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ABSTRACT

We explore how to study dynamical interactions between brain regions by using functional
multilayer networks whose layers represent different frequency bands at which a brain
operates. Specifically, we investigate the consequences of considering the brain as (i) a
multilayer network, in which all brain regions can interact with each other at different
frequency bands; and as (ii) a multiplex network, in which interactions between different
frequency bands are allowed only within each brain region and not between them. We
study the second-smallest eigenvalue λ2 of the combinatorial supra-Laplacian matrix of
both the multiplex and multilayer networks, as λ2 has been used previously as an indicator
of network synchronizability and as a biomarker for several brain diseases. We show that
the heterogeneity of interlayer edge weights and, especially, the fraction of missing edges
crucially modify the value of λ2, and we illustrate our results with both synthetic network
models and real data obtained from resting-state magnetoencephalography. Our work
highlights the differences between using a multiplex approach and a full multilayer approach
when studying frequency-based multilayer brain networks.

AUTHOR SUMMARY

For more than a decade, network analysis has been used to investigate the organization
and function of the human brain. However, applications of multilayer network analysis to
neuronal networks are still at a preliminary stage, in part because of the difficulties of
adequately representing brain-imaging data in the form of multilayer networks. In this
study, we investigate the main differences in using multiplex networks versus more general
multilayer networks when constructing frequency-based brain networks. Specifically, we
are concerned with the differences for estimating the algebraic connectivity λ2, which has
been related to structural, diffusion, and synchronization properties of networks. Using
synthetic network models and real data, we show how edge-weight heterogeneity and
missing interlayer edges crucially influence the value of λ2.

INTRODUCTION

During the last few years, network science has undergone a conceptual revolution with the
extension of well-established techniques of network analysis to multilayer brain networks
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Multiplex/Multilayer Frequency-based Brain Networks

(Boccaletti et al., 2014; De Domenico et al., 2013; Kivelä et al., 2014), which provide a con-Multilayer brain network:
A brain network with more than
one layer. Layers are connected
to each other through interlayer
edges, which link node-layers from
different layers.

venient way to simultaneously encode different types of interactions, subsystems, and other
complications in networks. Consequently, it has been necessary to revisit our intuitive under-
standing of both structural and dynamical properties of networks—including structural phase
transitions (Radicchi & Arenas, 2013), diffusion and other spreading processes (De Domenico,
Granell, Porter, & Arenas, 2016; Gómez et al., 2013; Salehi et al., 2015), percolation and
robustness (Buldyrev, Parshani, Paul, Stanley, & Havlin, 2010; Gao, Buldyrev, Stanley, Xu, &
Havlin, 2013), synchronization (Aguirre, Sevilla-Escoboza, Gutiérrez, Papo, & Buldú, 2014),
and others—to the new possibilities in multilayer descriptions, leading in many cases toNode-layer:

Within each layer, a node-layer
represents the dynamics recorded
by a given magnetometer that is
filtered at a specific frequency
band. Thus, each magnetometer
has an associated node-layer on
each layer.

counterintuitive results.

The study of brain networks is currently undergoing a process of adaptation of classical
single-layer (“monolayer”) concepts and analyses to a more general multilayer description.
(For reviews, see Betzel & Bassett, 2016; De Domenico, 2017; Vaiana & Muldoon, 2018; also
see Figure 1 of Betzel & Bassett, 2016 and Figures 1–2 of De Domenico, 2017 for relevant
schematics.) Some studies have considered integration of data from structural and functional
brain imaging into a multilayer network to account for both anatomical and dynamical infor-
mation. In an early study using monolayer networks, Honey, Koötter, Breakspear, and Sporns
(2007) showed that a dynamical model simulated on the anatomical network of a macaque
neocortex can successfully identify the positions of the anatomical hubs when signals are
averaged appropriately. More recently, Stam et al. (2016) analyzed how anatomical networks
support activity, leading to specific functional networks (either undirected ones or directed
ones), demonstrating that a dynamical model close to a critical transition is able to unveil
interactions between structural and functional networks.

It is also possible to combine anatomical and functional interactions of just a few nodes
instead of an entire brain network. For example, Battiston, Nicosia, Chavez, and Latora (2017)
examined network motifs (i.e., overrepresented network substructures that consist of a few
nodes; Milo et al., 2002) that combine anatomical connections (in one layer) and functionalLayer:

A portion of a multilayer network
with a particular set of connections
(called “intralayer edges”) between
nodes. In our paper, each layer
represents a specific frequency
band of a functional brain
network.

relations between cortical regions (in a second layer), linking data obtained, respectively,
from diffusion-weighted magnetic resonance imaging (DW–MRI) and functional magnetic
resonance imaging (fMRI).

Efforts to combine anatomical and functional networks into a single multilayer network
face the challenge of how to normalize the weights of edges that arise from different origins.
To tackle this issue, Simas, Chavez, Rodriguez, and Díaz-Guilera (2015) proposed translat-
ing functional and anatomical networks into a common embedding space and then compar-
ing them in that space. They constructed functional networks (each with N nodes) from the
fMRIs of q healthy individuals. They then used the functional networks of the q = 20 in-
dividuals to construct a single functional multiplex brain network, a special type of multi-Multiplex brain network:

A particular kind of multilayer
brain network in which interlayer
edges occur only between
counterpart nodes (which, in
this paper, represent the same
brain region) in different layers.

layer network in which corresponding entities (brain regions) in different layers (individuals)
can be connected to each other via interlayer edges, but other types of interlayer edges
cannot occur (Kivelä et al., 2014). They followed a similar procedure to construct an anatomi-
cal multiplex network using data obtained from DW–MRI. They then independently projected
each of the multiplex networks into a common embedding space using a series of algebraic
operations that allow one to calculate an “algebraic aggregation” of all layers into a single
layer (see Simas et al., 2015, for details). Using such a projection, it is possible to quantify
the differences between anatomical and functional networks. Simas et al. also calculated an
“averaged aggregation” for each of the functional and anatomical multiplex networks by aver-
aging the weights of the corresponding edges over all layers. They compared the two types of
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Multiplex/Multilayer Frequency-based Brain Networks

aggregation, and they were thereby able to identify certain brain regions (e.g., ones related
to visual, auditory, and self-awareness processes) with significant differences between the
functional and anatomical networks for both types of aggregation. However, only the alge-
braic aggregation was able to detect differences between the functional and anatomical net-
works in other regions (specifically, the thalamus, the amygdala, the postcentral gyrus, and
the posterior cingulate), suggesting that the averaged aggregation disregards significant infor-
mation (Simas et al., 2015).

One possible alternative for reducing the complexity of analysis of brain networks is to
concentrate only on “functional” (dynamical, in fact) interactions between brain regions and
to define multilayer functional networks as a concatenation of a series of layers, each of
which captures the interplay between brain regions during some time window. This approach,
in which a layer in a multilayer network represents connection similarities over some time
window, was taken in papers such as Bassett et al. (2011, 2013) and Braun et al. (2014) to
analyze the temporal evolution of network modules and examine dynamical reconfiguration
and “flexibility” of functional networks.

Another alternative is to construct functional multilayer networks whose layers correspond
to the well-known frequency bands at which a brain operates (Buzsáki, 2006). As demon-
strated by Brookes et al. (2016), it is possible to construct frequency-based multilayer net-
works from magnetoencephalographic (MEG) recordings by (i) band-pass filtering the rawMagnetoencephalography (MEG):

Brain-imaging technique that
measures the magnetic field of the
brain using a set of magnetometers
placed on the head of an individual.

MEG signals, (ii) obtaining the envelope of the amplitude at each frequency band, and (iii)
measuring the pairwise correlations between each envelope (for whichever frequency it ac-
counts). Using such an approach, Brookes et al. (2016) constructed frequency-based multilayer
networks, in which each layer includes the interactions in a given frequency band, and showed
that the corresponding supra-adjacency matrices (which encode a linear-algebraic represen-
tation of connections in a multilayer network) convey statistically significant differences when
comparing a control group with a group of schizophrenia sufferers.

Recently, De Domenico, Sasai, and Arenas (2016) took the important step of analyzing
the spectral properties of matrices associated with frequency-based multiplex networks. The
spectrum of an Ñ × Ñ matrix consists of the set {λ1, λ2, λ3, . . . , λÑ} of its eigenvalues, and it
encodes valuable information about the structural properties of the corresponding network. In
turn, these eigenvalues (as we will explain later) are related to various dynamical properties,
such as network synchronizability, robustness, and diffusion (Newman, 2010). De Domenico,
Sasai, and Arenas (2016) compared a group of schizophrenic patients with a control group by
using fMRI data, and they found that the second-smallest eigenvalue (i.e., the algebraic connec-
tivity or “Fiedler value”; Van Mieghem, 2011) λ2 of the combinatorial supra-Laplacian matrix1

Algebraic connectivity:
The second-smallest eigenvalue
(λ2) of the combinatorial Laplacian
(or supra-Laplacian) matrix.

Combinatorial supra-Laplacian
matrix:
The combinatorial Laplacian matrix
of a supra-adjacency matrix.

associated with a multiplex network is a better discriminator between the two groups than what
one can obtain by studying either unfiltered or single-band functional networks (i.e., by using
monolayer networks). De Domenico et al. also calculated centrality measures (i.e., measures
of the importance of network components; Newman, 2010) on the frequency-based multi-
plex networks to demonstrate the existence of hubs that had not been classified previously
as important brain regions for functional integration. Hubs of the control group were located
in anterior cingulate, superior frontal, insula, and superior temporal cortices; however, hubs
for schizophrenic patients were distributed over frontal, parietal, and occipital cortices. These
results revealed that frequency-based multiplex networks include relevant information about

1 For such a matrix, λ1 = 0. See the subsection Heterogeneity and Missing Interlayer Edges in Multiplex
Networks (in Results) for a detailed definition of the combinatorial supra-Laplacian matrix.
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Multiplex/Multilayer Frequency-based Brain Networks

the functional organization of brain networks that is not captured by using a classical mono-
layer approach.

Multiple recent papers have demonstrated the benefits of using a multiplex description for
analyzing the functional networks of patients suffering from Alzheimer’s disease (AD). For ex-
ample, Yu et al. (2017) constructed frequency-based multiplex networks from MEG data and
demonstrated that centrality measures calculated with layers analyzed independently are un-
able to detect significant differences between a control group and the AD group. However,
when centralities are evaluated on a frequency-based multiplex network, one can find statisti-
cally significant differences in the hippocampus, posterior default-mode network, and occipital
areas. Guillon et al. (2017) also used frequency-based multiplex networks to differentiate be-
tween controls and people with AD. In this case, the authors proposed the use of a multi-
participation coefficient (MPC) to enhance classification of which individuals are suffering from
AD. Their MPC consists of an adaptation of the classical (i.e., monolayer) participation coef-
ficient (Guimerà & Amaral, 2005) to networks composed of several layers (see also Yu et al.,
2017). A potential benefit of using this MPC is that it does not depend on interlayer edge
weights, which thus do not need to be calculated. As shown in Guillon et al. (2017), using an
MPC yields better classification accuracy and sensitivity than using only monolayer network
diagnostics.

In this paper, we investigate how to translate the dynamics of different brain regions into
a frequency-based (i.e., functional) multilayer network, in which individual layers account for
coordination within a given frequency band. We focus specifically on the consequences of an-
alyzing a multiplex network versus a more general multilayer one. The former allows interlayer
connections only between the same brain region (i.e., node-layer) in different network layers,
so coupling between oscillations in different frequency bands occurs only between the same
brain region, whereas the latter allows one to model coordination between any brain region
at any frequency band. We use resting-state MEG recordings because of their high temporal
resolution (on the order of milliseconds), which makes it possible to analyze a broad spectrum
of frequency bands (de Pasquale et al., 2010; van Diessen et al., 2015). In our case, a set of
MEG signals consist of N time series, each of which comes from a sensor that captures the
activity above a different cortical region. We then filter signals at four frequency bands (theta,
alpha, beta, and gamma) and construct, for each individual, a four-layer functional multilayer
network from the dynamical coordination within and between frequency bands. The existence
of interlayer edges in frequency-based functional networks relies on the phenomenon of cross-
frequency coupling (CFC), which is responsible for integrating brain activity at different spatialCross-frequency coupling (CFC):

In the brain, CFC is the mechanism
through which dynamics at a certain
frequency affect, or are affected by,
the dynamics at other frequencies.

and temporal scales (Canolty et al., 2006). The quantification of CFC is a hard task, because
the interplay between frequency bands is very intricate (Aru et al., 2015). To address this issue,
one can set the weights of the interlayer edges to a value p, which one can estimate by using
an optimization procedure. For example, it is possible to construct multiplex networks of two
groups of individuals with different profiles and determine a value of p that best distinguishes
between the two groups (see, e.g., De Domenico, Sasai, & Arenas, 2016). However, we adopt
a different strategy: We obtain the weights of the interlayer edges directly from time series by
calculating mutual information (MI; MacKay, 2003). We thereby capture heterogeneity (in the
weights) of both intralayer edges and interlayer edges, and we investigate the influence of such
heterogeneity on the spectral properties of frequency-based functional networks.

Using both synthetic network models and data from laboratory experiments, we investi-
gate the effects that heterogeneity of interlayer edge weights have on the spectral properties of
both multiplex and more general multilayer networks. Specifically, we focus on the algebraic
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connectivity λ2, which is closely related to both structural and dynamical properties of net-
works (Masuda, Porter, & Lambiotte, 2017; Newman, 2010; Van Mieghem, 2011). On one
hand, algebraic connectivity is an indicator of modular structure in networks (Fortunato &
Hric, 2016). In the framework of multilayer networks, one can interpret the value of λ2 and
how it changes as a function of interlayer coupling strength as a way to quantify structural
integration and segregation of different network layers (Radicchi & Arenas, 2013); also see the
discussions in DeFord and Pauls (2017). On the other hand, 1/λ2 is proportional to the time
required to reach equilibrium in a linear diffusion process (Gómez et al., 2013). Additionally,
the time tsync to reach synchronization of an ensemble of phase oscillators that are linearly
and diffusively coupled is also proportional to 1/λ2, and it is known that tsync and 1/λ2 are
positively correlated in some situations with nonlinear coupling (Almendral & Díaz-Guilera,
2007). A recent investigation of the consequences of modifying interlayer edge weights in mul-
tiplex networks has illustrated that enhancing interlayer coupling tends to shorten the time to
achieve interlayer synchronization in a Kuramoto model of coupled oscillators (Allen-Perkins,
Albuquerque de Assis, Pastor, & Andrade, 2017).

In the framework of functional brain networks, algebraic connectivity has been used as an
indicator of AD, such as in de Haan et al. (2012), who obtained statistically significant differ-
ences for λ2 of functional networks obtained from MEG in a comparison of a group of patients
suffering from AD with a control group. Phillips, McGlaughlin, Ruth, Jager, and Soldan (2015)
calculated the value of λ2 in a group of individuals with mild cognitive impairment and AD,
although they did not report significant differences between them. Computing λ2 is also nec-

Combinatorial Laplacian matrix:
Given the adjacency matrix A of a
network and the degree matrix D,
which consists of the degree of the
nodes along the diagonal and 0s in
all other entries, the combinatorial
Laplacian matrix is defined as
L = D − A.

essary for calculating the most standard type of synchronizability parameter, which is the
ratio λN/λ2, where λN is the largest eigenvalue of the combinatorial Laplacian matrix
(Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). In a series of studies, the synchro-
nizability of brain networks was calculated for different frequency bands (Bassett, Meyer-
Lindenberg, Achard, Duke, & Bullmore, 2006), during epileptic seizures (Schindler, Bialonski,
Horstmann, Elger, & Lehnertz, 2008), and for schizophrenic individuals (Siebenhühner, Weiss,
Coppola, Weinberger, & Bassett, 2013). We aim to improve the interpretation of algebraic
connectivity for functional brain networks, and we thus investigate (i) how the fact that a con-
siderable fraction of all possible interlayer edges are not present in multiplex networks leads
to a deviation from the theoretical values expected for λ2 and (ii) how these deviations are
related to the mean weight of the interlayer edges. We thereby scrutinize the consequences
of using a multiplex formalism, in which only CFC inside the same brain region is allowed,
instead of employing a fully multilayer approach (i.e., without any restrictions on the type of
coupling that one considers).

RESULTS

Constructing Frequency-Based Multilayer Networks

In Figure 1, we illustrate the process of constructing frequency-based multiplex and multi-
layer brain networks. Our starting point is a data set of MEG recordings of a group of q = 89
individuals during resting state (see Materials and Methods for details), but one can use
other experimental paradigms—including different brain-imaging techniques, such as electro-
encephalography (EEG) or fMRI—to construct multilayer networks with the same procedure.
Specifically, we record MEG activity at N cortical regions, with 235 ≤ N ≤ 246 (see the
Supplementary Information for details; Buldú & Porter, 2017), and we then clean the data to
remove artifacts and obtain corresponding unfiltered signals. We thereby analyze the signal
recorded by each sensor instead of carrying out a source reconstruction. We then band-pass
filter each signal to obtain four different filtered time series for each brain region. We use the
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Figure 1. Encoding brain dynamics as a multilayer functional network. We show an illustrative
example with two frequency bands (alpha and beta). (A) We band-pass filter the MEG signals at two
frequency bands: alpha [8–12] Hz and beta [12–30] Hz. We use mutual information (MI; MacKay,
2003) to quantify coordination between brain regions. This yields three different type of functional
edges: Edge type “1” quantifies coordination between different regions at the same frequency band;
edge type “2” corresponds to interlayer edges, which couple the activity of the same region at dif-
ferent frequency bands; and edge type “3” quantifies cross-frequency coupling (CFC) between two
brain regions. Multiplex networks include only edges of types 1 and 2, whereas more general multi-
layer networks include all three types of edges. (B) Schematic of the supra-adjacency matrix of a
two-layer network constructed from the data in panel A. (C) Schematic of the intralayer and interlayer
edges in the multilayer functional network.

four classical frequency bands: theta [3–8] Hz, alpha [8–12] Hz, beta [12–30] Hz, and gamma
[30–100] Hz. The number l of layers of the multilayer network is the number of different fre-
quencies that we examine (and 2 ≤ l ≤ 4 in our work), and the N nodes in each layer are
associated with the dynamics of the N sensors filtered at a given frequency band. We number
the nodes so that nodes n, n + N, n + 2N, …, n + lN (with n ∈ {1, . . . N}) correspond to the
signals of the same brain region n at the l different frequency bands (i.e., layers).

We then quantify coordination between each pair of nodes of a multilayer network, re-
gardless of which layers they are in, using mutual information (see Materials and Methods).Mutual information (MI):

A measure to evaluate statistical
interdependencies between a pair
variables, X and Y, based on
comparing a joint distribution
p(X, Y) with the product p(X)p(Y)
of marginal distributions.

Calculating mutual information (MI) between time series of the same frequency band yields
intralayer connections between brain regions (see edge type “1” in the bottom-left plot of Fig-
ure 1A for an example), so each layer corresponds to a specific frequency band. Edges between
the signals of the same sensor at different frequency bands result in interlayer connections be-
tween layers (see edge type “2”). Such “diagonal” interlayer edges are the only type of inter-
layer edges that are allowed in multiplex networks (Kivelä et al., 2014). Finally, cross-frequency
coupling between different brain regions yields the other (“nondiagonal”) interlayer edges in
a full multilayer network (see edge type “3”). As we show in Figure 1B, we thereby obtain a
supra-adjacency matrix, where blocks along the diagonal account for intralayer connectionsSupra-adjacency matrix:

An adjacency matrix associated with
a multilayer network; it codifies how
much different node-layers interact
with each other.

(layers alpha and beta in the two-layer example) and blocks off of the diagonal, marked as
P αβ and Pβα, encode the interlayer edges. Because MIij = MIji (see Equation 4 in Materials
and Methods) for time series of nodes i and j, the supra-adjacency matrix is symmetric, so
Pαβ = [Pβα]T.
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Importantly, although we have chosen to use MI, there are a diversity of similarity measures
for capturing amplitude–amplitude and phase–amplitude correlations between different
frequency bands (see Aru et al., 2015 for a review of cross-frequency coupling measures),
and each measure has its own advantages and drawbacks. Nevertheless, as we will see, the
same methodological implications exist no matter which specific measure one uses to evaluate
coordination between brain sites.

In our discussion, we focus on the analysis of a two-layer network with alpha and beta layers.
We will discuss the consequences of considering alternative frequency bands and numbers of
layers in the last section of the paper (see Conclusions and Discussion).

Our starting point is to compare the results from four different constructions of functional
networks:

1. Unfiltered functional networks. We obtain these networks from the original (unfiltered)
signals of each brain region—that is, without decomposing the signals into different fre-
quency bands—so these are monolayer networks.

2. Aggregated networks. We obtain these networks from componentwise addition of the
weights of the alpha and beta layers to form monolayer networks. (Note that this is a
uniform aggregation.)

3. Multiplex networks. Each layer corresponds to a specific frequency band (as explained
above), and interlayer edges are allowed only between node-layers that correspond to
the same brain region.

4. Full multilayer networks. These include the same layers as their multiplex counterparts,
but they allow all possible interlayer edges.

In Figure 2, we show the probability density functions (PDFs) for a group of q = 89 individ-
uals of the values of λ2, the standard deviation of the interlayer edge weights (to quantify their
heterogeneity), and the percentage of missing interlayer edges (also see Table 1).

In column one of Figure 2, we observe that the (monolayer) unfiltered functional network
has a similar mean and standard deviation of λ2 as the multilayer network (also see Table 1).
However, the aggregated networks tend to have larger values of λ2, which makes sense, as we
construct an aggregated network by adding the weights of the two layers (alpha and beta), and
the total “strength” of the network (i.e., the sum of all of its edge weights) is close to double
the strength of each layer. Importantly, the mean λ2 for the multiplex networks is two orders of
magnitude smaller than the mean λ2 of the multilayer networks. We expect this discrepancy,
because we construct a multiplex network by deleting all interlayer edges of a full multilayer
network, except for edges (so-called “diagonal” edges) that link the same “physical” nodes (i.e.,
the same brain regions). Thus, the total strength of the interlayer matrix Pαβ is considerably
smaller in multiplex networks than in corresponding full multilayer networks. Because λ2 is
an indicator of the amount of interconnections between communities in a network (Newman,
2010), one expects such drastic edge removals to yield a smaller value of λ2, as one can
construe layers as communities with a small number of edges between them (only N of the
N2 possible interlayer edges of a full multilayer network).

In columns two and three of Figure 2, we quantify the heterogeneity and the number of miss-
ing interlayer edges of the four different functional networks. In column two, we plot the PDFs
of the standard deviation of all edges (for the unfiltered and aggregated networks) and inter-
layer edges (for the multiplex and multilayer networks). In all cases, we observe that the func-
tional networks that we construct from experimental data have non-negligible heterogeneity
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Figure 2. MEG data: from unfiltered data to a multilayer network. Probability density functions
(PDFs) of different network characteristics of a group of q = 89 individuals. (See Materials and
Methods for details.) We show the second-smallest eigenvalue λ2 of the combinatorial Laplacian
matrix, the standard deviation σ of the matrix elements (to quantify their heterogeneity), and the
percentage of missing edges of four different networks: (i) the functional network obtained from
the unfiltered signals (first row), (ii) an aggregated network of the alpha and beta layers (second
row), (iii) a multiplex network (third row), and a (iv) full multilayer network (fourth row). In all
cases, we only consider two layers (alpha and beta). For the multiplex and multilayer networks, note
that we do these computations with the combinatorial supra-Laplacian matrices. The percentage of
missing edges in the unfiltered and aggregated networks is equal to the percentage of 0 values in
the whole matrix, but it refers only to the interlayer edges for the multiplex and multilayer networks.

(also see Table 1). Again, aggregated networks have values that are roughly twice as large as
those of the other kinds of networks because of the (rough) doubling of the mean strength. In
column three, we show that there is a large percentage of missing edges. This arises from the
fact that we construe edges whose weights are smaller than those obtained with an appropri-
ate surrogate time series as not being statistically significant, so we set their values to 0 (see
Materials and Methods for details). The (monolayer) aggregated networks have the smallest
mean percentage, followed by the (monolayer) unfiltered networks, and then the two types of
multilayer networks. For the multiplex and full multilayer networks, the percentage of missing
edges, which is larger than 40% in both cases, refers to the number of all possible interlayer
edges. Note that missing edges are unavoidable in functional brain networks, because not all

Table 1. For each kind of network (see the first column), we show the mean standard deviation
σ̄ of the weights of the edges (unfiltered and aggregated) and interlayer edges (for both multiplex
networks and full multilayer networks) and the corresponding percentage of missing edges. (See the
Supplementary Information for more details; Buldú & Porter, 2017.)

Network σ̄ Missing Edges
Unfiltered 0.0823 22.75%
Aggregated 0.1567 4.42%
Multiplex 0.0618 52.17%
(Full) Multilayer 0.0611 44.01%
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brain regions communicate with each other through direct connections2. Moreover, the differ-
ent amounts of coordination between pairs of brain regions lead to functional networks with
heterogeneous weights.

Heterogeneity and Missing Interlayer Edges in Multiplex Networks

Given our prior observations, a crucial question arises: What are the consequences of hetero-
genous and missing interlayer edges, both of which are intrinsic features of brain-imaging data, on
multiplex and full multilayer functional networks? More specifically, how do they affect the
value of λ2, and what are the ensuing structural and dynamical implications of these differences?

With the aim of answering the above questions, we perform a series of numerical com-
putations in which we compare the theoretical values of λ2 in multiplex and full multilayer
networks from homogeneous interlayer-edge distributions with ones from networks with het-
erogeneous and missing interlayer edges.

We start with a two-layer multiplex network, whose layers alpha and beta have Nα = Nβ

nodes and Lα = Lβ intralayer edges, respectively. We number the nodes of the alpha layer
from k = 1 to k = Nα and the nodes of the beta layer from m = Nα + 1 to m = Nαβ = Nα + Nβ.
The matrices Mα and Mβ are the corresponding adjacency matrices for each layer. We then
introduce lc connector edges (i.e., diagonal interlayer edges) between each node k of the alpha
layer to its corresponding node m = k + Nα of the beta layer to construct a multiplex network.
We suppose that intralayer edges have weight wintra

i′ j′ = 1 (i.e., for i′ and j′ both belonging
either to the alpha layer or to the beta layer), and we set the weights of the interlayer edges
to winter

km = pkm (i.e., for k ∈ α and m ∈ β), where pkm are the elements of a vector �p of the
weights of the interlayer connections. Under these conditions, we obtain a supra-adjacency
matrix Mαβ that consists of two diagonal blocks (Mα and Mβ) and two off-diagonal blocks
(Pαβ and Pβα, where Pαβ = [Pβα]T = �p I, where �p is a row vector). That is,

Mαβ =

(
Mα �p I

�p I Mβ

)
, (1)

where I is an identity matrix. Following the same procedure, one can also extend the defi-
nition of a supra-adjacency matrix to include an arbitrary number of layers. For example, if
one considers layers for each of the theta, alpha, beta, and gamma bands (see Materials and
Methods), one obtains a supra-adjacency matrix Mθαβγ.

The combinatorial supra-Laplacian matrix Lαβ of the multiplex network is

Lαβ =

(
Lα +�p I −�p I

−�p I Lβ +�p I

)
, (2)

where the layer combinatorial Laplacians Lα,β have coordinates

Lα,β
ij =

⎧⎪⎨
⎪⎩

si , if i = j
−1 , if i and j are adjacent
0 , otherwise

, (3)

and si = ∑i �=j wij is the weighted degree (i.e., total weight of incident edges) of node i.

2 In general, networks that are constructed from pairwise time-series similarities have nonzero edge weights in
all (or almost all) intralayer adjacency entries (Bassett & Sporns, 2017). However, in functional brain networks,
the deletion of entries that are not statistically significant can lead to a non-negligible number missing edges, as
is the case with our data.
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Figure 3. Consequences of heterogenous and missing interlayer edges in a multiplex network.
Algebraic connectivity λ2 of the combinatorial supra-Laplacian matrix Lαβ. Each of the two layers
is a G(N, pcon) Erdős–Rényi network with N = 250 nodes and a connection probability of pcon =
0.25. Each circle corresponds to a mean over 100 realizations. (A) We quantify the heterogeneity
of the interlayer edges with the standard deviation σ of their weights: (i) σ = 0 (black circles),
(ii) σ ≈ 0.407 (red circles), (iii) σ ≈ 0.523 (green circles), and (iv) σ ≈ 0.581 (blue circles). Lines
correspond to analytical solutions for the case σ = 0 (i.e., a homogenous multiplex network). The
dashed line is λ2 = 2p, and the solid line is λ2,agg = 1

2 λ2(Lα + Lβ) (Radicchi & Arenas, 2013;
Sahneh et al., 2015). In the inset, we show Δλ2, the difference of λ2 between the homogeneous
multiplex network and a multiplex network with heterogeneous interlayer edges. (In the inset, the
solid vertical line indicates the mean value 〈p∗〉 of the transition point.) (B) Algebraic connectivity
λ2 of the multiplex networks as a function of the number of missing interlayer edges. In the inset,
we show Δλ2, the difference of λ2 between the homogeneous multiplex network (i.e., σ = 0 and
all possible interlayer edges) and the multiplex networks with missing interlayer edges. As before,
the solid vertical line indicates the mean value 〈p∗〉 of the transition point.

In Figure 3, we show the consequences of heterogeneity in the distribution of the interlayer-
edge weights of the multiplex network Mαβ. In this example, the multiplex network has an
interlayer connectivity matrix Pαβ = �p I, where I is an Nα × Nα (equivalently, Nβ × Nβ, as
Nα = Nβ in this example) identity matrix and �p = p�h is a row vector that controls the weights
of interlayer edges, where p modulates the vector’s magnitude and the vector �h encodes the
heterogeneity of the interlayer edges. We set the elements of�h to follow a uniform distribution
over the interval [hmin, hmax]. These elements have a mean value of h̄ = 1 and a standard de-
viation of σ. We set h̄ = 1 and construct networks with interlayer-edge-weight heterogeneities
that range from σ = 0 (blue circles) to σ ≈ 0.581 (green circles). We then examine the interplay
between the weights of the interlayer edges and the heterogeneity by increasing the value of
p. Note that σ = 0 corresponds to what we call a homogeneous multiplex network, which
has uniformly-weighted interlayer edges (i.e., �p = p for all interlayer edges). We obtain the
results in Figure 3 by calculating a mean over 100 realizations of two-layer networks with the
G(N, pcon) Erdős–Rényi (ER) model (with pcon = 0.25) in each layer and N = Nα = Nβ = 250
nodes (Newman, 2010).

As explained in Radicchi and Arenas (2013), modifying the weight parameter p of the in-
terlayer edges has important consequences for the value of λ2 for homogeneous multiplex
networks. The existence of two regimes of qualitatively distinct dynamics, separated at a tran-
sition point p∗, was discussed in Radicchi and Arenas (2013) (and in various subsequent
papers): When p 
 p∗, the algebraic connectivity λ2 follows the linear relation λ2 = 2p; for
p � p∗, however, the value of λ2 approximates that of the (uniformly) aggregated network
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[i.e., λ2,agg = 1
2 λ2(Lα + Lβ)]. In Figure 3, the dashed and solid lines indicate the theoretical

predictions of λ2 in the homogeneous case for small (dashed) and large (solid) values of p. We
obtain a mean value of p∗ ≈ 2.870 by locating the intersection between the eigenvalues λ2

and λ3 of the supra-Laplacian matrix Lαβ (Sahneh, Scoglio, & Van Mieghem, 2015).

In Figure 3A, we illustrate that the heterogeneity of the (weights of the) interlayer edges
leads to non-negligible differences in λ2. Furthermore, values of p near p∗ have the maximum
discrepancy between heterogeneous cases (colored circles) and the homogeneous case (black
circles). In studies of multiplex networks, it is simplest to take interlayer edge weights to be
homogeneous (i.e., given by a constant value p), especially when it is not clear how to estimate
their values Kivelä et al. (2014). When possible, however, it is desirable to be more sophisti-
cated, and it is possible to quantify the coupling strength between different frequency bands
in various ways when studying frequency-based functional brain networks (Aru et al., 2015).
The choice of incorporating versus ignoring heterogeneity of inter-frequency edge weights then
leads to unavoidable differences in the estimation of λ2, especially near the transition point
p∗. It is also important to think about the different interlayer edge weights that one obtains
from different measurements of coupling strength (see Materials and Methods).

Discrepancies in the values of λ2 are typically even larger when some interlayer edges are
missing. In Figure 3(B), we show the effects of removing some percentage of the interlayer
edges in a “holey" multiplex network (i.e., a multiplex network with an interlayer connectivity
matrix Pαβ whose elements are either 1 or 0 along the diagonal and are 0 in all other entries).
We observe that increasing the number of missing interlayer edges causes the multiplex net-
works to have drastically reduced values of λ2. When p 
 p∗, the value of λ2 always grows
with a slope that is smaller than 2p; for p � p∗, however, the value of λ2 never reaches the
value of λ2 for the aggregated network. Finally, values of p close to p∗ again have the largest
discrepancies with respect to the homogeneous case.

Mutilplex Networks Versus Full Multilayer Networks

We now identify the qualitative differences (and some of their consequences) between mul-
tiplex networks and full multilayer networks. The latter have an interlayer connectivity matrix
Pαβ = pC, where C has elements cij that account for the weight between each pair {i, j} of
nodes i ∈ α and j ∈ β, and the parameter p allows one to modulate the mean weight of the
interlayer edges. In Figure 4A, we connect the same layers as in our previous example, but now
we use a homogeneous interlayer connectivity matrix Pαβ with weights pij = p (i.e., cij = 1
for all i and j). Increasing p from 0 leads to the transition point p∗ ≈ 0.013, which we obtain
from the intersection of the eigenvalues λ2 and λ3 of the combinatorial supra-Laplacian Lαβ.
We observe for p < p∗ that the value of λ2 follows the linear function λ2 = 2p〈c〉 (see the
dashed line in Figure 4A), where 〈c〉 = 250 is the mean weighted degree of the matrix C, as
demonstrated in Radicchi and Arenas (2013). Interestingly, after the transition point p = p∗,
one can describe the value of λ2 by the function λ2 = λ2,min(α,β) + λ2(pC), where λ2,min(α,β)
is the value of the smaller λ2 of the two isolated layers. As we show in the inset of Figure 4A,
when we introduce a certain amount of heterogeneity into the interlayer connectivity matrix,
we observe slight differences from homogeneous case. Specifically, for heterogeneous cases,
these differences are larger for values of p above the mean 〈p∗〉 of the transition point.

As we saw in our analysis of multiplex networks, deleting interlayer edges from a full
multilayer network increases the discrepancy in λ2 values between networks with homoge-
neous interlayer edges and networks with heterogeneous ones. As we show in Figure 4B, the
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Figure 4. Edge heterogeneity and missing interlayer edges in a full multilayer network. Alge-
braic connectivity λ2 of the combinatorial supra-Laplacian matrix Lαβ (black circles) as a function
of the weight parameter p of the interlayer edges. Each of the two layers is a G(N, pcon) Erdős–
Rényi network with N = 250 nodes and a connection probability of pcon = 0.25. Each circle
corresponds to a mean over 100 realizations of such multilayer networks. (A) Algebraic connec-
tivity λ2 for a homogeneous interlayer connectivity matrix Pαβ=pC, where each of the elements of
C is cij = 1. The dashed line, given by λ2 = 2p〈c〉, corresponds to the analytical solution for a homo-
geneous matrix Pαβ, where C has a mean weighted degree of 〈c〉 = 250. The solid line is given
by λ2 = λ2,min(α,β) + λ2(pC), where λ2,min(α,β) is the value of the smaller λ2 of the two isolated
layers. The inset shows the differences Δλ2 between a multilayer network with homogeneous inter-
layer connectivity matrix Pαβ and a series of multilayer networks with increasing heterogeneity
(quantified by the standard deviation σ) in Pαβ. Differences with the homogeneous case increase
after the mean 〈p∗〉 of the transition point (vertical solid line). (B) Algebraic connectivity λ2 of the
full multilayer networks as a function of the percentage of missing interlayer edges. (See the values
of the percentages in the legend.) In the inset, we show the increment of λ2 versus the number of
missing interlayer edges.

value of λ2 decreases with the number of missing edges, which one should expect, because
having a smaller number of interlayer edges implies that one needs larger edge weights to
maintain the same amount of interlayer coupling. Interestingly, the deviation from the the-
oretical predictions is significant even for p < 〈p∗〉. Additionally, for p > 〈p∗〉, we ob-
serve (as expected) a change in the slope of λ2, but the theoretical predictions given by
λ2 = λ2,min(α,β) + λ2(pC) (solid line) begin to fail, leading to a discrepancy that increases
with the percentage of missing edges.

Because full multilayer networks have up to N2 interlayer edges, whereas multiplex net-
works can have only N of them, the former tend to have interlayer connectivity matrices with
larger strengths SP = ∑ij pij. In Figure 5, we show the algebraic connectivity λ2 of the com-
binatorial supra-Laplacian matrices Lαβ for a series of networks with identical layers and in-
terlayer strength SP, but with a different number of interlayer edges, ranging from a multiplex
network (with N interlayer edges) to a full multilayer network with no nonzero entries (i.e.,
with N2 interlayer edges). The dashed lines correspond to the analytical solutions for the full
multilayer network (black dashed line; λ2 = 2p〈c〉, with 〈c〉 = 250) and the multiplex network
(red dashed line; λ2 = 2p) when p < p∗. The solid curves are the corresponding theoretical
solutions when p > 〈p∗〉 for the full multilayer network (black line; λ2 = λ2,min(α,β) +λ2(pC))

and the multiplex network (red curve; λ2,agg = 1
2 λ2(Lα + Lβ)). We observe the effect that

adding interlayer edges to multiplex networks has on the value of λ2 and the associated tran-
sition from a multiplex network to a full multilayer architecture. Interestingly, the different
numbers of interlayer edges in the two types of networks leads to a difference in the position
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Figure 5. Transition from a multiplex network to a full multilayer network. Algebraic connectivity
λ2 of the combinatorial supra-Laplacian matrix Lαβ for different values of the percentage of edges in
the interlayer connectivity matrix Pαβ. Departing from a multiplex network, we add interlayer edges
uniformly at random and calculate the percentage of existing edges in Pαβ. Each circle corresponds
to a mean over 100 realizations. We set all active edges of the interlayer connectivity matrix Pαβ

to pij = p. The dashed lines correspond to the analytical solutions for the full multilayer network
(black dashed line; λ2 = 2p〈c〉, with 〈c〉 = 250) and the multiplex network (red dashed line;
λ2 = 2p) for p < 〈p∗〉. The solid curves are the theoretical solutions when p > 〈p∗〉 for the full
multilayer network (black line; λ2 = λ2,min(α,β) + λ2(pC)) and the multiplex network (red curve;

λ2,agg = 1
2 λ2(Lα +Lβ)). In the inset, we show λ2 versus SP/(Sα + Sβ), where SP, Sα, and Sβ are,

respectively, the strength of the interlayer connectivity matrix Pαβ, the strength of the alpha layer,
and the strength of the beta layer. Note that differences between the values of λ2 of the multilayer
structures increase significantly for SP/(Sα + Sβ) � 0.1.

of 〈p∗〉 (which one can infer by looking at the change of slope of λ2) that can reach several
orders of magnitude.

The inset of Figure 5 illustrates the same results normalized by the total strength of the inter-
layer connectivity matrices. That is, we show SP/(Sα + Sβ), where Sα = ∑ Mα

ij and Sβ =

∑ Mβ
ij, respectively, are the strengths of layers alpha and beta. This allows us to compare net-

works with the same value of SP, regardless of whether they are close to a multiplex archi-
tecture or to a fully multilayer architecture with no nonzero entries. For p < 〈p∗〉, we obtain
similar values of λ2 for all network architectures. It is only for p > 〈p∗〉 that the particular
structure of the interlayer connectivity matrix begins to play a role in the value of λ2. We
observe that differences start to arise at SP/(Sα + Sβ) ≈ 0.1, which is a relatively small value.

Although we used ER intralayer networks in our above calculations, we obtain similar
results for other network models. In particular, the results are qualitatively the same when we
construct the intralayer networks using a Barabási–Albert (BA) model (Barabási & Albert, 1999).
See the Supplementary Information for details (Buldú & Porter, 2017).

The Meaning of λ2 in Experimental Data

Now that we have analyzed the effects of edge-weight heterogeneity and the number of missing
interlayer edges, let’s revisit the multiplex and multilayer networks that we constructed from the
MEG recordings. As we saw in Figure 2, both edge-weight heterogeneity and missing interlayer
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Figure 6. Edge heterogeneity and missing interlayer edges in frequency-based functional brain
networks. Algebraic connectivity λ2 of the combinatorial supra-Laplacian matrix Lαβ as a function
of the mean strength of the interlayer connectivity matrix Pαβ= pC, where C encodes the weights
of the interlayer edges, for four different types of networks: (i) homogeneous multiplex networks
(black), (ii) heterogeneous multiplex networks (red), (iii) homogeneous full multilayer networks
(orange), and (iv) heterogeneous full multilayer networks (blue). Each circle is a mean over 89 indi-
viduals. The blue and black dashed lines, respectively, are the values of λ2 for the unfiltered and
aggregated networks. The red dashed line corresponds to λ2 = 2p〈c〉, where 〈c〉 is the mean of the
weighted degree. The red solid line is given by λ2 = λ2,min(α,β) + λ2(pC), where λ2,min(α,β) is the
value of the smaller λ2 of the two isolated layers.

edges occur in our experimental data, and it is thus desirable to investigate how close the
experimental networks that we are analyzing are to a transition point p∗ and how this proximity
(or lack thereof ) influences the expected value of λ2.

In Figure 6, we show the values of λ2 that we obtain for four different network reconstruc-
tions based on the MEG data: a homogeneous multiplex network (black circles), a hetero-
geneous multiplexnetwork (red circles), a homogeneous full multilayernetwork (orangecircles),
and a heterogeneous full multilayer network (blue circles). Each network has two layers—one
for the alpha band and one for the beta band—and each point corresponds to the mean over
the group of 89 individuals. We obtain the heterogeneous versions of the multiplex and multi-
layer networks by calculating MI values between the brain regions in the frequency bands, as
we described previously (also see Materials and Methods). Second, we construct the homo-
geneous versions of both the multiplex and multilayer networks by assigning the same weight
〈c〉 to all interlayer edges, where 〈c〉 is the mean of the weights of the interlayer edges in their
heterogeneous counterparts. Note that, in this case, the homogeneous multiplex and mul-
tilayer networks do not correspond to real functional networks; instead, they are reference
networks that we use to quantify the consequences on λ2 of the intrinsic edge heterogeneity
and missing edges in real functional networks.

To assess how close the real networks are to the transition point p∗, we multiply the values
of the interlayer edges by a parameter p, which we increase from p = 0 to a value above 1. We
then calculate the strength SP of the corresponding interlayer connectivity matrix Pαβ to allow a
comparison between the multiplex network and the multilayer networks, and we plot the value
of λ2 versus SP. The red dashed line in Figure 6 corresponds to the theoretical predictions for
p < p∗ (i.e., λ2 = 2p〈c〉, where 〈c〉 is the mean weighted degree of the nodes in the interlayer
connectivity matrix Pαβ). The black and blue dashed lines are, respectively, the value of λ2
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for the aggregated network divided by 2 (i.e., λ2,agg = 1
2 λ2(Lα + Lβ)) and the value of λ2

for the unfiltered (monolayer) functional network. The vertical solid line corresponds to the
case p = 1 for the mean of the heterogeneous full multilayers networks (i.e., the networks that
we obtain by taking into account all interlayer correlations without modifying their weights).
Interestingly, this network occupies the region in which the evolution of λ2 with respect to
p changes slope from λ2 = 2p〈c〉 to λ2 = λ2,min(α,β) + λ2(pC), which suggests that the
frequency-based multilayer networks that we are analyzing are close to the transition point
p∗. As we have seen, it is near this point where the value of λ2 is most influenced by the
effects of edge heterogeneity and missing interlayer edges. It is also worth noting that the four
network representations have rather different values of algebraic connectivity (and hence, we
expect, have different spectral properties more generally), except when p 
 p∗ (see the inset of
Figure 6). Although it looks from the plot that the algebraic connectivities of the heterogeneous
multilayer networks (blue circles) and those of the homogeneous multiplex networks (black
circles) may converge to the same value for large SP, they eventually cross each other when
we further increase SP (not shown).

In Figure 7, we show (top panel) the PDF of the values of p∗ for the multilayer networks of
each of the 89 individuals and (bottom panel) the percentage of deviation of λ2 with respect
to the value λ2,agg of the aggregated network. We observe that the peak of the PDF for p∗

is near p = 1. That is, the multilayer networks that we constructed from empirical data are
close to the transition point. Figure 7 also illustrates discrepancies in the values of λ2 between
the aggregated and multilayer networks, indicating that it is necessary to differentiate between
the two cases when interpreting the value of λ2, especially when comparing results from
different studies.

Finally, we investigate how the combination of layers from different frequency bands affects
the value of λ2. In our analysis thus far, we have focused on a two-layer network that we
constructed using the alpha and beta frequency bands, because they are often associated with

Figure 7. MEG of full multilayer networks and the transition point p∗. (Top) PDF of the transition
point p∗ for two-layer networks (of the alpha and beta layers) of the 89 individuals. The dashed line
corresponds to p∗ = 1. (Bottom) Percentage of deviation of λ2 with respect to the value of the ag-
gregated network: % Δλ2 = 100(λ2,agg − λ2)/λ2,agg, where λ2 denotes the algebraic connectivity
of the full multilayer network. Each circle represents one of the 89 individuals.
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Figure 8. Combining different frequency bands into multilayer networks. We show the algebraic
connectivity λ2 of all possible combinations of two-layer networks versus λ2,θαβγ of the four-layer
full multilayer networks. We construct the layers from the theta (θ), alpha (α), beta (β), and gamma
(γ) frequency bands. The labels at the top of each plot correspond to the associated frequency
bands. Each circle corresponds to one of the 89 individuals.

brain activity during the resting state. Nevertheless, because the signal has been filtered into
four different frequency bands, there are eight possible combinations of two layers. In Figure 8,
we show the relation between λ2 for all possible combinations of two-layer networks versus
that for the full four-layer multilayer network. Observe the strong correlation of the two-layer
networks that include the gamma layer (especially the one that consists of the theta and gamma
layers) with the full multilayer network. One can explain such a correlation by inspecting the
total strength of each frequency band. In Table 2, we separate the intralayer and interlayer
strengths to facilitate interpretation of the results. We observe that the gamma band is the
least-active layer, as it is the one with the smallest intralayer strength. Nevertheless, it has
the largest interlayer strength (i.e., the sum of the weights of its interlayer edges with all other
layers is the largest), so it is the layer that appears to interact most strongly with the other
layers. Because (as we have seen) the full multilayer functional networks are close to the mean
〈p∗〉 of the transition point, the weight of the intralayer connections has a strong influence
on the value of λ2. Therefore, the two-layer theta–gamma network, which includes the layers
with the largest interlayer strengths, is the one with the strongest correlation of λ2 with the full
multilayer network (see Figure 8C).

CONCLUSIONS AND DISCUSSION

Using network analysis as a tool for analyzing brain-imaging data, and (more specifically) im-
plementing and studying a multilayer description of brain activity, has both advantages and
drawbacks that must be investigated carefully. As we have discussed, it is possible to en-
code such imaging data either as a multiplex network or as a more general type of multilayer
network, but different choices lead to different results, which one must then interpret from a
neuroscientific perspective. In our paper, we have analyzed the implications of such a choice
on spectral information—and specifically on the algebraic connectivity λ2, which has been
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related to structural, diffusion, and synchronization properties of networks (Almendral & Díaz-
Guilera, 2007; Gómez et al., 2013; Masuda et al., 2017; Newman, 2010; Radicchi & Arenas,
2013; Van Mieghem, 2011). We have seen how heterogeneity (of the weights) of the interlayer
edges of multiplex networks leads to deviations of the theoretical predictions that one obtains
when all interlayer edges have an equal weight p, and we observed that the deviation is even
larger when interlayer edges are missing. The importance of these results, which entail large
differences in qualitative dynamics, is underscored by the fact that both edge heterogeneity
and missing interlayer edges are common features of brain-imaging data.

It is also important to understand that although a multiplex description of brain networks
is an important and useful approach to integrate multivariate information, and it is often an
extremely natural approach—such as for integrating anatomical and functional networks,
examining the temporal evolution of a functional network, and so on—it is just an initial step
towards developing increasingly complete models to better analyze the spatial and temporal
complexity of brain networks (Papo, Zanin, & Buldú, 2014). In this quest, a natural step—
although certainly not the final step—is to use a full multilayer description for subsequent
analyses of frequency-based brain networks.3 In this type of network, it is more biologically
plausible to represent brain activity as a full multilayer network than as a multiplex network.
The reasons are twofold: (i) a brain region does not necessarily coordinate with itself at different
frequencies; and (ii) there may also exist CFCs between different brain regions. Consequently,
interlayer connections do not necessarily follow the multiplex paradigm, because some of the
interlayer edges probably should not be present, whereas others should be included to ac-
count for interlayer coupling between different nodes (i.e., different brain regions), thereby
necessitating a fully general multilayer approach.4 Nevertheless, the use of frequency-based
multiplex networks has been an effective strategy in previous work for successfully distin-
guishing between healthy individuals and individuals who are suffering from schizophrenia
(De Domenico, Sasai, and Arenas, 2016), so there are times when a multiplex approach
works well.

As we have illustrated with our computations, because the number of interlayer edges scales
with N in multiplex networks but with N2 in the multilayer networks that we examined, there
are important quantitative differences in the values of the algebraic connectivity in the two
types of networks. Nevertheless, the effects of edge-weight heterogeneity and missing inter-
layer edges on full multilayer networks are qualitatively similar to those in multiplex networks.
Specifically, the analytical predictions that we obtained with homogeneous multilayer net-
works deviate from those of heterogeneous cases, showing an important discrepancy for val-
ues of the coupling-strength parameter p that are larger than the transition point p∗. The effect
of missing interlayer edges is particularly dramatic for p > p∗.

Our analysis of experimental imaging data confirms our results with synthetic networks. The
small number of interlayer edges in a multiplex network leaves the network in a region in which
layers behave as if they are structurally independent, and a deeper analysis reveals that it is
necessary to increase the weights of the interlayer edges from the experimental data by several
orders of magnitude to reach the transition point p∗. Consequently, using a multiplex repre-
sentation leads to a network with structurally independent layers, unless one uses extremely

3 It is also desirable, for example, to examine this type of network in a time-resolved manner (ideally using
continuous time), to incorporate spatial constraints, and so on.

4 Analogous critiques are also relevant for research, including our own, on multilayer analysis of time-
dependent brain networks (see, e.g., Bassett et al., 2011), for which one can envision incorporating time delays
in coordination between brain regions.
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Table 2. Percentage of strength of each layer in a four-layer multilayer network from MEG data.
The first column indicates the layer. The second column indicates the percentage of strength of
all intralayer edges in the full four-layer multilayer network that come from that layer; that is, for
a layer l ∈ {θ, α, β, γ}, the percentage is given by 100 × ‖Ml‖1

‖Mθαβγ‖1
, where the operator ‖M‖1 is the

entrywise 1-norm of M, corresponding to the sum of all elements of the matrix. The third column
gives the percentage of the strength of the interlayer edges. That is, for a layer l ′, the percentage

is 100 × 2 ∑l �=l′ ‖Pl′ l‖1

‖Mθαβγ‖1
, where l ′ ∈ {θ, α, β, γ}. Each percentage in the table is a mean over the 89

individuals.
Layer Intralayer Strength Interlayer Strength
theta (θ) 12.69% 9.53%
alpha (α) 31.43% 7.49%
beta (β) 12.18% 9.34%
gamma (γ) 6.85% 10.47%

large weights (i.e., p � 1) for the interlayer edges. However, the weights of the interlayer edges
cannot be increased artificially without limits, because eventually they lose their biophysical
meaning in attempts to compare them to intralayer edge weights.

Interestingly, our results changed drastically when we used a full multilayer description, in
which a brain region whose dynamics are in a given frequency band can now couple with
other brain regions in a different frequency band. When we considered all possible interlayer
edges, the majority of the 89 individuals in the experiment are close to the transition point p∗,
even though the percentage of weight in the interlayer edges is always about 10% of that of
the intralayer ones (see Table 2). As we showed in our analysis of synthetic data, it is around
this point that edge-weight heterogeneity and missing interlayer edges begin to yield important
discrepancies from the theoretical results of homogeneous multilayer networks (see Figure 4A).

It is important to note that the percentage of total weight of interlayer edges (relative to the
total weight of all edges) depends strongly on how one measures coordination between brain
regions. When one uses diagnostics other than mutual information, one calculates different
values for the percentages, which can yield multilayer networks either above or below the
transition point p∗. Thus, no matter what measure one uses, it is mandatory to first calculate
the percentage of total edge weight that arises from interlayer edges and to interpret the value
of λ2 with respect to the value of p∗.

The fact that, in frequency-based multilayer networks, the weights of interlayer edges
strongly influence the value of λ2 despite being much smaller than the weights of intralayer
edges (see Table 2) highlights the importance of adequately evaluating CFCs, which tradition-
ally have been disregarded when representing brain activity in terms of functional networks.
As has been discussed prominently in neuroscience, including in critiques of connectomics
(Kopell, Gritton, Whittington, & Kramer, 2014), the dynamics matter, and investigations of
dynamics must include incorporation and analysis of coupling between different frequency
bands. The methodology that is used to quantify interactions between brain regions at differ-
ent frequencies leads to different values of λ2; and there are also other important dynamical
issues, such as phase–amplitude correlations, that we have not investigated in this paper. (See
Bastos & Schoffelen, 2016 for a review of how common reference, volume conduction, field
spread, or common input affect the quantification of coordinated activity between brain re-
gions.) These caveats notwithstanding, our analysis illustrates a viable approach for examining
the effects of such phenomena on λ2 (and hence on spectral structure) in multilayer functional
networks, and we expect that similar qualitative phenomena will arise in both multiplex and
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full multilayer networks that are constructed using other choices (e.g., different measures than
MI) from the ones that we chose in order to provide a concrete illustration.

We initially studied two-layer networks of the alpha and beta frequency bands, because (i)
it is known that these bands incorporate a large portion of the power spectrum of brain activity
during resting state and (ii) these frequency bands typically exhibit stronger synchronization
between brain regions (e.g., see Brookes et al., 2016) than the others. The alpha and beta
bands are thus the most commonly studied frequency bands in resting-state studies, and we
followed this tradition. Nevertheless, in our particular case, our comparison between two-
layer and four-layer networks illustrates that the gamma band is the one that most influences
the spectral properties of the full four-layer multilayer network (see Figure 8). As we showed
in Table 2, the theta and gamma layers are the ones whose interlayer edges give the largest
contributions, thereby leading to the strongest correlation between a two-layer network (with
theta and gamma layers) and the complete (four-layer) multilayer network. This fact high-
lights the importance of the well-known phase–amplitude correlations between the theta and
gamma frequency bands (Aru et al., 2015; Canolty et al., 2006), as the former acts as a carrier
of fast-amplitude fluctuations in the latter. Consequently, theta–gamma coupling may be of
fundamental importance for understanding the multilayer nature of functional brain networks.

It also worth mentioning that the facts that we are constructing frequency-based multilayer
networks from (i) data at the sensor level and (ii) using MI as a measure to quantify mutual
interdependency between brain regions leads to unavoidable errors in the quantification of
edge weights, due to signal mixing and spurious correlations from common sources. However,
to date, there does not exist an error-free methodology to construct functional brain networks,
and other alternatives (such as source reconstruction or using different measures to evaluate
interdependency between brain regions) have their own drawbacks. For a detailed discussion,
see the subsection Methodological Considerations (in Materials and Methods).

Finally, although our calculations with experimental data used resting-state MEG record-
ings, we expect to observe similar behavior in frequency-based multilayer networks of different
origins—whether obtained from any of a large variety of different cognitive or motor tasks, with
different brain-imaging techniques, or even if they come from a completely different system
(such as functional climate networks; Tsonis & Roebber, 2004). However, despite the gener-
ality of our results, it is important to examine richer models of frequency-based brain network,
such as ones that include spatial constraints and temporal evolution.

MATERIALS AND METHODS

Data Acquisition

The data were made available by the Human Connectome Project (HCP); see http://www.
humanconnectome.org/ and Larson-Prior et al. (2013) for details. The experimental data con-
sist of magnetoencephalographic (MEG) recordings of a group of 89 individuals, during rest-
ing state, for a period of approximately 2 min. During the scan, subjects were supine and
maintained fixation on a projected red crosshair on a dark background. Brain activity was
scanned on a whole-head MAGNES 3600 (4D Neuroimaging, San Diego, CA, USA) system
housed in a magnetically-shielded room, and it included up to 248 magnetometer channels.
The root-mean-squared noise of the magnetometers is about 5 fT/sqrt (Hz) on average in the
white-noise range (above 2 Hz). The data were recorded at a sampling rate of fs ≈ 508.63 Hz.
Five current coils attached to a subject, in combination with structural-imaging data and head-
surface tracings, were used to localize the brain in geometric relation to the magnetometers
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and to monitor and partially correct for head movement during MEG acquisition. Artifacts, bad
channels, and bad segments were identified and removed from the MEG recordings, which
were processed with a pipeline based on independent component analysis to identify and
clean environmental and subject artifacts (Larson-Prior et al., 2013). After this process, the
number N of channels considered for each individual was in the range 235 ≤ N ≤ 246
(with a mean of 243.42), because some channels were used as references and others were
disregarded.

Coordination Between Brain Regions

To estimate coordination between brain regions, we first apply a band-pass filter to the prepro-
cessed signals to obtain, for each of the N sensors, a set of four different time series, each of
which corresponds to a specific frequency band: theta [3–8] Hz, alpha [8–12] Hz, beta [12–30]
Hz, and gamma [30–100] Hz. We thereby obtain 4N time series of t = 149646 points for each
of the q = 89 individuals. We then order the filtered signals according to their corresponding
frequency band, so the time series Xs with s ∈ {1, . . . , N} corresponds to the theta band,
Xs with s ∈ {N + 1, . . . , 2N} corresponds to the alpha band, Xs with s ∈ {2N + 1, . . . , 3N}
corresponds to the beta band, and Xs with s ∈ {3N + 1, . . . , 4N} corresponds to the gamma
band. Each of the 4N time series corresponds to a node-layer of a frequency-based network.
We calculate mutual information (MI) between the time series Xi and Xj of a pair of nodes i
and j with the formula

MIij = ∑
u,v

puv ln
(

puv

pu pv

)
, (4)

where pu is the probability that Xi = xu, the quantity pv is the probability that Xj = xv, and
puv is the joint probability that Xi = xu and Xj = xv at the same time point. We set the
number of bins of the PDFs to be u = v = 5 × (√t/10)�, where t the is the number of time
points and y� corresponds to the nearest integer function of the real number y (where we
round up for .5). When Xi and Xj are independent variables, puv = pu pv, and the resulting
value of MIij is 0. When Xi = Xj for each time series, MIij achieves its maximum value. Note
that MIij = MIji, so we obtain an undirected edge between the two time series, and we are
disregarding causality. Calculating MIij allows one to detect coordinated activity even for time
series that include different frequency bands. See Bastos and Schoffelen (2016) and Pereda,
Quiroga, and Bhattacharya (2005) for a review of different measures for quantifying coordina-
tion between brain regions and a discussion of their advantages and pitfalls. Note that MIi(i+N)

measures the coordination between two different frequency bands in the same brain region i.
After calculating MIij using Equation 4, we generate surrogates (which we subsequently use
as a threshold for mutual information) by using a block-permutation procedure (Canolty et al.,
2006): We simultaneously cut each time series into blocks of 1018 points (about 2 s), and
we permute the resulting blocks uniformly at random. This procedure preserves lower fre-
quencies and time-series features (such as nonstationarity and nonlinearity) below the chosen
temporal scale. (See the Supplementary Information (Buldú & Porter, 2017) for further discus-
sion and a detailed investigation of the influence of block length on the surrogates.) We then
evaluate the mutual information between each surrogate time series to obtain MIrand.

Frequency-Based Multilayer Networks

We construct a frequency-based multilayer network for each individual from the matrix that
encodes the MI of each pair of sensors for the four different frequencies bands. Each layer
includes nodes with the same frequency band, yielding four different layers: theta (θ), alpha
(α), beta (β), and gamma (γ). We use MIrand from the surrogate times series as a threshold
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and construct a weighted supra-adjacency matrix W with elements Wij = MIij − MIrand
ij if

MIij > MIrand
ij and Wij = 0 otherwise. We thereby account only for edges with statistically-

significant edges. (In Figure 2, one can see what fractions of edges are 0 in each case.) Finally,
we apply a linear normalization to W to obtain

Mij =
Wij − wmin

wmax − wmin
,

where wmin and wmax are, respectively, the largest and smallest entries of W. This ensures that
Mij ∈ [0, 1] for each individual, thereby facilitating comparisons between them. The weighted
supra-adjacency matrix M includes some number of 0 entries, which account for interac-
tions that we deem to not be statistically significant. It has four blocks along the diagonal that
encode interactions within each layer (i.e., the same frequency band for different brain regions),
and it has off-diagonal blocks that quantify coordination between different frequencies. See
Figure 1B for a schematic.

Methodological Considerations

An important issue is the applicability of our results to functional brain networks that are con-
structed using different approaches, such as by using source reconstruction or with different
ways of evaluating coordination between brain regions. In our study, we constructed func-
tional brain networks from magnetoencephalographic recordings, which are measured at the
sensor level, instead of using the actual magnetic field that is generated in each brain region
(i.e., at a source). (One can infer such a field using source-reconstruction methods.) Working
with time series at the sensor level necessarily entails signal mixing (Schoffelen & Gross, 2009),
whereas the use of source reconstruction has what is known as the “inverse problem” (of in-
ferring the actual magnetic field that is created by the brain regions), and it thus requires the
introduction of a priori assumptions in the model that one uses for source reconstruction. This
issue has led to a diversity of algorithms to obtain source-reconstructed time series and, in
many cases, different algorithms yield qualitatively different time series at the source level
(see, e.g., Schoffelen & Gross, 2009; Belardinelli, Ortiz, Barnes, Noppeney, & Preissl, 2012).
Consequently, there is an open debate about what constitutes the most appropriate method-
ology to construct functional networks using source reconstruction (Palva & Palva, 2012; van
Diessen et al., 2015).

Regardless of how one constructs a functional brain network (and whether one uses sensors
or sources), our analysis has the same qualitative implications. Specifically, estimating the
value of λ2 from matrices associated with function brain networks is affected strongly by edge-
weight heterogeneity and missing interlayer edges. One also observes the same qualitative
differences between a multiplex construction and a full multilayer one, as this phenomenon
depends on the number of interlayer edges and not on specific details of the construction of
functional brain networks.

Similar reasoning applies to the construction of frequency-based brain networks using
different ways of quantifying coordination between brain regions. We used MI because it is
able to successfully capture both linear and nonlinear correlations, it is an adequate method
for quantifying interdependencies between signals that are split into frequency bands (David,
Cosmelli, & Friston, 2004), and it has been used widely in the past to construct functional
brain networks (see, e.g., Bassett et al., 2009; Becker et al., 2012; Chai, Walther, Beck, &
Fei-Fei, 2009; Deuker et al., 2009; Jin, Seol, Kim, & Chung, 2011). On the down side, MI
cannot avoid zero-lag correlations that originate from common sources. (This flaw also occurs
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in many other commonly-employed similarity measures, such as partial correlation, coher-
ence, and phase-locking value (Bastos & Schoffelen, 2016).) The systematic deletion of zero-
lag correlations entails a very strict assumption, but because not all zero-lag correlations are
due to common sources or volume conduction (Christodoulakis et al., 2013; Porz, Kiel, &
Lehnertz, 2014; Vicente, Gollo, Mirasso, Fischer, & Pipa, 2008), there does not exist a con-
sensus on how to eradicate them (see, e.g., Brookes, Woolrich, & Barnes, 2012; Stam, Nolte,
& Daffertshofer, 2007). It is thus important for future work to conduct a systematic comparison
between the most widespread coordination measures and their consequences on the spectral
properties of functional networks. As we stated previously, the effect that edge-weight hetero-
geneity and missing interlayer edges have on functional multiplex and multilayer networks is
a general phenomenon, as it does not rely on the specific similarity measure that one employs
to evaluate coordination between brain regions, as long as there is sufficient heterogeneity
in the weights of the interlayer edges. As shown in Brookes et al. (2016), such heterogeneity
is expected in frequency-based functional brain networks, given the complicated interactions
between different brain regions at different frequencies.
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Erratum

After the publication of our paper “Frequency-based brain networks: From a multiplex framework to a full multilayer description”
(https://doi.org/10.1162/netn_a_00033), we discovered a labeling error in the main text when we refer to the colors of the plots in
Figure 6. In Figure 6, we show the values of λ2 that we obtain for four different network reconstructions from MEG data: a homoge-
neous multiplex network (black circles), a heterogeneous multiplex network (red circles), a homogeneous full multilayer network
(orange circles), and a heterogeneous full multilayer network (blue circles).

This is an error only in labeling, which we wish to correct to prevent possible confusion. Everything else in our paper remains as
before.

LIST OF CHANGES:

1. page 431, first full paragraph, first sentence:

Now: “In Figure 6, we show the values of λ2 that we obtain for four different network reconstructions based on the MEG data: a
homogeneous multiplex network (black circles), a heterogeneous multiplex network (red circles), a homogeneous full multilayer
network (blue circles), and a heterogeneous full multilayer network (cyan circles).”

Correct: “In Figure 6, we show the values of λ2 that we obtain for four different network reconstructions based on the MEG data: a
homogeneous multiplex network (black circles), a heterogeneous multiplex network (red circles), a homogeneous full multilayer
network (orange circles), and a heterogeneous full multilayer network (blue circles).”

2. page 432, paragraph that continues from the previous page, last sentence:

Now: “Although it looks from the plot that the algebraic connectivities of the heterogeneous multilayer networks (cyan circles)
and those of the homogeneous multiplex networks (black circles) may converge to the same value for large SP, they eventually cross
each other when we further increase SP (not shown).”

Correct: “Although it looks from the plot that the algebraic connectivities of the heterogeneous multilayer networks (blue circles)
and those of the homogeneous multiplex networks (black circles) may converge to the same value for large SP, they eventually cross
each other when we further increase SP (not shown).”
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SUPPLEMENTARY INFORMATION

for “Frequency-based brain networks: From a multiplex
framework to a full multilayer description” by J. M. Buldú and
Mason A. Porter

S1 Generating surrogate time series

The fact that we are constructing frequency-based multiplex and multilayer networks constrains how we
should generate surrogate times series. Specifically, because each time series corresponds to a layer that
has a specific bandwidth, it is necessary that surrogates of each filtered time series preserve the frequency
spectrum. Consequently, following [1], we generate surrogate time series by splitting the original time
series into blocks of a length that guarantees that lower frequencies are preserved. (Freely randomizing
time series would cause the spurious appearance of high frequencies.) Specifically, blocks are about 2
seconds in length (they consist of 1018 points with a sampling rate of fs ≈ 508.63 Hz), allowing the
preservation of features (such as nonstationarity and nonlinearity) below this time scale.

Our particular choice for the length for the block permutation balances two conflicting requirements.
On one hand, the length of the blocks needs to be large enough to maintain nonstationarity and nonlinear-
ity (if these are properties of the original time series) in the surrogate time series to avoid overestimating
correlations in the original time series due to the two properties. On the other hand, we can get more
statistical power if we use a larger number of blocks. In Fig. S1, we show how the mutual information
(MI) between pairs of surrogate time series depends on the block length. As indicated in [1], the most
conservative strategy to preserve nonstationarity and nonlinearity properties in the surrogate time series
is to split the original time series into only two blocks, with the cutoff point selected uniformly at random.
We proceed in this way and calculate MIrand,S0

ij between the surrogate time series of each pair of nodes,
i and j, using 10 of the 89 individuals (chosen uniformly at random). The superscript S0 indicates that

MIrand,S0

ij will be our reference for evaluating surrogate time series using partitions of a shorter length. In
other words, we obtain S0 using the longest time windows. We now consider a block partition of smaller
length (specifically, half of the original) and compute MIrand,S1

ij , where the superscript S1 indicates that

this MIrand
ij is for our second surrogate. We then compare the results from the two surrogates to check

if there are differences between them and hence whether one of them is capturing a dynamical feature
that the other is not. With this aim, we calculate the linear (Pearson) correlation coefficient r between

MIrand,S1

ij and MIrand,S0

ij . Values of r near 1 indicate that the length of the blocks does not induce signifi-

cant differences in the evaluation of MIrand
ij of the surrogate times series. We then consider progressively

smaller block lengths, halving the length each time, until we arrive at a block length of about 62 ms
(corresponding to 32 points of the time series). In Fig. S1, we show that the Pearson correlation between

the MIrand
ij of the surrogate time series and the one (MIrand,S0

ij ) when the original time series is partitioned
into only two blocks (i.e., the most conservative partition to maintain nonlinearity and nonstationarity)
is about 0.98 for lengths of about 2 s or more. We thus choose a window length of about 2 seconds for
the surrogate times series that we use in the main manuscript.

Buldú, J. M., Porter, M.A. (2017). Supporting Information for "Frequency based brain networks: 
From a multiplex framework to a full multilayer description." Network Neuroscience, 2(4), 418-441. 
https://doi.org/10.1162/netn_a_00033 
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Figure S1. Evaluating the consequences of block length on the generation of surrogate
time series. Pearson correlation coefficient r of the MIrand

ij of surrogate time series with different block

lengths versus MIrand,S0

ij , which we calculate using a surrogate partition that consists of 2 blocks. Points
correspond to the means of r calculated for the all pairs of nodes of the full multilayer networks (see the
main text for details) and then averaged over 10 individuals. The error bars are the corresponding
standard deviations. The vertical dashed line indicates the value of r of the block length selected for the
final calculation of the surrogate data sets (i.e., about 2 s). On the horizontal axis, we indicate the
block length in seconds.

S2 Quantifying heterogeneity and the percentage of missing
edges in real data sets

In Table S1, we supplement Table 1 of the main manuscript. In this version, we also include the coefficient
of variation CV and the medians of both the standard deviation σ of the edge weights and the percentage
of missing edges.

Network σ̄ CVσ̄ missing edges CVmissing

unfiltered 0.0823 (0.0840) 0.1250 22.75% (20.31%) 0.3885
aggregated 0.1567 (0.1566) 0.1156 4.42% (3.83%) 0.6024
multiplex 0.0618 (0.0623) 0.1000 52.17% (52.28%) 0.1413

(full) multilayer 0.0611 (0.0616) 0.1001 44.01% (43.48%) 0.1696

Table S1. For each type of network (see the first column), we give the mean standard deviation σ̄ of
the edge weights (for the unfiltered and aggregated networks) and interlayer edges (for the multiplex
and full multilayer networks), the coefficient of variation CVσ̄ of the mean standard deviation, and the
mean percentage of missing edges and its corresponding coefficient of variation CVmissing. To
supplement the mean values, we give the corresponding median values in parentheses. Figure 2 in the
main manuscript shows the corresponding probability distribution functions.

For all cases, note that the coefficient of variation CVσ̄ of the standard deviation of the edge weights
is much smaller than 1. The unfiltered and multilayer networks have slightly higher values than the mul-
tiplex and multilayer networks. The differences between the networks are much larger for the percentage
missing edges, despite although all CVmissing are smaller than 1. Interestingly, we observe that there is
more variability when there are fewer missing edges.
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S3 Effects of heterogeneity and missing interlayer edges in mul-
tiplex networks and full multilayer networks generated with
the Barabási–Albert model in each layer

The mechanism that we use to generate Barabási–Albert (BA) layers [2] in the multiplex and multilayer
networks is the same as the one that we described in the main text for Erdős–Rényi (ER) layers, except
that now we use a BA model in each layer. Specifically, we start from a seed of m0 = 2 connected nodes
and then add, sequentially, N−2 nodes with an initial degree m = 3 using linear preferential attachment.
We thereby create 2-layer networks with N = 250 nodes and a heavy-tailed intra-layer degree distribution
in each layer. We then introduce connections between layers in the same way as with the ER multiplex
and multilayer networks in the main text. We report results that are means over 100 realizations.

S3.1 Effects of heterogeneity and missing interlayer edges in BA multiplex
networks
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Figure S2. Consequences of heterogeneity and missing interlayer edges in a multiplex
network with BA layers. Algebraic connectivity λ2 of the combinatorial supra-Laplacian matrix
Lαβ . Each of the two layers is a Barabási-Albert network with N = 250 nodes. Each circle is a mean
over 100 realizations. (a) We quantify the heterogeneity of the interlayer edges by the standard
deviation σ of their weights: (i) σ = 0 (black circles), (ii) σ ≈ 0.407 (red circles), (iii) σ ≈ 0.523 (green
circles), and (iv) σ ≈ 0.581 (blue circles). Lines correspond to the two analytical solutions for the case
σ = 0 (i.e., a homogenous multiplex network). The dashed line is λ2 = 2p, and the solid line is
λ2,agg = 1

2λ2(Lα + Lβ). In the inset, we show ∆λ2, the difference of λ2 between the homogeneous
multiplex network and multiplex networks with heterogeneous interlayer edges. (b) Algebraic
connectivity λ2 of the multiplex network as a function of the number of missing interlayer edges. In the
inset, we show ∆λ2, the difference of λ2 between the homogeneous multiplex network (i.e., σ = 0 and all
possible interlayer edges) and the multiplex networks with missing interlayer edges. The solid vertical
line indicates the mean value of 〈p∗〉 of the transition point.
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S3.2 Mutilplex networks versus full multilayer networks with BA layers

We now compare multiplex networks with BA layers to full multilayer networks with BA layers. In
Fig. S3, we examine the effects of heterogeneous and missing interlayer edges. In Fig. S4, we investigate
the transition from a multiplex network to a full multilayer network.
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Figure S3. Edge heterogeneity and missing interlayer edges in a full multilayer network
with BA layers. Algebraic connectivity λ2 of the combinatorial supra-Laplacian matrix Lαβ (black
circles) as a function of the weight parameter p of the interlayer connections. Each of the two layers is a
BA network with N = 250 nodes. Each circles is a mean over 100 realizations of such multilayer
networks. (a) Algebraic connectivity λ2 for a homogeneous interlayer connectivity matrix Pαβ=pC,
where C has elements cij = 1. The dashed line, given by λ2 = 2p〈c〉, corresponds to the analytical
solution for a homogeneous matrix Pαβ , where C has a mean weighted degree of 〈c〉 = 250. The solid
line is given by λ2 = λ2,min(α,β) + λ2(pC), where λ2,min(α,β) is the value of the smaller λ2 of the two
isolated layers. The inset shows the differences ∆λ2 between a multilayer network with homogeneous
interlayer connectivity matrix Pαβ and a series of multilayer networks with an increasing heterogeneity
in Pαβ (quantified by the standard deviation σ). Differences with the homogeneous case increase after
the critical point 〈p∗〉 (vertical solid line). (b) Algebraic connectivity λ2 of the full multilayer network
as a function of the percentage of missing interlayer edges. In the inset, we show the increment of λ2

versus the number of missing interlayer edges.



S5

10-3 10-2 10-1 100 101

p

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

6
2 multiplex

0.48 %
0.56 %
0.72 %
1.04 %
1.68 %
5.2 %
17 %
50.2 %
full multilayer

10-2 10-1

Sp/(SA+SB)

10-2

100

6
2

5.20 %
17.00 %
50.20 %

Figure S4. Transition from a multiplex network to a full multilayer network for networks
with BA layers. Algebraic connectivity λ2 of the combinatorial supra-Laplacian matrix Lαβ for
different values of the percentage of edges in the interlayer connectivity matrix Pαβ . Departing from a
multiplex network, we add interlayer edges uniformly at random and calculate the percentage of
existing edges in Pαβ . Each circle is a mean over 100 realizations. We set all active edges of the
interlayer connectivity matrix Pαβ to pij = p. The dashed lines correspond to the analytical solutions
for the full multilayer network (black dashed line; λ2 = 2p〈c〉, with 〈c〉 = 250) and the multiplex
network (red dashed line; λ2 = 2p) for p < p∗. The solid curves are the theoretical solutions when
p > p∗ for the full multilayer network (black line; λ2 = λ2,min(α,β) + λ2(pC)) and the multiplex network

(red curve; λ2,agg = 1
2λ2(LA + LB)). In the inset, we show λ2 versus SP /(Sα + Sβ), where SP , Sα, and

Sβ are, respectively, the strength of the interlayer matrix Pαβ , the strength of layer alpha, and the
strength of layer beta. Note that differences between the values of λ2 of the multilayer structures
increase significantly for SP /(Sα + Sβ) ' 0.1.
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