori-

motor striatum. Last, we tested whether 4 would increase with

sequence learning and whether this change would be indepen-

dent of conventional measures such as the time needed to

complete a sequence. If true, 4 could serve as a measure of

sequence learning based on the strength of motor-motor associ-

ations that emerge with training.

RESULTS

Behavior Effects of Sequence Learning
We evaluated practice-related change in MT over the course of

training on the three frequently presented sequences (Figure 1A;
938 Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc.
see Experimental Procedures) using a two-way (sequence X

session) repeated-measures ANOVA. This revealed amain effect

for session [F(2,21) z 92.13, p < 0.00001]. This finding confirms

that subjects learned the sequences during training. There was

no significant effect of sequence type or interaction, confirming

that the three sequences were learned similarly and with similar

speed (Figure 2). The mean percent error (±SD) across the

training sessions was 12.8 ± 7.5. We found no significant effect

of error over sessions, indicating that there was no change in

the speed/accuracy tradeoff even though MT values decreased

with training.



Figure 3. The Dynamics of Chunking

Behavior

(A) Normalized chunk magnitude (4) for each trial

for two representative subjects. High values of

4 reflect greater chunk concatenation and low

values reflect greater chunk segmentation (see

Experimental Procedures). There was a substan-

tial amount of variability in 4 across trials and

among individual subjects during training. Some

had a robust increase (top) and others hadmodest

change (bottom).

(B) Group mean 4 increased significantly over

training, reflecting the tendency at the population

level for training to induce greater concatenation

and formation of unified actions. Error bars give

the SEM.

(C) Multitrial community detection of chunks for

one of the sequences, plotted for three subjects.

Some individuals show considerable trial-wise

variability in segmentation boundaries over the

course of training (S13, S24), whereas others

show less (S25). Colors indicate separate chunks

among the IKIs.
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We quantified chunking within each sequence by the opti-

mized modularity Qmultitrial of the sequence networks (see

Experimental Procedures). Modularity in this case measures

the separability between clusters of IKIs. Higher values of Q

indicate a greater ease in separating chunks. The averagemodu-

larity was 0.54 ± 0.007, which was significantly greater than that

expected in a random null-model network (p < 0.000000001,

t z 8.44, DF = 42). This demonstrates that significant chunking

exists in the data.

We predicted that 4 would increase with learning, reflecting

stronger associations across adjacent chunks. Subjects demon-

strated considerable variability of 4 (Figure 3A). To test for

increasing 4 over time at the group level, we correlated group

4 to a linear slope.We first calculated group4by taking a random

sample of 100 values of 4 ordered in time for each participant. To

control for the random selection of trials, we performed and then

pooled 100 instances of the correlation between the group 4 and

the linear slope (Figure 3B). Confirming our prediction, group 4

increased significantly over the course of training (R > 0.40,

p z 0.0002).

Because 4 and MT both change over time, it is critical to

evaluate their relationship. We correlated trial-wise 4 and MT

for each participant and then pooled (averaged) the R values

and resultant p values over subjects, revealing that the two

measures are independent (R z 0.13, p > 0.20). This suggests

that brain regions correlated with 4 reflect a performance diag-

nostic related to sequence learning.

Although we found 4 had no significant relationship to MT,

the two performance diagnostics could still be related to indi-

vidual differences. An important question to ask is whether

‘‘good learners’’ are also ‘‘good chunkers’’? In this sense,

good learners can be defined as those with the greatest impro-

vement in MT over training (e.g., Crossman, 1959), and good

chunkers can be defined similarly, as those with the greatest
increase in 4 over training. We divided the 4 and MTs for

each participant and sequence into three bins that preserved

temporal order and averaged over sequences. A correlation

between 4 and MT difference scores (given by a subtraction

between the first and third bins) revealed that there was no

significant relationship (R z 0.17, p > 0.44) between those

with the largest improvements in MT and those with the largest

improvements in 4.

We carried out several tests to determine the robustness of our

model to adhere to the behavioral features of chunking. Previous

accounts suggest that IKIs at the start of a chunk are slower and

reflect retrieval (Kennerley et al., 2004; Sakai et al., 2003; Verwey,

2001). To test whether our model and its parameters specified

chunks that were consistent with this, we first determined

the boundaries for each chunk. Using a repeated-measures

ANOVA with sequence as the repeated measure and type of

IKI as the categorical factor (border IKI or other IKI in a chunk),

we found that the border IKIs are significantly slower than the

IKIs taken from the middle of a chunk [F(1, 21) z 11.686,

p z 0.003]. Thus, our model identified chunks in a reproducible

manner and the elements at the chunk borders show the

expected increase of retrieval time relative to other elements

within the same chunk.

In addition, we confirmed that the number of chunks identified

for a given trial using community detection at the selected reso-

lution parameters was consistent with previous behavioral

accounts (e.g., Sakai et al., 2003). We expected the sequences

to be segmented into approximately two to four chunks and

found that the mean number of chunks per sequence was

3.06 ± 0.06. Figure 3C shows examples from representative

subjects (each showing two to four chunks per sequence). Of

critical importance, the patterns of chunks are not static but

instead fluctuate (as do the numbers of elements contained

within chunks) over training.
Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc. 939



Figure 4. Brain Activity Correlated with Chunk Concatenation

BOLD activation in the putamen was positively correlated with normalized 4,

reflecting increased involvement during the concatenation of sets of adjacent

motor elements. Results are shown at a cluster-level corrected threshold of

p < 0.05 (FWE), with the voxel resolution set to 2 3 2 3 2 mm.

Table 1. Brain Regions Positively Correlated with Chunking

Magnitude

Region Side

MNI Coordinates

Voxels Peak t Valuex y z

Putamen R 21 6 �6 42 5.07

27 �3 9 4.05

30 �9 3 3.34

Occipital pole L �21 �93 25 56 4.91

�12 �93 28 4.90

Posterior

cingulate gyrus

R/L 9 �18 45 54 4.67

�3 �21 42 4.50

�3 �12 39 4.06

Putamen L �15 9 �6 47 4.58

�24 9 �3 4.49

Significance for all voxels was tested with a groupmixed-effects analysis,

cluster-level family-wise error rate corrected, p < 0.05.
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Neural Correlates of Motor Chunking
Based on previous studies of motor chunking (e.g., Pammi et al.,

2012; Tremblay et al., 2010; Boyd et al., 2009; Kennerley et al.,

2004), we hypothesized that 4 would isolate distinct brain

regions that support the concatenation and segmentation

chunking processes on a trial-by-trial basis. Confirming our

prediction that the basal ganglia are involved in binding sequen-

tial motor elements, we observed a positive correlation between

4 and fMRI BOLD activity within the bilateral putamen. The

pattern of activation within the contralateral putamen extended

ventrally from the dorsal posterior sensorimotor territory along-

side the border with the external globus pallidus. We found acti-

vation of the ipsilateral putamen to be distinct from that in the

contralateral cluster, extending ventrally from a more interme-

diate locus (rostral to y = 0, ventral to z = 4) (Figure 4 and Table 1).

Further, consistent with our prediction that segmentation in-

volves the recruitment of frontoparietal regions, we found a nega-

tive correlation between 4 and BOLD in left-hemisphere cortical

regions including the mid-dorsolateral prefrontal cortex (mid-

DLPFC) and foci along the intraparietal sulcus (IPS). Activation

in the mid-DLPFC was rostral to the premotor cortex and deep

within the inferior frontal sulcus. In addition, we found three
940 Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc.
separate voxel clusters along the IPS. Two of these clusters

were located next to the supramarginal gyrus, and an additional

cluster was located at the posterior aspect of the IPS (Figure 5

and Table 2). These regions are presented at a hypothesis-

directed uncorrected threshold of p < 0.001 with an activation

cluster threshold of 10 contiguous voxels.
DISCUSSION

Chunking is a performance strategy that supports increasing

speed and accuracy through the formation of hierarchical

memory structures. Two separable processes drive the forma-

tion of temporal structures: one parses long sequences into

shorter groups to be handled more easily in memory, and the

other concatenates pairs of adjacent motor elements or sets of

elements to express a long sequence as a unified action.

Because chunking is not static during learning (e.g., Sakai

et al., 2003) and is variable across subjects (e.g., Kennerley

et al., 2004; Verwey and Eikelboom, 2003), it has been chal-

lenging to quantify these two concurrently active processes

and to use them as a description of performance. To address

this, we identified chunks on a trial-by-trial basis using amultitrial

network analysis for community detection (Bassett et al., 2011;

Mucha et al., 2010) that takes into account both intratrial infor-

mation and the interaction between neighboring trials for chunk

identification. Our approach is based on multitrial network link-

ages and imposes no constraints on where or when chunking

ought to occur. This led to the identification of chunks that

were different across subjects and sequences but also could

be different from one trial to the next. We found a range in chunk-

ing over training, as some subjects had variable segmentation

patterns (S13, S24 in Figure 3C), while others changed very little

(S25 in Figure 3C). Further, we measured how trial-wise chunk

magnitude ð4Þ changed over training, with higher values reflect-

ing greater concatenation and lower values reflecting greater

segmentation. Some subjects were highly variable (S13 in Fig-

ure 3A) relative to others (S3 in Figure 3A). Critically, at the group



Figure 5. Brain Activity Correlated with Chunk Segmentation

BOLD activation of the intraparietal sulcus (IPS) and the mid-dorsolateral

prefrontal cortex (mid-DLPFC) was negatively correlated with normalized 4,

reflecting increased involvement during the segmentation of sets of motor

elements. Results are shown at p < 0.001 (uncorrected with a cluster threshold

of 10 voxels) with voxel resolution set to 2 3 2 3 2 mm.

Table 2. Brain Regions Negatively Correlated with Chunking

Magnitude

Region Side

MNI Coordinates

Voxels

Peak

t Valuex y z

Intraparietal sulcus

(middle)

L �42 �47 57 18 4.31

Intraparietal sulcus

(posterior)

L �27 �62 52 12 4.23

Inferior frontal sulcus L �36 21 24 19 4.18

Intraparietal sulcus

(anterior)

L �42 �39 45 12 4.12

Significance for all voxels was testedwith a groupmixed-effects analysis,

p < 0.001, uncorrected with a cluster threshold of 10 voxels.
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level, 4 increased over training (Figure 3B), suggesting that the

structure of a sequence was strengthened and individual chunks

became more difficult to isolate.

Using normalized 4 as a covariate provided for the trial-wise

assessment of the neural activity related to both the concatena-

tion and the parsing processes during sequence learning. This

led to the identification of two activation patterns. First, trials

that were computationally difficult to divide into chunks due to

stronger motor-motor associations correlated with an increase

in activation of the bilateral putamen. Second, trials that were

easily separable into chunks, a characteristic of increased

hierarchical parsing, led to increased activation of a frontoparie-

tal network isolated to the left hemisphere.

Recent evidence from patient populations suggests that

chunking motor sequences is supported by the basal ganglia

(Tremblay et al., 2010; Boyd et al., 2009), consistent with a dopa-

mine-dependent mechanism that is reliant on the sensorimotor

putamen. Parkinson disease (PD) patients are known to be

impaired in generating previously automatic movements due to

lesions of sensorimotor dopaminergic nuclei in the basal ganglia.

Chunking, which emerges as a feature of practiced movements,

is blocked in unmedicated patients performing a sequencing
task relative to both age-matched controls and PD patients on

L-DOPA (Tremblay et al., 2010). Of critical importance, all groups

were able to demonstrate learning, but only patients without

medication were unable to translate single motor responses

into chunks. In other words, the absence of chunking does not

necessarily restrict all potential avenues for sequence learning,

such as cortically based associative learning, which elderly

subjects were likely using despite their lack of chunking during

sequence learning (Verwey, 2010). Similarly, Boyd et al. (2009)

found that chunking was impaired in patients with chronicmiddle

cerebral artery (MCA) stroke involving the basal ganglia when

they used their nonhemiparetic arm.

The involvement of the sensorimotor striatum in the expres-

sion of chunking through well-practiced procedures has been

studied extensively in both rats and nonhuman primates (Gray-

biel, 2008; Yin and Knowlton, 2006). Neural firing patterns

recorded in the rat dorsolateral caudoputamen display a task-

bracketing distribution, with phasic firing at the start and finish

of T-maze navigation (Barnes et al., 2005; Jog et al., 1999).

Further, the expression of these phasic patterns in the dorsolat-

eral caudoputamen is linked to learning motor components of

navigation behavior (Thorn et al., 2010). Task-bracketing activity

sharpens throughout early learning and occurs in parallel with

phasic patterns in the associative dorsomedial caudoputamen.

Critically, once cue-based associations are learned, dorsome-

dial firing wanes and performance is correlated with the ongoing

phasic dorsolateral activity. This suggests that firing in the

dorsolateral caudoputamen supports the expression of habitual

actions (Thorn et al., 2010). Our finding that 4 increases with

sequence learning is consistent with these results, suggesting

that increased activation from the bilateral putamen is necessary

for the strengthening of motor-motor associations that are

associated with fluid sequential behavior.

There is growing evidence that a frontoparietal network also

supports chunking but in a fundamentally different way (Pammi

et al., 2012; Verwey et al., 2010, 2011; Bo and Seidler, 2009;

Bo et al., 2009). Consistent with our observation that a frontopar-

ietal network was preferentially activated on trials that could be

more readily divided into segments, Pammi et al. (2012) found

a substantial increase in activation of the mid-DLPFC and the

parietal cortex when subjects were able to spontaneously seg-

ment long sequences into chunks. These activation foci were
Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc. 941
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consistent with the locations of the left mid-DLPFC and IPS

clusters that we observed to represent segmentation. Pammi

et al. (2012) required subjects to perform an m 3 n visuospatial

sequencing task involving the maintenance of several ‘‘sets’’ of

button presses in memory. They found that set-size load facili-

tated chunking, with subjects able to spontaneously segment

a sequence that required only two button presses to be remem-

bered at a time but not another sequence that required four

button presses to be remembered. Hence, the reduction in set

size facilitated segmentation, which was associated with fronto-

parietal recruitment.

Other recent studies have shown aging to have a substantial

effect on one’s ability to segment sequences into chunks. It was

found that older adults are unable to employ a segmentation

strategy when learning simple yet unstructured sequences

(Verwey et al., 2011; Verwey, 2010). This finding was observed

when subjects performed a discrete sequence production (DSP)

task in which they responded to sequential stimuli spatially

ordered such that a stimulus was immediately presented as

soon as a response was made to the previous stimulus.

Following brief practice on the DSP task, young adults were

able to transition from reacting to each successive stimulus to

the execution of the entire sequence as a whole (Rhodes

et al., 2004; Verwey et al., 2002). In contrast, these studies

revealed older adults could still learn sequences but were

unlikely to employ strategic control to process sequential ele-

ments (Verwey et al., 2010, 2011). It is interesting to note that

these effects may be driven by known frontoparietal structural

changes in gray matter and white matter that emerge during

aging (Madden et al., 2009; Perry et al., 2009; Raz et al.,

2005; Resnick et al., 2003).

Segmentation during chunking reflects the formation of

temporally ordered action boundaries. Consistent with this inter-

pretation, there is growing evidence that goal-oriented actions

are represented hierarchically in both the lateral prefrontal cortex

(Badre et al., 2009; Shima et al., 2007; Koechlin and Jubault,

2006) and along the IPS (Hamilton and Grafton, 2008, 2006;

Jubault et al., 2007). For instance, Koechlin and Jubault (2006)

found that the selection of learned key-press movements fol-

lowed a gradient of increasing abstraction extending from the

dorsal premotor cortex for the selection of a simple button press

to a set of increasingly rostral mid-DLPFC regions first for the

selection of a simple sequence (Brodmann Area 44) and for the

selection of a superordinate set of contextually selected simple

sequences or chunks (Brodmann Area 45). Similarly, we found

that trials with increased behavioral evidence of segmentation

were associated with increased activation of the mid-DLPFC

andwithin the inferior frontal sulcus. Moreover, in a related inves-

tigation, Jubault et al. (2007) observed that distinct regionswithin

the parietal cortex were involved in the sequential organization

of action. They found that the left IPS was involved at different

levels of sequence organization, including phasic activation

patterns for separate anterior and posterior regions in left IPS

(signifying the updating of action sets). Our results reflect a

similar pattern, with separate anterior- and posterior-activation

IPS foci correlated with sequence segmentation. Across these

experiments, the common temporal pattern of slow and fast

elements during sequencing might reflect the increased involve-
942 Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc.
ment of cognitive processes for the selection and temporal orga-

nization of high-level action representations.

The quantity 4 represents a performance diagnostic for

sequence behavior. How does 4 relate to learning? For individual

subjects, on a trial-by-trial basis, this measure was largely

independent of traditional measures of performance, such as

sequence completion time (MT). Furthermore, we found no

significant relationship between those who could be considered

good chunkers (i.e., those who increased their 4 the most over

training) and those who might be considered good learners

based on the reduction of MT with practice. Nevertheless,

when averaged over subjects, we found that 4 progressively

increased over training. This suggests that there is a general

tendency for greater concatenation of chunks with enough prac-

tice. This in turn highlights the role of practice in the formation of

longer, unified sequences of actions irrespective of movement

speed. It is important to emphasize that the 12-element se-

quence in our study was long relative to typical sequencing tasks

such as the DSP task (Rhodes et al., 2004). In addition, subjects

were required to learn three frequent sequences, which might

require persistent use of segmentation—even after three days

of practice—explaining the slow change in 4 with training. Other

levels of sequence length, difficulty, or number of sequences

might lead to different trade-offs between the concatenation

and segmentation processes used to maintain performance of

motor sequences.

Our approach to chunking is notably different from models of

sequence learning that focus on rates of change in behavior that

might underlie ‘‘stages’’ of learning (Doyon and Benali, 2005;

Doyon and Ungerleider, 2002). Our findings suggest that chunk-

ing is strongly engaged throughout the three days of practice,

and is unlikely to be a predictor for the rapid rate of improvement

seen during this period. Our results also provide a conceptualiza-

tion of how dual processing might be used in sequence plan-

ning—one that is different from but not mutually exclusive of

previous dual models. For instance, Verwey (2001) proposed

a dual processor model containing parallel cognitive and motor

processors to account for the temporal pauses observed in

chunking. According to this model, a motor processor rapidly

executes the tightly coupled elements within each chunk, and

the cognitive processor prepares each chunk for the motor

processor. In this case, the pauses are due to planning at

a supraordinate cognitive level. Our results, however, suggest

that the cognitive processor is not causing delays due to plan-

ning. Instead, the delays are a direct result of frontoparietal

circuits segmenting long sequential structures into shorter

ones. This strategic parsing is countered by another subcortical

process concatenating these same groups of motor elements

into longer sequences. In our view, activity of both processes

occurs in parallel to enhance performance of long sequences.

In another dual model, Hikosaka et al. (1999, 2002) proposed

a hierarchical structure to account for the challenge of capacity

limitations in planning large motor sequences. In this model,

processing limitations are overcome by the activation of two

parallel loops, each of which is supraordinate to the planning

of individual stimulus response maps. One loop codes for

spatial features of sequences and the other loop codes for

motor features. In contrast, our results highlight two loops that
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parse and concatenate a sequence. It remains to be tested

whether there is a correspondence between these views, and

it would be of interest to see if they can be reconciled. For

example, spatial loops—as defined by Hikosaka et al. (1999,

2002)—might be more associated with parsing, whereas motor

loops might be linked more closely with concatenation.

EXPERIMENTAL PROCEDURES

The data presented in this paper were collected in an experiment previously

described by Bassett et al. (2011). Twenty-five right-handed subjects

(16 female, average age z24 years, range z19–30 years), as confirmed by

the Edinburgh Handedness Inventory, volunteered with informed consent in

accordance with the Institutional Review Board/Human Subjects Committee,

University of California, Santa Barbara. All subjects had less than 4 years of

experience with any musical instrument, had normal vision, and had no history

of neurological disease or psychiatric disorders. All completed three training

sessions and one follow-up test session within 2 weeks. All training sessions

were completed during the first 5 days, and the test session was completed

5–7 days after the final training session. All training and test sessions were per-

formed during the acquisition of BOLD. In the following discussion, we focus

on the data collected from the training sessions.

Experiment Setup and Procedure

Subjects lay supine in the MRI scanner and padding was placed under the left

forearm tominimize muscle strain during the task. Subjects performed a cued-

sequence production (CSP) task by responding to visually cued sequences on

a response box using their left hand. Responses were made using the 4 fingers

of the left hand. Sequences were presented as a static series of musical notes

on a 4-line staff (Figure 1A). Subjects reported the note configurations from left

to right. The top line mapped onto the leftmost key using the leftmost finger

and the bottom line was mapped onto the rightmost key using the rightmost

finger. Each 12-element sequence contained 3 notes per line. The notes

were randomly ordered without repetition and were free of regularities such

as runs (123) and trills (121) with the exception of one frequently trained

sequence (see below) that contained a trill. The number and order of sequence

trials were identical for all subjects, with the exception of two who eachmissed

one run of training due to technical difficulties.

A trial beganwith a fixation signal, whichwas displayed for 2 s. The complete

sequence was presented immediately afterward, and subjects responded as

quickly as possible. They had 8 s to type each sequence correctly. The

sequencewas present for the entire duration that subjects typed. If a sequence

was reported correctly, the notes were replaced with a fixation signal until the

trial duration was reached. If a participant responded incorrectly, the verbal

cue ‘‘INCORRECT’’ appeared and the participant waited for the next trial.

Trials not finished within the time limit were counted as incorrect.

Subjects trained on 16 different sequences at three different levels of training

exposure. Three sequences were trained frequently; with 189 trials for each

sequence, and uniformly distributed across the training sessions. These

‘‘frequent sequences’’ are the focus of the present manuscript. The following

frequent sequences were presented: s1, 324124134132; s2, 342142134312;

and s3, 231431241342. These numbers indicate the placement of the musical

note on the staff: notes on the top line are represented by a 1while notes on the

bottom line are represented by a 4. In addition, there was a second set of three

sequences, each presented for 30 trials, and a third set of ten sequences, each

presented for between four and eight trials, during training. For the remainder

of this paper, we report the results for the three frequent sequences.

Frequent sequences were practiced in blocks of 10 trials, with 9 out of 10

being the same frequent sequence, and the other a rare sequence. Trials

were separated by an interstimulus interval between 0 s and 20 s, not including

time remaining from the previous trial. Following the completion of each block,

and in order to motivate subjects, feedback was presented that detailed the

number of correct trials and the mean time needed to complete a sequence

for the block. Training epochs contained 40 trials (i.e., four blocks) and lasted

345 scans. Each training session contained six scan epochs and lasted a total

of 2,070 scans.
Behavioral Apparatus

Stimulus presentation was controlled with a laptop computer running

MATLAB 7.1 (Mathworks, Natick, MA) in conjunction with Cogent 2000.

Key-press responses and response times were collected using a button box

connected to a digital response card (DAQCard-6024e; National Instruments,

Austin, TX).

Imaging Procedures

Functional MRI recordings were conducted using a 3.0 T Siemens Trio with

a 12-channel phased-array head coil. For each epoch, a single-shot echo

planar imaging sequence that is sensitive to BOLD contrast was used to

acquire 33 slices per repetition time (TR = 2000 ms; 3 mm thickness; 0.5 mm

gap), echo time (TE) of 30 ms, flip angle of 90�, field of view of 192 mm, and

64 3 64 acquisition matrix. Before the collection of the first epoch, a high-

resolution T1-weighted sagittal image of the whole brain was acquired (TR =

15.0 ms; TE = 4.2 ms; flip angle = 9�, 3D acquisition, field of view of 256 mm;

slice thickness = 0.89 mm; and acquisition matrix = 256 3 256).

Data Analysis: Behavior

We collected three behavioral variables during training: the time between key

presses (i.e., the vector of interkey intervals), movement time (MT), and error.

MT is the time elapsed from the initial to final key press. Error was scored as

any trial not produced in the correct order, as well as those trials not completed

within the 8 s time limit. To test for learning, we entered the MT data for each

subject, sequence, and session into a repeated-measures ANOVA (with

subject treated as a random factor). To test for differences in error over

training, we combined error for each frequent sequence and entered them

for each subject and session using a repeated-measures ANOVA. For all

statistical tests, we set a probability threshold of p < 0.05 for the rejection of

the null hypothesis.

Sequence Network Construction

We collected IKI data for all correct frequent-sequence trials. Each trial con-

sisted of 11 IKI data points (Figure 1A). We excluded the first key press in

the sequence from the IKIs because it contained the time elapsed from initial

cue presentation to the completion of the first button press. We calculated the

mean for each frequent-sequence IKI (giving a total of 11mean IKIs/sequence)

for each participant. We then excluded trials containing IKIs greater than 3 SDs

from each mean IKI. To facilitate the examination of chunking behavior, we

constructed a sequence network to encode the relationship between IKIs for

each trial. We defined the nodes for each sequence network as the 11 IKIs

for a trial (Figure 1B). We defined motor chunks as specific groups of move-

ments that occur serially in time. Consecutive nodes are therefore connected

to one another using undirected edges; the node representing IKI1 is con-

nected to the node representing IKI2, and the node representing IKI2 is also

connected to the node representing IKI1 (Figure 1C). Furthermore, intrachunk

movements occur in rapid succession relative to interchunk movements. We

therefore defined the similarity in IKIs as ðdij � dijÞ=dij , where dij is defined as

the absolute difference in IKIs, (i.e., dij = jIKIi – IKIjj) and dij is defined as the

maximum of dij over the entire trial. In each sequence network, these similarity

scores weight the connecting edges between neighboring nodes only: the

weightw12 between nodes 1 and 2 is equal to the similarity s12 between nodes

1 and 2 (Figure 1C). We define the weight matrix w to be the 11 3 11 matrix

whose elements wij represent the pairwise connectivities of the sequence

network. Importantly, consecutive IKIs (e.g., IKI1 and IKI2, IKI2 and IKI3, etc.,

located along the j1j-diagonal of w) are linked by the nonzero weights sij, but

nonconsecutive IKIs (e.g., IKI1 and IKI3, IKI1 and IKI4, etc., located in the j2j-
to j11j-diagonals of w) are linked by zero-valued weights to hard-code the

fact that only sequential movements are related. This process creates the

chain topology shown in Figure 1C.

Multitrial Sequence Network Construction

One can investigate chunking behavior in the individual sequence networks for

each trial by using an algorithm for community detection (Fortunato, 2010;

Porter et al., 2009). However, this treats the movements in each sequence

as if they were independent of other trials and ignores the information available

in consecutive trials. This would imply that chunking could be based on outlier
Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc. 943
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behavior of single trials. To prevent this, we used information from mul-

tiple adjacent trials to determine chunking structure, based on a multilayer

approach (Bassett et al., 2011; Mucha et al., 2010). To do this, we linked the

sequence network from a single trial to the sequence network of the subse-

quent trial by connecting each node in the first network with itself in the second

network (Figure 1D) with weight equal to the selected intertrial coupling param-

eter (see below). Thus, each trial defines a layer in the multilayer structure. We

constructed separate multilayer-sequence networks by combining all trials for

each of the three frequent sequences for each participant.

Chunk Detection

After constructing amultilayer sequence network, we identified chunks by per-

forming community detection using a multilayer extension (Mucha et al., 2010)

of the popular modularity-optimization approach (Fortunato, 2010; Newman,

2010; Porter et al., 2009; Newman, 2004). Communities in sequence networks

represent movement chunks. Modularity-optimization algorithms applied to

individual networks seek groups of nodes that are more strongly connected

to one another than they are to other groups of nodes. In a multilayer com-

munity-detection algorithm, one performs a similar optimization procedure

that simultaneously utilizes information from consecutive layers. This allows

chunks to be identified within a sequence based on evidence across adjacent

trials. The result is a partitioning of the IKIs in each sequence into chunks (Fig-

ure 1E). It is important to note that these partitions can vary between

sequences and within sequences over training.

Parameter Selection

Multitrial community detection requires the selection of two resolution param-

eters (Mucha et al., 2010; Porter et al., 2009): one determines the relative

weights between intratrial IKIs and the other determines the relative weights

between intertrial IKIs. The intratrial resolution parameter (g), which determines

the sensitivity of multilayer modularity to the size of chunks, was set to 0.9. The

intertrial coupling parameter (C), which determines the sensitivity of multilayer

modularity to variability across trials, was set to 0.03. We selected these two

parameters based on the following. Previous chunking studies suggest that

sequences are separable into chunks containing three to five elements

(Bo and Seidler, 2009; Verwey, 2001). We expected to find sequences that

contained between two and four chunks and selected g accordingly. Second,

longer sequences that contain multiple chunks have slower IKIs at the bound-

aries of a chunk relative to the other IKIs found within a chunk (Sakai et al.,

2003; Verwey, 2001). We selected C and g so that slow IKIs for a trial marked

the transition between serial chunks. Third, chunking patterns are not

constant, but are plastic over the course of learning (Sakai et al., 2003; Verwey,

1996). Accordingly, we selected a value ofC that allows for realistic plasticity in

chunk boundaries over training.

Diagnostics

We studied chunking characteristics in terms of the segregation of a sequence

trial into chunks ðQsingle-trialÞ, and its multiplicative inverse, chunk magnitude 4,

which measures the aggregate strength of chunking for a given trial. Both the

segregation and aggregation single-trial diagnostics were based on the maxi-

mization of the multilayer modularity quality function (Q), which provided the

best partitioning of the multilayer sequence networks into chunks. The identi-

fication of the optimal partition isNP-hard, and herewe employ a generalization

of the Louvain approach (Blondel et al., 2008). The modularity of a partition of

a sequence network is defined in terms of the weight matrix w. In the simplest

case of computing the modularity for a single trial, we suppose that IKIi is as-

signed to chunk gi and IKIj is assigned to chunk gj. The network modularity Q

(Newman and Girvan, 2004) is then defined as

Q=
X
ij

½wij � Pij �d
�
gi ;gj

�
; (Equation 1)

where dðgi ;gjÞ= 1 if gi = gj and 0 otherwise, andPij is the expected weight of the

edge connecting IKIi and IKIj under a specified null model (Fortunato, 2010;

Porter et al., 2009). In the multitrial network case, we use a more complicated

formula developed in Mucha et al. (2010) for a broad class of time-dependent

and multiplex networks. In this case, the quality function to be maximized is

given by
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Qmultitrial =
1

2m

X
ijlr

��
Aijl � gl

kilkjl
2ml

�
dlr + dij Cjlr

�
d
�
gil;gjr

�
; (Equation 2)

where the adjacency matrix of trial l has components Aijl , gl is the resolution

parameter of trial l, gil gives the community assignment of node i in layer l,

gjr gives the community assignment of node j in layer r, Cjlr is the connection

strength between node j in layer r and node j in layer l, kil is the strength of

node i in layer l, 2m=
P

jrkjr , kjl = kjl + cjl , and cjl =
P

rCjlr . In optimizing

Qmultitrial , we attained optimal partitions for all trials simultaneously using the

constant values gt =0:9 and for neighboring layers l and r,Cjlr = 0:03. To deter-

mine the modularity of each trial separately ðQsingle-trialÞ we computed the

modularity function Q given in Equation 1 using the partition assigned to that

trial by Qmultitrial.

Chunk magnitude (4) is defined as 1=Qsingle-trial . Low values of 4 correspond

to trials with greater segmentation, which are computationally easier to split

into chunks, and high values of 4 correspond to trials with greater chunk

concatenation, which contain chunks that are more difficult to computationally

isolate. We normalized the values of 4 across correct trials for each frequent

sequence,

4=

�ð4t � 4Þ
4

�
; (Equation 3)

where 4t is the chunk magnitude for a single trial and 4 is the mean chunk

magnitude.

Statistical Validation

An important caveat of modularity-optimization algorithms is that they provide

a partition for any network under study, whether or not that network has signif-

icant community structure (Fortunato, 2010). It is therefore imperative to

compare results obtained from empirical networks to random null models in

which the empirical network structure has been destroyed. We constructed

a random null model by randomly shuffling the temporal placement of IKIs

within the network for each trial. By contrasting the optimal modularity

Qmultitrial of the empirical network to that of this null-model network, the amount

of modular structure (i.e., the amount of chunking) observed in the real data

can be tested.

Statistical Sampling

As described in Good et al. (2010), modularity-optimization algorithms can

yield numerous partitions near the optimum solution for the same network.

The number of near-degenerate solutions increases significantly with network

size and when the distribution of edge weights approaches a bimodal distribu-

tion (i.e., when the networks are unweighted). In the current application, our

use of small networks (11 nodes in each layer and approximately 150 layers

in a multilayer sequence network) with weighted connections minimizes the

risk of near-degeneracy. In addition, we sampled the optimization landscape

100 times for each network, albeit with the same computational heuristic

(different results occur because of pseudorandom ordering of nodes in the

algorithm). We report the mean and SD from those 100 samples. The mean

results are expected to be representative of the system structure, and such

a procedure has been used for other networks (Bassett et al., 2011).

fMRI Data Analysis

We executed the preprocessing and analysis of the functional imaging data in

Statistical Parametric Mapping (SPM5, Wellcome Department of Cognitive

Neurology, London, UK). Raw functional data were realigned, coregistered

to the native T1, normalized to the MNI-152 template with a resolution of

3 3 3 3 3 mm and a smoothing kernel of 8 mm full-width at half-maximum.

To control for potential fluctuations in intensity across the training sessions

and the test session, we normalized global intensity across all functional

volumes by scaling each volume by the aggregate voxel mean.

The design matrix included all trial types as well as the blocking variables for

run epochs. We determined relative differences in the BOLD signal by using

a general linear model (GLM) for event-related functional data. We created

first-level designs with stimulus onset timing vectors for each frequent

sequence. To isolate brain regions that are involved in chunking the frequent
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sequences, we included an additional covariate vector that contained the

normalized 4 values based on the segmentation patterns attained from

community detection. Differences in brain activity due to MT were accounted

for by using MT as the modeled duration for corresponding events. MT is

a direct measure of time spent on the task rather than the magnitude of

a behavior, so it is logical to model this temporal measure in terms of duration.

This approach leads to accurate modeling of the BOLD response in the GLM

(Grinband et al., 2008). We convolved events using the canonical hemody-

namic response function (HRF) and temporal derivative of the BOLD signal.

Using freely available software (Steffener et al., 2010), we combined beta

image pairs for each event type (HRF and temporal derivative) at the voxel level

to form a magnitude image (Calhoun et al., 2004)

H= sign
� bB1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibB1 + bB2

q
; (Equation 4)

whereH is the combined amplitude of both the estimation of BOLD ð bB1Þ and its

temporal derivative ð bB2Þ. We performed mixed-effects group analysis using

a full-factorial design, with chunking as the factor (three levels, one for each

frequent sequence). We minimized detection of false positives (type II error)

by using cluster-corrected family-wise error-rate correction at p < 0.05. We

evaluated results pertaining to hypothesis-driven contrasts that failed to

survive this corrected threshold at uncorrected p < 0.001 with a 10-voxel

cluster threshold.

The aim of this investigation was to identify which regions are involved in

motor-sequence chunking based on the correlation of the BOLD response

with 4. Both negative and positive correlations might be present: positive

correlations indicate the regions that support the concatenation of chunks

within a sequence, and negative correlations indicate the regions that support

the segmentation of sequences into separable chunks.

ACKNOWLEDGMENTS

This research is supported in part by Public Health Service grant NS44393

and the Institute for Collaborative Biotechnologies through contract

W911NF-09-D-0001 from theUSArmyResearchOffice, aswell as theNational

Science Foundation (DMS-0645369). M.A.P. acknowledges research award

220020177 from the James S. McDonnell Foundation, as well as the program

‘‘Network Architecture of Brain Structure and Function’’ hosted at the Kavli

Institute for Theoretical Physics. We thank members of the Action Lab for

fruitful discussions. Finally, we thank three anonymous reviewers of a previous

version of this manuscript for their thoughtful comments and suggestions.

Accepted: March 30, 2012

Published: June 6, 2012

REFERENCES

Badre, D., Hoffman, J., Cooney, J.W., and D’Esposito, M. (2009). Hierarchical

cognitive control deficits following damage to the human frontal lobe. Nat.

Neurosci. 12, 515–522.

Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z., and Graybiel, A.M. (2005). Activity

of striatal neurons reflects dynamic encoding and recoding of procedural

memories. Nature 437, 1158–1161.

Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., and

Grafton, S.T. (2011). Dynamic reconfiguration of human brain networks during

learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast

unfolding of communities in large networks. J. Stat. Mech. 10, 10008.

Bo, J., andSeidler, R.D. (2009). Visuospatial workingmemory capacity predicts

the organization of acquired explicit motor sequences. J. Neurophysiol. 101,

3116–3125.

Bo, J., Borza, V., and Seidler, R.D. (2009). Age-related declines in visuospatial

working memory correlate with deficits in explicit motor sequence learning.

J. Neurophysiol. 102, 2744–2754.

Book, W.F. (1908). The Psychology of Skill (Missoula, MT: Montana Press).
Boyd, L.A., Edwards, J.D., Siengsukon, C.S., Vidoni, E.D., Wessel, B.D., and

Linsdell, M.A. (2009). Motor sequence chunking is impaired by basal ganglia

stroke. Neurobiol. Learn. Mem. 92, 35–44.

Calhoun, V.D., Stevens, M.C., Pearlson, G.D., and Kiehl, K.A. (2004). fMRI

analysis with the general linear model: removal of latency-induced amplitude

bias by incorporation of hemodynamic derivative terms. Neuroimage 22,

252–257.

Crossman, E.R.F.W. (1959). A theory of the acquisition of speed-skill.

Ergonomics 2, 153–166.

Doyon, J., and Ungerleider, L.G. (2002). Functional anatomy of motor skill

learning. In Neuropsychology of Memory, L.R. Squire and D.L. Schacter,

eds. (New York: Guilford Press), pp. 225–238.

Doyon, J., and Benali, H. (2005). Reorganization and plasticity in the adult brain

during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167.

Ericsson, K.A., Chase, W.G., and Faloon, S. (1980). Acquisition of a memory

skill. Science 208, 1181–1182.

Fortunato, S. (2010). Community detection in graphs. Phys. Rep. 486, 75–174.

Gallistel, C.R. (1980). The Organization of Action: A New Synthesis (Hillsdale,

NJ: Erlbaum).

Gobet, F., and Simon, H.A. (1998). Expert chess memory: revisiting the chunk-

ing hypothesis. Memory 6, 225–255.

Good, B.H., de Montjoye, Y.-A., and Clauset, A. (2010). Performance of modu-

larity maximization in practical contexts. Phys. Rev. E Stat. Nonlin. Soft Matter

Phys. 81, 046106.

Graybiel, A.M. (2008). Habits, rituals, and the evaluative brain. Annu. Rev.

Neurosci. 31, 359–387.

Grinband, J., Wager, T.D., Lindquist, M., Ferrera, V.P., and Hirsch, J. (2008).

Detection of time-varying signals in event-related fMRI designs. Neuroimage

43, 509–520.

Halford, G.S., Wilson, W.H., and Phillips, S. (1998). Processing capacity

defined by relational complexity: implications for comparative, developmental,

and cognitive psychology. Behav. Brain Sci. 21, 803–831, discussion 831–864.

Hamilton, A.F.C., and Grafton, S.T. (2006). Goal representation in human ante-

rior intraparietal sulcus. J. Neurosci. 26, 1133–1137.

Hamilton, A.F.C., andGrafton, S.T. (2008). Action outcomes are represented in

human inferior frontoparietal cortex. Cereb. Cortex 18, 1160–1168.

Hikosaka, O., Nakahara, H., Rand, M.K., Sakai, K., Lu, X., Nakamura, K.,

Miyachi, S., and Doya, K. (1999). Parallel neural networks for learning sequen-

tial procedures. Trends Neurosci. 22, 464–471.

Hikosaka, O., Nakamura, K., Sakai, K., and Nakahara, H. (2002). Central mech-

anisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222.

Jin, X., and Costa, R.M. (2010). Start/stop signals emerge in nigrostriatal

circuits during sequence learning. Nature 466, 457–462.

Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V., and Graybiel, A.M. (1999).

Building neural representations of habits. Science 286, 1745–1749.

Jubault, T., Ody, C., and Koechlin, E. (2007). Serial organization of human

behavior in the inferior parietal cortex. J. Neurosci. 27, 11028–11036.

Kennerley, S.W., Sakai, K., and Rushworth, M.F.S. (2004). Organization of

action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993.

Koechlin, E., and Jubault, T. (2006). Broca’s area and the hierarchical organi-

zation of human behavior. Neuron 50, 963–974.

Lashley, K.S. (1951). The problem of serial order in behavior. In Cerebral

Mechanisms in Behavior, L.A. Jeffress, ed. (New York: John Wiley Press).

Levesque, M., Bedard, M.A., Courtemanche, R., Tremblay, P.L., Scherzer, P.,

and Blanchet, P.J. (2007). Raclopride-induced motor consolidation impair-

ment in primates: role of the dopamine type-2 receptor in movement chunking

into integrated sequences. Exp. Brain Res. 182, 499–508.

Madden, D.J., Spaniol, J., Costello, M.C., Bucur, B., White, L.E., Cabeza, R.,

Davis, S.W., Dennis, N.A., Provenzale, J.M., and Huettel, S.A. (2009).

Cerebral white matter integrity mediates adult age differences in cognitive

performance. J. Cogn. Neurosci. 21, 289–302.
Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc. 945



Neuron

Cortical and Subcortical Involvement in Chunking
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., and Onnela, J.-P. (2010).

Community structure in time-dependent, multiscale, and multiplex networks.

Science 328, 876–878.

Newman, M.E.J. (2004). Fast algorithm for detecting community structure in

networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 066133.

Newman, M.E.J. (2010). Networks: An Introduction (Oxford: Oxford University

Press).

Newman, M.E.J., and Girvan, M. (2004). Finding and evaluating community

structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026113.

Pammi, V.S., Miyapuram, K.P., Ahmed, Samejima, K., Bapi, R.S., and Doya, K.

(2012). Changing the structure of complex visuo-motor sequences selectively

activates the fronto-parietal network. Neuroimage 59, 1180–1189.

Perry, M.E., McDonald, C.R., Hagler, D.J., Jr., Gharapetian, L., Kuperman,

J.M., Koyama, A.K., Dale, A.M., and McEvoy, L.K. (2009). White matter tracts

associated with set-shifting in healthy aging. Neuropsychologia 47, 2835–

2842.

Porter, M.A., Onnela, J.-P., and Mucha, P.J. (2009). Communities in networks.

Not. Am. Math. Soc. 56, 1082–1097, 1164–1166.

Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D.,

Williamson, A., Dahle, C., Gerstorf, D., and Acker, J.D. (2005). Regional brain

changes in aging healthy adults: general trends, individual differences and

modifiers. Cereb. Cortex 15, 1676–1689.

Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., and Davatzikos, C.

(2003). Longitudinal magnetic resonance imaging studies of older adults:

a shrinking brain. J. Neurosci. 23, 3295–3301.

Rhodes, B.J., Bullock, D., Verwey, W.B., Averbeck, B.B., and Page, M.P.A.

(2004). Learning and production of movement sequences: behavioral, neuro-

physiological, and modeling perspectives. Hum. Mov. Sci. 23, 699–746.

Sakai, K., Kitaguchi, K., and Hikosaka, O. (2003). Chunking during human

visuomotor sequence learning. Exp. Brain Res. 152, 229–242.

Shima, K., Isoda, M., Mushiake, H., and Tanji, J. (2007). Categorization of

behavioural sequences in the prefrontal cortex. Nature 445, 315–318.

Steffener, J., Tabert, M., Reuben, A., and Stern, Y. (2010). Investigating hemo-

dynamic response variability at the group level using basis functions.
946 Neuron 74, 936–946, June 7, 2012 ª2012 Elsevier Inc.
Neuroimage 49, 2113–2122. Published online November 12, 2009. 10.1016/

j.neuroimage.2009.11.014.

Thorn, C.A., Atallah, H., Howe, M., and Graybiel, A.M. (2010). Differential

dynamics of activity changes in dorsolateral and dorsomedial striatal loops

during learning. Neuron 66, 781–795.

Tremblay, P.-L., Bedard, M.-A., Levesque, M., Chebli, M., Parent, M.,

Courtemanche, R., and Blanchet, P.J. (2009). Motor sequence learning in

primate: role of the D2 receptor in movement chunking during consolidation.

Behav. Brain Res. 198, 231–239.

Tremblay, P.-L., Bedard, M.-A., Langlois, D., Blanchet, P.J., Lemay, M., and

Parent, M. (2010). Movement chunking during sequence learning is a dopa-

mine-dependant process: a study conducted in Parkinson’s disease. Exp.

Brain Res. 205, 375–385.

Verwey, W.B. (1996). Buffer loading and chunking in sequential keypressing.

J. Exp. Psychol. Hum. Percept. Perform. 22, 544–562.

Verwey, W.B. (2001). Concatenating familiar movement sequences: the versa-

tile cognitive processor. Acta Psychol. (Amst.) 106, 69–95.

Verwey, W.B. (2010). Diminished motor skill development in elderly: indica-

tions for limited motor chunk use. Acta Psychol. (Amst.) 134, 206–214.

Verwey, W.B., and Eikelboom, T. (2003). Evidence for lasting sequence

segmentation in the discrete sequence-production task. J. Mot. Behav. 35,

171–181.

Verwey, W.B., Lammens, R., and van Honk, J. (2002). On the role of the SMA in

the discrete sequence production task: a TMS study. Neuropsychologia 40,

1268–1276.

Verwey, W.B., Abrahamse, E.L., and Jiménez, L. (2009). Segmentation of short
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