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Abstract
We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally
periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our
experiments, we arrange a lattice in a hexagonal configuration with a light-mass defect, and we
harmonically drive the center of the chain with a tunable excitation frequency, amplitude, and
angle. We use a damped, driven variant of a vector Fermi–Pasta–Ulam–Tsingou lattice to model
our experimental setup. Despite the idealized nature of this model, we obtain good qualitative
agreement between theory and experiments for a variety of dynamical behaviors. We find that the
spatial decay is direction-dependent and that drive amplitudes along fundamental displacement
axes lead to nonlinear resonant peaks in frequency continuations that are similar to those that
occur in one-dimensional damped, driven lattices. However, we observe numerically that driving
along other directions results in asymmetric NLMs that bifurcate from the main solution branch,
which consists of symmetric NLMs. We also demonstrate both experimentally and numerically
that solutions that appear to be time-quasiperiodic bifurcate from the branch of symmetric
time-periodic NLMs.

1. Introduction

Discrete breathers are spatially localized, time-periodic solutions of nonlinear lattice differential equations.
They have been studied in a host of scientific problems, including optical waveguide arrays and
photorefractive crystals [1], Josephson-junction ladders [2, 3], layered antiferromagnetic crystals [4, 5],
halide-bridged transition-metal complexes [6], dynamical models of the DNA double strand [7], molecular
lattices [8], Bose–Einstein condensates in optical lattices [9], and many others.

Most of the immense volume of work—now spanning more than three decades—on discrete breathers
has been in one-dimensional (1D) lattices [10–12]. Most relevant to the present article is research on
discrete breathers in Fermi–Pasta–Ulam–Tsingou (FPUT) lattices, which have nonlinear inter-site coupling
[13, 14]. FPUT-like lattices with power-law potentials have been used to model a variety of mechanical
systems, such as granular crystals [15–18] and (more recently) magnetic lattices [19–21].

There have also been some studies of breathers in two-dimensional (2D) lattices, although there are
many fewer such studies than there have been of breathers in 1D lattices. There are even fewer studies of
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in-plane breathers [22]. Example 2D physical settings in which breathers have been examined include
crystal lattices [12, 23], electric circuits [24], and dusty plasmas [25, 26]. Breathers in 2D lattices have been
analyzed with both asymptotic methods [27] and numerical methods in both homogeneous [22, 28] and
heterogeneous media [29, 30]. See [8, 31] for overviews of results about 2D discrete breathers.

The 2D setting of the present work is a mechanical system in which each magnet has two in-plane
displacement fields, which distinguishes it from many studies of scalar 2D lattices, such as those that
describe electrical circuits [24]. Specifically, we examine a lattice of repelling magnets that are arranged in a
hexagonal configuration. The choice of a hexagonal arrangement is motivated by our experimental setup, as
hexagonal configurations are more robust structurally than other arrangements (such as square
configurations). At the center of the lattice, there is a light-mass defect, which introduces a localized defect
mode into the spectrum of the linearization of the system. To excite the system experimentally, we drive the
center of the lattice by a force. This force arises from the current that flows along a wire that we suspend
above the lattice. We model damping using a dashpot term. Putting everything together, the proposed
model for our experimental setup is a damped, driven variant of a vector FPUT lattice.

Although a breather is defined as a spatially localized and time-periodic structure, it is useful to label
different types of breathers. Linear systems with an impurity or a defect (e.g. with a particle of lighter mass
than the other particles) have isolated points in their spectra that lie above the spectral edge. We use the
term ‘defect modes’ for the associated localized modes [32]. In the presence of nonlinearity, breathers can
bifurcate from these modes and can exist for frequencies other than the linear defect frequency. We study
such breathers in the present work, and we use the term ‘nonlinear localized modes’ (NLMs) [33] for
breathers that manifest in this way. (Such solutions have also been called ‘defect breathers’ in other settings
[34].) By contrast, we use the term ‘intrinsic localized modes’ (ILMs) for breathers that do not manifest via
a defect or an impurity. One way for ILMs, which we do not investigate in the present paper, to manifest is
via a modulational instability of plane waves [10]. In addition to breathers, other kinds of orbits—such as
quasiperiodic and chaotic ones—can also occur in nonlinear lattices. For example, such orbits have been
identified in strongly nonlinear damped, driven granular chains [35, 36], suggesting that such solutions may
also be present in damped, driven magnetic lattices. In the present work, we examine such NLM states, their
stability, and the modes that arise as a result of instabilities.

Our paper proceeds as follows. We present our experimental setup in section 2, and we detail the
corresponding model equations, linear theory, and numerical methods in section 3. We give our main
numerical and experimental results in section 4, where we explore NLM profiles, spatial decay, parameter
continuations, and nearly time-quasiperiodic orbits. We conclude and discuss future challenges in section 5.

2. Experimental setup

We place a 2D lattice of magnetic particles on an air-bearing table to make the particles (i.e. the nodes of
the lattice) levitate. The lattice consists of 127 magnetic particles that are hexagonally packed. We glue 36 of
these particles to the boundaries, and 91 of them are free to move (see figure 1(a)). Each particle is a
3D-printed disk with a hole in the center, where we attach a neodymium magnetic cylinder. We glue a thin
piece of cover glass at the bottom to make the surface smoother and thereby improve the levitation of the
particles. We build the defect particle, which is located in the center of the lattice, by directly attaching the
magnet on the glass without the 3D-printed structure. This particle has a lighter mass and serves as a defect
(see figure 1(b)). The mean mass of a normal disk particle is 138.2 mg ± 3.1 mg (where we measure the
standard deviation from a sample of 20 particles). The defect particle has a mass of 81.6 mg, which
corresponds to 58.68% of the normal particle mass.

We excite the defect particle using an external magnetic field that we generate using a conductive wire
that we place over the particle at a height of 3 mm. We generate the AC current that flows through the wire
from a lock-in amplifier (an SR860 500 kHz DSP lock-in amplifier), and we amplify it with an audio
amplifier (Topping TP22, class D). The equation that describes the force that the wire exerts on a magnet
that is a distance r from it is

Fwire(r) =
Iμ0M

2π

h2 − r2

(h2 + r2)2
, (1)

where h is the height of the wire from the plane of floating disks, I is the wire current, μ0 = 4π × 10−7

N A−2 is the magnetic permeability, and M = 7.8 × 10−3 A m2 is the magnetic moment of the floating
disk. See the appendix for the derivation of equation (1). We use harmonic excitations in our experiment,
so the current through the wire is I(t) = aI0 sin(2πft), where f is the drive frequency (in Hz), a is the
drive-voltage amplitude (in volts), and I0 = 0.1 A V−1 is the current per unit voltage that we measure in the
wire.
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Figure 1. (a) Picture (from a video frame that was used for particle motion tracking) of our experimental setup. The yellow
arrow indicates the direction of the external excitation. (b) Sketches of the (top) normal and (bottom) defect particles.
(c) Magnetic dipole–dipole interactions in experiments (open gray circles) and fitted model using equation (2) (solid black
curve).

The magnets repel each other. In the ideal situation of a perfect dipole–dipole interaction, the magnetic
force between two repelling magnets is

Fmagnet(r) = Arp, (2)

where r is the distance (in meters) between the two center points of the magnets, p = −4, and
A = 3μ0M2/2π. Although equation (2) is reasonable for large separation distances with the given ideal
values of A and p, we obtain better agreement by empirically determining A and p. Because the force
between two magnetic dipoles is too small to measure directly, we create a pair of plastic plates, with 25
magnets attached to each plate. We position the plates to align each pair of cylindrical magnets from
opposite plates through their radial directions. We measure the repulsive force as a function of the
displacement between these two plates in a materials tester (Instron ElectroPuls E3000). The distance
between the magnets on each plate is large enough (specifically, it is 2.5 cm) so that we can neglect
interactions between magnets that are not aligned. The distance between a magnet on the first plate and the
non-aligned magnets on the other plate is larger than 25 mm. As one can see in figure 1(c), the interaction
force already approaches 0 for distances that are significantly smaller than 25 mm. Consequently, the
measured force is approximately equal to the sum of the repulsive forces of the 25 isolated magnet pairs. We
fit the data using equation (2), which yields p ≈ −4.2 and A ≈ 3.8 × 10−12 N/mp (see figure 1(c)).

We monitor the motion of the center particle using a laser vibrometer (Polytec CLV-2534), and we
record the dynamics of the rest of the lattice using a digital camera (Point Gray GS3-U3-41C6C-C) with a
frame rate of 90 fps. We analyze the images using digital-image-correlation (DIC) software (VIC-2D) to
determine each particle’s velocity. We inspect half of the lattice, as the cables that are connected to the
driving wire block most of the system’s other half (see figure 1(a)). Due to imperfections at the bottom of
the glass disks (e.g. dust, scratches, and so on) and the fact that mass is not distributed evenly on a disk, a
few particles start to rotate when they are levitated by the air that flows out of the air-bearing table. The
DIC software then loses track of them. We ignore these rotating disks in our subsequent analysis. To
estimate the value of the damping coefficient γ of a linear dashpot term, we excite the center particle in the
lattice and let the resulting temporal amplitude decay to rest once we switch off the excitation. We then
perform a linear regression on the logarithm of the amplitude to obtain an estimate for the decay rate β,
where we are assuming an exponential decay that is proportional to eβt. We then choose γ by minimizing
the objective function |β − βr(γ)|, where βr(γ) is the real part of the eigenvalue that is associated with the
defect mode of the linear system with damping but no driving. (See equations (12, 13) with a = 0.) We do
this because the linear defect mode in the damped, undriven system decays exponentially to 0 with a rate of
βr(γ). This procedure yields γ ≈ 10.52 × 10−3 N s m−1. The lattice particles are always in motion with at
least small speeds, even in the absence of excitation. This is due to interactions with the air flow from the
table and imperfections (e.g. nonaxisymmetric mass distributions) of the particles. We use this motion to
estimate the noise in the system. To evaluate the amount of noise, we record the lattice motion without
excitation as a comparison; see the appendix for details about our noise estimation. We summarize the
values of our measured and fitted parameters in table 1.
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Table 1. Summary of the measured and fitted parameter values in our experimental setup.

Description Symbol Value (measured) Description Symbol Value (fitted)

Mass of a bulk magnet Mb 138.2 mg Magnetic coefficient A 3.8 × 10−12 N/mp

Defect mass Mδ 81.6 mg Nonlinearity exponent p −4.2
Static-equilibrium distance δ 13.7 mm Damping coefficient γ 10.52 × 10−3 N s m−1

Wire height h 3 mm Magnetic moment M 7.8 × 10−3 A m2

3. Theoretical setup

3.1. Model equations
Our goal is to study NLMs in a 2D hexagonal lattice. In selecting equations to model the system that we
described in section 2, we seek the simplest possible model that incorporates the ingredients (nonlinearity,
discreteness, and appropriate dimensionality) that are essential for NLMs and also yield reasonable
agreement with experimental data. It is in this spirit that we develop our model equations. After doing so,
we briefly discuss model simplifications.

We consider a hexagonally-packed lattice of magnets. We use the lattice basis vectors e1 = (1, 0) and
e2 = (1/2,

√
3/2). Let qm,n(t) = (xm,n(t), ym,n(t)) ∈ R2 denote the displacement from the static equilibrium

of the magnet at position p = δ(me1 + ne2) in the plane (see figure 2(a)), where δ is the center-to-center
distance between two particles at static equilibrium. The lattice indices m and n take the values
{−w,−(w − 1), . . . , 0, . . . ,w − 1,w}, where w is the number of magnets along an edge of the hexagon.
The lattice boundary is given by the hexagon with magnets at positions (wδ cos(jπ/3),
wδ sin(jπ/3)), where j ∈ {0, 1, . . . ,w − 1} (see figure 2(b)). For our fixed boundary conditions along the
edge of the hexagonal boundary, qm,n(t) = 0 if |m + n| > w.

One can express the distance between the magnet with index (m, n) and one of its nearest neighbors in
terms of the displacements xm,n and ym,n of the magnets from their respective static-equilibrium positions.
Once we determine this distance, we compute the resulting force using equation (2). Summing the forces
from each of the six nearest neighbors and applying Newton’s second law leads to the following equations
of motion:

Mm,nq̈m,n = −F0(qm+1,n − qm,n) − F1(qm,n+1 − qm,n) + F−1(qm,n − qm−1,n+1)

+ F0(qm,n − qm−1,n) + F1(qm,n − qm,n−1) − F−1(qm+1,n−1 − qm,n) − γq̇m,n + Fext
m,n(t) .

(3)

The vector functions Fj(q) = Fj(x, y) ∈ R2 have magnitudes of

|Fj(x, y)| = A
[√

(δ cos(θj) + x)2 + (δ sin(θj) + y)2
]p

, θj =
jπ

3
, j ∈ {−1, 0, 1} ,

and their directions are given by the relative displacement vector (δ cos(θj) + x, δ sin(θj) + y). The mass of
the magnet with index (m, n) is Mm,n. The dashpot term γq̇m,n is a phenomenological term that we add to
account for damping. Using such a term has yielded reasonable agreement with experiments in other,
similar lattices [19, 37, 38]. The quantity Fext

m,n is the external force that we apply to the magnet at (m, n). In
the present article, we consider excitations via a wire that is directly above the center of the lattice. The
magnitude of the excitation is given by equation (1). Therefore,

Fext
0,0(t) = a sin(2πft)

I0μ0M
2π

⎛
⎜⎜⎝

cos(φ)
h2 − x2

0,0

(h2 + x2
0,0)2

sin(φ)
h2 − y2

0,0

(h2 + y2
0,0)2

⎞
⎟⎟⎠ , (4)

where φ is the angle of the excitation and Fext
m,n = 0 when m �= 0 and n �= 0. In our experiments and in most

of our numerical computations, the excitation angle is φ = π/2, so we excite only the y-component of the
center magnet. We will also explore some other excitation angles. As we discuss in the appendix, the lattice
forces dominate the dynamics. The wire has only a small effect on magnets other than the one in the center
of the lattice. For example, at static equilibrium, the force that is exerted on the center magnet by the wire is
two orders of magnitude larger than the force that the wire exerts on the center magnet’s nearest neighbors.
Compare the results of inserting r = 0 and r = δ into equation (1).

In our model, we ignore effects beyond nearest-neighbor coupling of the magnetic interactions. It is
known that such long-range effects can alter the structure of localized modes. For example, it was shown in
[39] that the spatial decay of breathers can transition from exponential spatial decay to algebraic decay in
lattices with algebraically decaying interaction forces (as is the case in our model) for lattices with
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Figure 2. (a) Orientation for our convention of indexing particles in a hexagonal lattice. The m axis and n axis meet at an angle
of θ = π/3. (b) A hexagonal lattice with w = 6 magnets along each edge of the lattice. The empty circles and solid center circle
represent the locations of the magnets in static equilibrium. The outer hexagonal boundary is the solid gray hexagon that
encloses the lattice. On the boundary, the solid points represent fixed (i.e. immovable) magnets. There are w + 1 such magnets
along each edge of the boundary. The solid circle represents the defect particle, which has index (m, n) = (0, 0).

sufficiently many sites. More recently, Molerón et al [38] studied NLMs in a 1D magnetic lattice using a
model with long-range interactions. Although the differences between long-range and nearest-neighbor
lattices that were considered in [38] are detectable, they are still small. For example, at static equilibrium,
the force that is exerted on the center magnet by its nearest neighbors is one order of magnitude larger than
that exerted by its next-nearest neighbor. Compare the results of inserting r = δ and r = 2δ into
equation (2). To keep our model as simple as possible, we ignore such small long-range effects.

In our analysis of experimental data, we ignore magnets that are rotating, so our model does not
account for rotation. This leaves air resistance as the primary source of damping. Given the size of the
magnets and velocities that we consider, we employ a linear dashpot [40]. We also assume that the magnets
stay in a plane. We evaluate the many assumptions that we made in formulating the model in equation (3)
via a direct comparison with experimental results in section 4.

For the remainder of the manuscript, we fix all parameters of the model (and we summarize them in
table 1), except for the excitation amplitude a, frequency f, and angle φ. We will specify these in our various
examples. In all cases, we examine a lattice with a single defect particle in the center and a hexagonal
boundary with a length of w = 6 magnets (see figure 2). Importantly, we do not fit the parameter values to
the reported experimental results. Instead, we determine them beforehand using the procedures that we
detailed in section 2.

3.2. Linear analysis
We start with the basic linear theory of localized modes for our hexagonal magnetic lattice. We are
particularly interested in modes with frequencies that lie above the cutoff frequency of the pass band. We
first derive an analytical expression for the cutoff frequency, which is straightforward for an
infinite-dimensional Hamiltonian system (i.e. with all integers m and n, along with a = 0 and γ = 0). We
then numerically estimate the frequency of a linear mode that is associated with the defect in the associated
finite-dimensional Hamiltonian system. Finally, we compute linear localized modes in the associated
finite-dimensional damped, driven system.

Assuming small strains, such that

|qm±1,n − qm,n|
δ

� 1 ,
|qm,n±1 − qm,n|

δ
� 1 ,

|qm±1,n∓1 − qm,n|
δ

� 1 , (5)

we Taylor expand to obtain
Fj(q) ≈ Fj(q0) + DFj(q0)q ,

where DFj is the Jacobian matrix of Fj. Using this notation, the linearized equations of motion are

Mm,nq̈m,n = −DF0(qm+1,n + qm−1,n) − DF1(qm,n+1 + qm,n−1)

− DF−1(qm−1,n+1 + qm+1,n−1) + 2(DF0 + DF1 + DF−1)qm ,n , (6)

where

DFj =

(
aj bj

cj dj

)
, j ∈ {−1, 0, 1} ,

5
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Figure 3. (a) Contour plot of the bottom dispersion surface. We show the irreducible Brillouin zone as the triangle with magnets
at the points that we mark by M, K, and Γ. (b) Contour plot of the top dispersion surface. (c) Band structure along the edge of
the irreducible Brillouin zone (also see the triangle in panel (a)) for the bottom (dashed gray curve) and top (solid black curve)
dispersion surfaces. The horizontal dashed curve corresponds to the defect-mode frequency f ≈ 9.17 Hz in a finite-dimensional
system with a mass ratio of Mδ/Mb ≈ 0.5868, where Mδ denotes the mass of the defect magnet and Mb denotes the mass of the
other (‘bulk’) magnets.

with

a−1 = pδ̂ , b−1 = 0 , c−1 = 0 , d−1 = δ̂ ,

a0 =
3 + p

4
δ̂ , b0 =

√
3(p − 1)

4
δ̂ , c0 = b0 , d0 =

1 + 3p

4
δ̂ ,

a1 = a0 , b1 = −b0 , c1 = −c0 , d1 = d0 ,

and δ̂ ≡ Aδp−1. For a monoatomic system (in which all magnets are identical, such that Mm,n = Mb), the
linear system has plane-wave solutions

qm,n = q0 exp
(

i(km +
n

2
(k +

√
3�))

)
eiωt , q0 ∈ C

2, k, �,ω ∈ R ,

where the wavenumbers k, � and angular frequency ω = ω(k, �) satisfy the dispersion relationship

[ω(k, �)]2 =
ωa + ωd ±

√
(ωa + ωd)2 − 4(ωaωd − ωbωc)

2
, (7)

with

ωα(k, �) = (−2α−1 cos(k) − 2α0 cos(k/2 + (
√

3/2)�) − 2α1 cos(k/2 − (
√

3/2)�) + 2(α−1 + α0 + α1))/Mb

and coefficients αj ∈ {aj, bj, cj, dj} (with j ∈ {−1, 0, 1}). In figures 3(a) and 3(b), we show contour plots of
the two dispersion surfaces from equation (7). In figure 3(c), we show the dispersion curves along the edge
of the irreducible Brillouin zone. The cutoff value of the pass band has the wavenumber pair
(k, �) = (0, 2π/3), which is where the dispersion curve attains its maximum value. For the parameter values
in table 1, the cutoff frequency is fc = ω+(0, 2π/3)/(2π) ≈ 8.77 Hz, where ω+ corresponds to the top
dispersion surface.

The presence of the lighter defect introduces a linear mode into the system that is localized in space and
oscillates with a frequency that is above the cutoff frequency of the linear monoatomic system. With the
light-mass defect at the center of the lattice, we write

Mm,n =

⎧⎨
⎩Mδ , n = 0 and m = 0

Mb , otherwise ,
(8)

where (0, 0) is the index of the defect magnet with mass Mδ , the quantity Mb is the mass of a magnet in the
‘bulk’ (i.e. the non-defect mass), and Mδ < Mb. We now consider a finite lattice, for which we numerically
compute the linear modes of the system with a mass defect. We use a hexagonal boundary with an edge
length of w = 6 magnets (see figure 2(b)). One can embed this lattice into a square matrix of size N × N,
where N = 2w − 1 is the number magnets along the n = 0 line of the lattice. Let X(t) be the N × N matrix
whose (m, n)th entry is xm,n(t), and let Y(t) be the N × N matrix whose (m, n)th entry is ym,n(t). We enforce
the fixed hexagonal boundaries by setting the displacements of magnets with indices (m, n) such that
|m + n| > w to 0. We define the N × N matrix operators Lα using the equation

LαY = α1DY + α0YD + α−1(ETYET + EYE − 2Y) , (9)

6
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Figure 4. (a) and (b) Shapes of the two modes with defect frequency fd ≈ 9.17 Hz of the linear Hamiltonian system (6) with

w = 6 magnets along each edge of the boundary. The color intensity at each point (m, n) corresponds to
√

ẋ2
m,n + ẏ2

m,n .
(c) Shape of the mode that corresponds to the cutoff frequency fc ≈ 8.77 Hz for the same system as in (a) and (b). (d) Root mean
square (RMS) of ẏ0,0 of the linear damped, driven solution (14) as a function of the drive frequency f with excitation amplitude
a = 0.01 mV and φ = π/2. (e) RMS of the y-component of the velocity of the center particle for the experimental frequency
sweep with a = 4 mV and φ = π/2.

where αj ∈ {aj, bj, cj, dj} (with j ∈ {−1, 0, 1}); the N × N tridiagonal matrix D has 1 entries along the
super-diagonals and sub-diagonals, 2 entries along the diagonal, and 0 entries everywhere else; E is an
N × N matrix with 1 entries along the super-diagonal and 0 entries everywhere else; and ET is the transpose
of E. With these definitions, equation (6) becomes

M ◦ Ẍ(t) = LaX(t) + LbY(t) ,

M ◦ Ÿ(t) = LcX(t) + LdY(t) , (10)

where M is an N × N matrix in which all entries except the (0, 0)th entry (which is equal to Mδ) are equal
to Mb. The operation ◦ denotes pointwise multiplication (i.e. the Hadamard product). The system (10) has
solutions (X(t), Y(t)) such that X(t) = X̃ eiωt and Y(t) = Ỹ eiωt , where X̃ and Ỹ are N × N
time-independent matrices and

−ω2

(
M ◦ X̃
M ◦ Ỹ

)
=

(
La Lb

Lc Ld

)(
X̃
Ỹ

)
. (11)

One can cast equation (11) as a standard eigenvalue problem by letting λ = −ω2 and unwrapping the X̃
and Ỹ matrices into equivalent row vectors and reshaping the block matrix (with entries given by Lα) into a
corresponding 2N2 × 2N2 matrix. One can then numerically solve the resulting eigenvalue problem to
obtain 2N2 eigenvalues and their corresponding modes. Using the values in table 1 and w = 6 (which yields
N = 11), we see that two eigenvalues (each with a frequency of

√
−λ/(2π) = ω/(2π) = fd ≈ 9.17) lie

above the cutoff frequency fc ≈ 8.77 Hz. The rotational symmetry of order 6 of the hexagonal lattice
suggests that eigenvalues come in nearly resonant triplets, rather than in pairs [41]. Although this is indeed
true for a homogeneous hexagonal lattice, the presence of the defect splits the largest nearly resonant triplet
into a pair of eigenvalues with a frequency above the cutoff (representing the defect frequency) and a single,
non-repeated eigenvalue. The spatial structures of the modes that correspond to the three largest
eigenvalues confirm that there are only two defect modes. In particular, the modes that correspond to the
frequency fd have localized spatial structures (see figures 4(a) and 4(b)). By contrast, the mode that
corresponds to the next-largest eigenvalue is spatially extended (see figure 4(c)).

Now suppose that there is driving and damping. Near the (X(t), Y(t)) ≡ 0 background state, the
system (10) yields the following approximate system:

M ◦ Ẍ(t) = LaX(t) + LbY(t) − γẊ(t) + aA cos(φ) sin(2πft) , (12)

M ◦ Ÿ(t) = LcX(t) + LdY(t) − γẎ(t) + aA sin(φ) sin(2πft) , (13)
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where A is an N × N matrix that has all 0 entries except for the single nonzero entry

A0,0 =
I0μ0M
2πh2

.

We obtain A by expanding the external drive function Fext near the vanishing displacements and
maintaining the leading, non-vanishing term. We can then find solutions of the system (12, 13) in the form

X(t) = X̃1 cos(2πft) + X̃2 sin(2πft) , Y(t) = Ỹ1 cos(2πft) + Ỹ2 sin(2πft) , (14)

where we obtain the N × N matrices X̃1, X̃2, Ỹ1, and Ỹ2 by substituting equation (14) into equations (12)
and (13) and then solving the resulting system of linear equations.

We use root mean square (RMS) quantities as our principal diagnostics for evaluating our results (e.g. in
our numerical continuations in section 4). Unless we state otherwise, we compute the RMS of the velocity
of the y-component of the center particle (i.e. ẏ0,0). In this case,

RMS =

√∫ T
0 ẏ2

0,0(t) dt

T
,

where T = 1/f is the period of the excitation frequency. We show a plot of the RMS of ẏ0,0 of the linear state
(14) in figure 4(d) as a function of the excitation frequency for a fixed amplitude of a = 0.01 mV and an
excitation angle of φ = π/2. The lone resonant peak above the cutoff point is close to the estimated defect
frequency fd ≈ 9.17 Hz.

In figure 4(e), we show a frequency sweep in our experiment for a = 4 mV and φ = π/2. We show the
theoretical values of the cutoff frequency fc ≈ 8.77 Hz and defect frequency fd ≈ 9.17 Hz that we found in
section 3.2 as vertical solid and dashed lines, respectively. We see that the experimental resonant peak is
close to the theoretical value. To obtain a cleaner resonant peak, we use an excitation amplitude that is large
enough to overcome the noise in the system. One such amplitude is a = 4 mV. As we will see in section 4,
an excitation amplitude of a = 4 mV is already in the nonlinear regime of the system.

3.3. Numerical methods for the computation of nonlinear localized modes and their stability
For the remainder of our paper, we focus on how the presence of nonlinearity affects the defect-induced
linear localized modes of the system (see, e.g. figure 4(d)). We refer to these solutions, which are localized in
space and periodic in time, as ‘nonlinear localized modes’ (NLMs). We compute them numerically in the
following manner. We compute time-periodic orbits of equation (3) with period T = 1/f to high precision
by finding roots of the map G = x(T) − x(0), where x(T) is the solution of equation (3) at time T with
initial condition x(0) and x ∈ R4N2

is the vector that results from reshaping the matrix with elements xm,n,
ym,n, ẋm,n, and ẏm,n into row vectors and concatenating them into a single vector. We obtain roots of the map
G using a Jacobian-free Newton–Krylov method [42] with an initial guess of our linear state (14). We
perform numerical continuations using a pseudo-arclength algorithm [43] with the excitation frequency f
or amplitude a as our continuation parameter. We determine the linear stability of each solution x by
solving the variational equations V̇ = (DG)V with the initial condition V(0) = I, where I denotes the
identity matrix and DG is the 4N2 × 4N2 Jacobian matrix of the right-hand side of equation (3) evaluated
at the solution x [44]. We calculate the Floquet multipliers, which we denote hereafter by σ, for a solution
by computing the eigenvalues of the matrix V(T). If all of the Floquet multipliers of a solution have an
absolute value that is less than or equal to 1, we say that the solution is ‘linearly stable’. Otherwise, we say
that the solution is ‘unstable’. The Floquet multipliers only give information about the spectral stability of
the solutions, and marginal instabilities that are associated with unit Floquet multipliers and nonlinear
instabilities are possible. Therefore, we verify stability through numerical simulations. In our continuation
diagrams, solid blue segments correspond to stable parameter regions and dashed red segments correspond
to unstable regions. We compute the Floquet multipliers after we obtain a solution with the Newton–Krylov
method to avoid repeatedly solving the large variational system. The latter computation would be necessary
if we were using a standard Newton method, because the Jacobian of the map G is V(T) − I.

4. Main results

4.1. Numerical NLMs
Using the Newton–Krylov method that we described in section 3.3, we obtain a time-periodic solution with
f = 9.3 Hz, a = 4 mV, and φ = π/2. Additionally, because f = 9.3 > 8.77 ≈ fc, this solution is localized in
space (see figure 5(a)). The dominant peak is at the center of the lattice, and the magnets that are adjacent
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Figure 5. Nonlinear localized mode of equation (3) that we obtain using a Newton–Krylov method for a = 4 mV, φ = π/2, and
f = 9.3 Hz. (a) A surface plot of the NLM. We show the RMS of the magnitude of the velocity of each magnet in the lattice. (b)
Intensity plot of the NLM, where the color intensity corresponds to the RMS of the velocity magnitude. (c) Floquet multipliers σ
(blue markers) that are associated with the NLM in the complex plane. We show the unit circle in gray. All multipliers lie within
or on the unit circle, indicating that this solution is stable. (d) In the top panel, we show local maxima of the time series of ẏ0,0

when evolving zero initial data (i.e. the initial values of all variables are equal to 0) for a = 4 mV, φ = π/2, and f = 9.3 Hz. We
approach the value ẏ0,0 ≈ 99.8 mm s−1 of the stable NLM. (See the black line.) In the bottom panel, we show the Fourier
transform of the final 5 seconds of the time series of ẏ0,0. This reveals a single large peak at frequency f ≈ 9.3 Hz.

Figure 6. (a) Decay of the NLM in the θ = π/3 (blue squares) and θ = 0 (yellow circles) directions for a drive amplitude of
a = 4 mV, drive angle of φ = π/2, and drive frequency of f = 9.3 Hz. We show the RMS velocity versus the distance to the origin
of the lattice. We show experimental results as open markers and the numerical results as solid markers that are connected by
lines. The dashed horizontal line is an estimate of the noise floor of the system (see the appendix). (b) The same as panel (a), but
for a drive amplitude of a = 5.5 mV. (c) Time series (top panel) of the center particle of the experimental NLM and the
corresponding Fourier transform (bottom panel) with φ = π/2, f = 9.3 Hz, and a = 4 mV. Despite the presence of some noise,
the solution is predominantly periodic in time. Indeed, the Fourier transform of the time signal is highly localized around the
frequency f = 9.3 Hz.

to the center magnet at angles π/3, 2π/3, 4π/3, and 5π/3 have the next-largest amplitudes (see
figure 5(b)). This is not surprising because we are exciting the lattice along the φ = π/2 direction. The
Floquet multipliers that are associated with this solution each have a magnitude that is no larger than 1,
indicating that the solution is stable (see figure 5(c)). Indeed, upon simulating equation (3) with the initial
values of all variables equal to 0 (i.e. ‘zero initial data’) and f = 9.3 Hz, a = 4 mV, and φ = π/2, the
dynamics approaches this stable NLM. (See the top panel of figure 5(d).) As expected, the Fourier
transform of the corresponding time series is localized around the frequency f ≈ 9.3 Hz.

The spatial decay of the tails of the NLM depends on which direction of observation one considers. For
example, if one measures the RMS velocity of the magnets that lie along the θ = π/3 direction, the decay
appears to be exponential or faster. See the solid blue squares in figure 6(a), which shows the RMS velocity
versus distance from the origin (following the θ = π/3 direction) in a semilogarithmic plot for the NLM
from figure 5 (i.e. for the NLM with f = 9.3 Hz, a = 4 mV, and φ = π/2). This is consistent with the spatial
decay properties of breathers and standing waves in continuous-space settings, such as the one in [45]. The
tails of the breathers therein decay at the rate e−br/

√
r, where b > 0 is a constant. The solid yellow circles in

figure 6(a) illustrate a similar decay for the magnets along the θ = 0 direction for our NLM solution,
although we observe some modulation in the decay profile, in contrast to the dynamics when θ = π/3.
(Modulations in spatial decay have been studied in other settings, such as in the biharmonic φ4 model
[46].) We observe similar decay properties for an NLM with f = 9.3 Hz, a = 5.5 mV and φ = π/2 (see
figure 6(b)).

4.2. Experimental NLMs
In our experiments, it is difficult to initialize the system with predetermined positions and velocities. To
obtain an NLM, we excite the system with a small amplitude (a = 1 mV), which we increase gradually to
the value a = 4 mV over about 3 min. Because we predict that there is a stable NLM at the resulting
parameter values, we record data for a sufficiently long time (specifically, after 90 periods of motion have
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elapsed) once we attain the value a = 4 mV. We track the velocities at the center particle with a laser
vibrometer (see section 2), and we record the time series of the magnet velocities using an oscilloscope. (See
the top panel of figure 6(c).) As expected, we obtain dynamics that are periodic in time, as we can see not
only in the time series but also via its Fourier transform (which we show in the bottom panel of
figure 6(c)). We obtain similar experimental results for an amplitude of a = 5.5 mV.

To examine the spatial decay of the experimental NLM, we record the positions of the magnets in half of
the lattice using a digital camera (see section 2). By numerically differentiating the positions, we obtain an
estimate for the velocities of these magnets. We were unable to measure all magnets because the DIC
software loses track of some of them (if, e.g. the magnets begin to spin). However, we captured enough data
to compute the decay along the two primary directions (θ = π/3 and θ = 0) that we examined in our
numerical NLMs. For data that we obtained with f = 9.3 Hz, a = 4 mV, and φ = π/2, the open blue
squares in figure 6(a) show the decay along the θ = π/3 direction and the open yellow circles show the
decay along the θ = 0 direction. The horizontal dashed line is our estimated mean value of the noise (see
section 2). We show the experimental decay rates along with our numerical results. Although the numerical
values overestimate the RMS velocity, the agreement is still reasonable, especially for the center magnet. We
find similar decay properties in our experiment with f = 9.3 Hz, a = 5.5 mV, and φ = π/2. (See the open
markers of figure 6(b).)

Recall that we do not tune the numerical results to fit the experimentally obtained NLM solution.
Instead, we determine each of the parameter values beforehand, as described in section 2.

4.3. Frequency continuation
In figures 4(e), 6(a), and 6(b), we demonstrated that our model (3) agrees reasonably well with our
experimental data. We now conduct a series of numerical computations in the form of parameter
continuation (see section 3.3 for a description of our procedure) to get a better sense of the role of the
nonlinearity in equation (3) and its interplay with the disorder (at the center magnet) and the discreteness
of the model. We return to our experiments in section 4.4 to see what nonlinear effects we are able to
capture in the laboratory.

We first perform continuation with respect to the excitation frequency f for a fixed excitation angle
φ = π/2 for various values of the excitation amplitude a. We thereby generate nonlinear analogs of the
linear resonant peak that we showed in figure 4(d). In figure 7(a), we show frequency continuations for our
two drive amplitudes, a = 4 mV and a = 5.5, of the NLMs from figures 5, 6(a), and 6(b). By comparing
these frequency continuations to the linear case in figure 4(d), we see that the nonlinearity deforms the
peak, which becomes narrower and starts to bend toward higher frequencies. The nonlinearity also
destabilizes the solutions at some critical frequency; this occurs at f ≈ 9.29 Hz for a = 4 mV and at f ≈ 9.31
Hz for a = 5.5 mV. Therefore, the NLM in figure 6(c) is unstable. Our numerical computations predicted
this NLM to be unstable, so it is notable that we are able to access it in our experiments. Although this
seems to imply that our theory is inconsistent with our experiments for the parameter values
f ≈ 9.31 Hz and a = 5.5 mV, the instability of the NLM for these parameter values is rather weak (with
max(|σi|) ≈ 1.007). We observe instability only after many periods when we perturb the NLM along the
eigenvector that is associated with the unstable Floquet multiplier σ ≈ 1.007. See the top panel of
figure 7(b). However, if we initialize the dynamics with zero initial data, we approach and stay close to the
NLM solution that we obtained via a Newton–Krylov method, even after 200 periods of motion. See the
bottom panel of figure 7(b). This suggests that solutions with weak instabilities can still attract nearby
points in phase space, at least initially, and that our numerical prediction for f ≈ 9.31 Hz and a = 5.5 mV is
consistent with our experimental observations. Figure 7(c) is the same as figure 7(a), but now the color
scale corresponds to the magnitude of the maximum Floquet multiplier. This illustrates that the magnitude
of the instability is weak throughout most of the solution branch. The instability has its largest growth rate
(with max(|σi|) ≈ 2.15) at the peak of the resonant curve. The instability of the NLM with a = 5.5 mV
arises from a pair of complex-conjugate Floquet multipliers that depart from the unit circle at
approximately f = 9.31 Hz. As the frequency decreases, additional multipliers depart from the unit circle. In
figure 7(d), we show the Floquet spectrum for f = 9.2 Hz, indicating that there are purely real multipliers
(corresponding to exponential growth) and complex multipliers (corresponding to oscillatory instabilities).
Although we show only the principal branches of the NLMs in figure 7(a), it is possible that other
bifurcations also occur. Indeed, the non-real nature of the Floquet multipliers that depart from the unit
circle suggest that there may be other types of solutions, such as quasiperiodic ones. We investigate this
possibility in section 4.4. At smaller drive frequencies (within the pass band), the solutions on the main
branch of NLMs can be stable. We do not investigate such solutions in depth, however, because they are
spatially extended (and hence outside the scope of the present paper).
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Figure 7. Frequency continuation of NLMs. (a) Continuation with respect to frequency for a fixed excitation angle φ = π/2 for
the two amplitudes, a = 4 mV and a = 5.5 mV, that we considered in figure 6. (b) In the top panel, we plot the local maxima of
the time series of ẏ0,0 when we perturb the NLM with f = 9.3 Hz and a = 5.5 mV along the eigenvector that is associated with
the largest-magnitude Floquet multiplier. The size of this perturbation is equal to 5% of the amplitude of the solution. The solid
black line shows the corresponding value of the local maximum of the NLM that we obtain via a Newton–Krylov method. In the
bottom panel, we plot local maxima of the time series when evolving zero initial data with a fixed frequency f = 9.3 Hz and
amplitude drive a = 5.5. (c) The same as panel (a), but with color intensity and disk radius corresponding to the magnitude of
the largest Floquet multiplier. Small blue disks are stable, whereas large red disks are unstable. The instabilities are fairly weak,
except near the peaks of the resonant curves. (d) Floquet multipliers σ (markers) that are associated with the NLM at a drive
frequency of f = 9.2 Hz in the complex plane. We show the unit circle in gray. The presence of multipliers that lie outside the
unit circle (red markers) indicates that this solution is unstable.

In figure 8(a), we show the gradual bending of the resonant peak for progressively larger excitation
amplitudes for the excitation angle φ = π/2. In particular, for a = 15 mV, the peak bends so far that
additional solutions emerge at f ≈ 9.3 Hz. However, these large-amplitude solutions are very unstable, and
we were not able to access them either in our direct numerical simulations or in our experiments. Indeed, as
we will discuss in section 4.4, we observe different types of dynamics at large excitation amplitudes. We can
also tune the excitation angle φ and thereby deform the resonant peak in a different way. For example, when
we fix the excitation angle to φ = 0 (i.e. an excitation along n = 0), the resonant curves are qualitatively
similar to those for φ = π/2 for excitation amplitudes of a = 1, a = 2, and a = 4 (see figure 8(b)),
although the stability properties are slightly different. For the large excitation of a = 15 mV, the resonant
curve bends even farther toward higher frequencies. Even greater qualitative differences occur for φ = π/3
(i.e. an excitation along m = 0); see figure 8(c). In this case, for small-amplitude excitations, the resonant
peak has a unimodal shape, as expected. However, as we consider gradually larger excitation amplitudes, an
additional peak begins to emerge from the main solution branch, leading to a two-humped profile in the
dependence of the RMS velocity on the frequency. This deformation is noticeable for relatively small
excitation amplitudes. Specifically, we observe the existence of multiple solutions even for excitation
amplitudes that are as small as a = 3 mV, for which there is bifurcation at frequency f ≈ 9.28 Hz.

The frequency continuation with the excitation angle φ = π/3 is more representative of ‘typical’ angles
than the special cases φ = π/2 and φ = 0. For example, even by decreasing the angle slightly from φ = π/2
to φ = 89π/180, we observe the additional branch in the frequency continuation (see figure 9(a)). We show
an intensity plot of the RMS velocity magnitudes of an NLM at frequency f = 9.2 Hz that belongs to the
main branch (i.e. the branch with smaller-amplitude NLMs) of the φ = 89π/180 continuation in
figure 9(b). It has a similar profile to the NLM in figure 5. We show an intensity plot of the RMS velocity
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Figure 8. (a) Frequency continuation with an excitation angle of φ = π/2 for excitation amplitudes a = 1 mV, a = 2 mV,
a = 4 mV, and a = 15 mV. (b) Frequency continuation with φ = 0 for a = 1 mV, a = 2 mV, a = 4 mV, and a = 15 mV. The
curve that corresponds to a = 15 mV crosses itself to form a loop (as in panel (a)). (c) Frequency continuation with φ = π/3 for
a = 1 mV, a = 1.5 mV, a = 2 mV, and a = 3 mV.

Figure 9. (a) Frequency continuation with an excitation amplitude of a = 3 mV for excitation angles of φ = 89π/180 and
φ = π/2. Our continuations for φ = 89π/180 and φ = π/2 are indistinguishable when we are outside the parameter region in
which the φ = 89π/180 continuation has an additional branch of NLM solutions. (b) Intensity plot of the RMS velocity
magnitudes of the NLM at f = 9.2 Hz that belongs to the lower branch (i.e. the smaller-amplitude NLM branch) of the
φ = 89π/180 continuation. (c) Intensity plot of the RMS velocity magnitudes of the NLM at f = 9.2 Hz that belongs to the
upper branch of the φ = 89π/180 continuation.

magnitudes of an NLM from the other (i.e. larger-amplitude) branch at f = 9.2 Hz in figure 9(c). The
solutions along this branch have secondary amplitudes in the −π/3 direction. It appears that the
asymmetric nature of the drive is responsible for the excitation of this additional solution, whose profile is
distinct from the solutions in the main branch.

4.4. Drive-amplitude sweeps
We now return to the effect of large-amplitude excitations for the parameter set—namely, φ = π/2 and
f ≈ 9.3 Hz—in our laboratory experiments. Our bifurcation analysis revealed that the NLM solution at this
parameter set destabilizes for larger amplitudes, although sometimes the instability is so weak that the
NLMs are effectively stable on short enough time scales (see figure 7(b)). For the parameter values φ = π/2
and f ≈ 9.3 Hz, we also observed that a large-amplitude branch of NLM solutions emerges for sufficiently
large excitation amplitudes (see figure 8(a)).

To study the dynamics at larger amplitudes in experiments, we initialize the system with a
small-amplitude excitation (of a = 1 mV) and gradually increase the amplitude in increments of 0.05 mV.
For each step, we run the system for 90 periods, which allows sufficient time to settle to a steady state if
there is one. We record the RMS of the velocity of the center magnet for the final 5 seconds. We call this
procedure an amplitude ‘upsweep’. We use an analogous procedure when we start with a large excitation
amplitude, which we gradually decrease in steps of size 0.05 mV. We call this procedure an amplitude
‘downsweep’. We show our experimental results for both an upsweep and a downsweep in figure 10(a). For
sufficiently small amplitudes (specifically, for a � 4.5 mV), the upsweep and downsweep approach the same
NLM, suggesting that there is a single stable branch of NLMs for a � 4.5 mV. However, for a � 4.5 mV,
there appear to be two different states; we obtain the small-amplitude states when we perform an upsweep
and the large-amplitude states when we perform a downsweep. The small-amplitude states have the form of
an NLM. The experimental result in figure 6(b) is an example of the small-amplitude state for a = 5.5 mV.
The large-amplitude states are also localized, but they are no longer periodic in time. An inspection of the
Fourier transform of the large-amplitude state for a = 5.5 mV reveals other peaks in the spectrum (in
addition to a peak at the excitation frequency f ≈ 9.3 Hz). In the top panel of figure 10(b), we show the
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Figure 10. (a) RMS of the y-component of the velocity of the center magnet for experiments with an upsweep (dashed gray
curve) and a downsweep (solid black curve) of the drive amplitude a. (b) The magnitude of the Fourier transform of the time
series for the velocity of the center particle normalized by the height of the peak at f ≈ 9.3 Hz for (top panel) our experiment and
(bottom panel) our numerical computation for an excitation amplitude a = 5.5 mV. The dashed gray curve is the
small-amplitude state (in the form of an NLM) that we obtain from the upsweep, and the solid black curve is the large-amplitude
state that we obtain from the downsweep. (c) The upsweep (dashed gray curve) and downsweep (solid black curve) of the
amplitude in the numerical simulations.

Figure 11. (a) RMS of the y-component of the velocity of the center magnet for the upsweep (dashed gray curve) and
downsweep (solid black curve) for our numerical simulations with Mb = 125 g and f = 9.65 Hz. Three states exist when we use
an excitation amplitude of a = 9.2 mV. Two of the states (the black and red dots) are not periodic in time, and the other state
(the gray dot) is time-periodic. We obtain the state that is indicated by the red dot by simulating zero initial data for 90 periods of
motion. (b) In the top panel, we show a projection of the Poincaŕe section of the solution that is represented by the black dot in
panel (a). In the bottom panel, we show a projection of the Poincaŕe section of the solution that is represented by the red dot in
panel (a). (c) The magnitudes of the Fourier transforms of the solutions in panel (b). (d) RMS of the y-component of the velocity
of the center magnet for the upsweep (dashed gray curve) and downsweep (solid black curve) in the corresponding experiments.
(e) The gray curve in the bottom panel is the experimental time series of the small-amplitude state that we obtain from the
upsweep for an excitation amplitude of a = 8 mV. The black curve in the top panel is the time series of the large-amplitude state
that we obtain from the downsweep for an excitation amplitude of a = 8 mV. (f) The magnitude of the Fourier transform of the
time series of panel (e) normalized by the height of the peak at f = 9.5. The gray curve in the bottom panel corresponds to the
small-amplitude state, and the black curve in the top panel corresponds to the large-amplitude state.

Fourier transform of both the large-amplitude state and the small-amplitude state. The small-amplitude
state (i.e. the NLM) has no peaks for lower frequencies, whereas the large-amplitude state has peaks at
approximately f = 8.9 Hz and f = 6.2 Hz; this is suggestive of quasiperiodic behavior.

We obtain qualitatively similar results when we perform analogous upsweeps and downsweeps in
numerical computations. We also observe the emergence of two states in these computations (see
figure 10(c)). In our computations, the large-amplitude state departs from the branch of NLMs for
excitation amplitudes that are slightly larger (specifically, for a � 5.1 mV) than the ones in our experiments.
The amplitude a ≈ 5.1 mV is roughly where the numerical NLM branch destabilizes. As in our
experiments, these large-amplitude states are not periodic in time. One can also observe the presence of
secondary peaks in their Fourier transforms in our numerical solutions, although the locations of these
peaks are slightly different than in our experiments. See the bottom panel of figure 10(b). Although these
numerical large-amplitude states have features that are similar to those of time-quasiperiodic states (given
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the multiple incommensurate peaks in the Fourier transform), it is also possible that these large-amplitude
states are weakly chaotic. One issue is that we were unable to detect asymptotically stable time-quasiperiodic
orbits for parameter values that correspond to those in the experiments. If these solutions were attractors, it
would be straightforward to determine if the large-amplitude states are time-quasiperiodic ones by plotting
Poincaré sections of the orbits.

To clarify the nature of the large-amplitude states, we modify the parameter values slightly to obtain
stable time-quasiperiodic solutions. We perform amplitude upsweeps and downsweeps for the parameter
set φ = π/2, f = 9.65 Hz, and Mb = 125 g. We use a different drive frequency from our prior calculations
because the smaller mass Mb = 125 g leads to a cutoff frequency of fc ≈ 9.01 Hz and a defect frequency of
fd ≈ 9.36 Hz. The amplitude sweeps with these parameter values lead to a well-defined large-amplitude
branch of solutions that bifurcates from the main branch of periodic solutions (the NLMs) (see
figure 11(a)). In figure 11(a), we show three solid markers to point out the locations of three solutions: a
large-amplitude state that appears to be either time-quasiperiodic or time-chaotic in black, the NLM (in
gray), and a stable time-quasiperiodic orbit (in red). We show a plot of a projection of the Poincaré section
in the (y0,0, ẏ0,0) plane in figure 11(b) for the two states that are not time-periodic. The orbit in the bottom
panel reveals a well-defined invariant curve, illustrating the quasiperiodic nature of the solution. We show
the Fourier transforms of these two non-periodic states in figure 11(c). Both have a secondary peak in their
spectrum, demonstrating that the solutions are indeed non-periodic in time (because of the
incommensurate peaks in the frequency spectra). Laboratory experiments for this modified parameter set
yield similar results. In particular, there is a well-defined large-amplitude branch of solutions that bifurcates
from a branch of time-periodic solutions (see figures 11(d) and 11(e)). The Fourier transform of one of the
large-amplitude states also has a secondary peak in the spectrum, an indication that the state is nearly
quasiperiodic. For simplicity, we henceforth use the term ‘quasiperiodic’ for such a state.

Because our numerical computations and experiments with bulk magnets of mass Mb = 125 g reveal the
existence of time-quasiperiodic orbits that bifurcate from the main branch of time-periodic NLMs, it is
reasonable to conclude that these quasiperiodic solutions persist when we continue the parameters to the
original parameter set Mb = 138.2 g and fd = 9.3. This suggests that the large-amplitude branch in
figures 10(a) and 10(c) consists of time-quasiperiodic solutions.

5. Conclusions

We have demonstrated, both experimentally and numerically, the existence of NLMs in a 2D hexagonal
lattice of repelling magnets. By exploring the effects of nonlinearity numerically using frequency
continuation and experimentally using amplitude sweeps, we revealed the emergence of both time-periodic
NLMs and time-quasiperiodic localized states. We have also established that our experimental setup is a
viable approach for fundamental studies in nonlinear lattice systems that go beyond what is possible in 1D
chains. We found that the smaller-amplitude NLMs that we considered are stable, whereas progressively
larger excitation amplitudes lead to instabilities and more complicated dynamics, including
time-quasiperiodic and potentially time-chaotic behavior. We also explored the anisotropy of the hexagonal
lattice by considering different excitation angles and examining the nature and decay of the states along
these angles.

Our work paves the way for many future studies. For example, although our parameter continuation in
frequency revealed several families of solutions, there are undoubtedly—given the complexity of the studied
system—several other ones (possibly including exotic ones) to discover. Other avenues of future work
include the study of refined models—such as ones that account for nonlinear damping (or, more generally,
a more elaborate form of damping [47–49]), rotational effects (which can be rather important [50, 51]),
and/or long-range interactions [38]—of our lattice system. Each of these aspects will add elements of
complexity, but they also may lead to other types of interesting dynamics, such as the possibility of breather
solutions with algebraically decaying tails in space [38, 39]. It is also possible that the inclusion of rotational
effects and/or more sophisticated damping models may help improve matches with laboratory experiments.
Such models have an associated cost of being more complicated and hence more cumbersome to analyze
and simulate. Our attempt in the present paper has been to explore the principal features of the interplay of
discreteness, local disorder, and nonlinearity in a hexagonal lattice of magnets. Breathers in heterogeneous
hexagonal magnetic lattices (e.g. ones with a repeating pattern of two masses) may lead to the existence of
ILMs and are also worthy of future study. Accordingly, investigations of band gaps, instabilities, and
nonlinear modes and their propagation are topics of substantial ongoing interest.
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Appendix.

Derivation of the external force from the wire: To derive the external force that the wire exerts on a
magnet, we first define our coordinate system. We choose orthogonal unit vectors r̂, ẑ, and ŝ that are
centered on the wire and oriented such that the wire is aligned with the ŝ axis (see figure 12(a)). We model
the magnetic moment M of the magnet using the Gilbert model of a magnetic dipole [52]:

Fwire = ∇ (M · B) , (15)

which describes the force that acts on the dipole due to the magnetic field B. In our setup, the wire carries
an electric current I that generates the magnetic field B(r, z) = Br(r, z)̂r + Bz(r, z)ẑ. Evaluating B at the
position −hẑ + rr̂ of the magnet yields

B(r,−h) =
Iμ0

2π
√

h2 + r2
(sin θ r̂ + cos θ ẑ) , (16)

where μ0 is the magnetic permeability and θ is the angle between B and M. We assume that we can neglect
the dynamics along the ẑ axis, so we are interested only in the r̂ component of the force. Inserting
equation (16) into equation (15) and taking M = Mẑ, we obtain

Fwire = M ∂rBz(r, z)̂r =
Iμ0M

2π

h2 − r2

(h2 + r2)2
r̂ , (17)

which corresponds to equation (1). In our coordinates, the wire is orthogonal to the plane that is spanned
by the lattice basis vectors e1 = (1, 0) and e2 = (1/2,

√
3/2). It is straightforward to write equation (17) in

coordinates in the {e1, e2} basis by including a parameter φ that accounts for the excitation angle. For
instance, for the center magnet, we may write

Fext
0,0 =

Iμ0M
2π

⎛
⎜⎜⎝

cos(φ)
h2 − x2

0,0

(h2 + x2
0,0)2

sin(φ)
h2 − y2

0,0

(h2 + y2
0,0)2

⎞
⎟⎟⎠ , (18)

which corresponds to equation (4).
Comparison of external and internal nonlinear forces: Although the form of the force of the external

drive is specific to our experimental setup, the dynamics are dominated by the lattice forces. For example, in
figure 12(b), we compare the forces that result from the wire (see equation (18)) and the force from the
lattice for the NLM of figure 5(a). The lattice forces are

Flattice
m,n = −F0(qm+1,n − qm,n) − F1(qm,n+1 − qm,n) + F−1(qm,n − qm−1,n+1)

+ F0(qm,n − qm−1,n) + F1(qm,n − qm,n−1) − F−1(qm+1,n−1 − qm,n) .
(19)

However, it important to acknowledge that the effective ‘defect’ that is produced by the force (19) is
responsible for the presence of the corresponding linear defect frequency and hence for the associated
NLMs in the presence of nonlinearity.
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Figure 12. (a) Schematic illustration of the interaction between a single magnet and a wire in the (̂r, ẑ) plane, which is
orthogonal to the direction of the wire. We use ‘E.P.’ to denote the static-equilibrium position of the magnet. (b) Squared
magnitudes of the forces that result from lattice interactions (solid blue curve) and the external drive from the wire (dashed red
curve) for the NLM from figure 5(a) during one period of motion. Specifically, we plot |Flattice

0,0 (t)|2 using the solid blue curve and
|Fext

0,0(t)|2 using the dashed red curve. (c) The experimentally measured velocity time series of the center unit in the undriven
lattice (i.e. the background noise, which we show in the red curve on the left) and after stabilization when we drive it at
a = 4 mV and f = 9.3 Hz (the blue curve on the right). We use the RMS of the noise to estimate the noise level in figure 6.

Noise estimation: Even if we do not apply an external drive to the lattice, the particles still exhibit
detectable motion. This is due to interactions with the air flow from the table and to imperfections (e.g.
nonaxisymmetric mass distributions) of the particles. To estimate the noise floor of the system, we measure
the velocity time series of the center particle when there is no drive. The corresponding RMS velocity is our
noise estimate. We find that the RMS velocity of the noise is 6% of the RMS velocity of the system when we
drive it at 4 mV (see figure 12(c)).
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