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Abstract
Networks,which represent agents and interactions between them, arise inmyriad appli-
cations throughout the sciences, engineering, and even the humanities. To understand
large-scale structure in a network, a common task is to cluster a network’s nodes into
sets called “communities,” such that there are dense connections within communities
but sparse connections between them. A popular and statistically principled method
to perform such clustering is to use a family of generative models known as stochastic
block models (SBMs). In this paper, we show that maximum-likelihood estimation in
an SBM is a network analog of a well-known continuum surface-tension problem that
arises from an application in metallurgy. To illustrate the utility of this relationship,
we implement network analogs of three surface-tension algorithms, with which we
successfully recover planted community structure in synthetic networks and which
yield fascinating insights on empirical networks that we construct from hyperspectral
videos.
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1 Introduction

The study of networks, in which nodes represent entities and edges encode interactions
between entities (Newman 2018), can provide useful insights into a wide variety of
complex systems in myriad fields, such as granular materials (Papadopoulos et al.
2018), disease spreading (Pastor-Satorras et al. 2015), criminology (Hegemann et al.
2011), andmore. In the study of such applications, the analysis of large data sets—from
diverse sources and applications—continues to grow ever more important.

The simplest type of network is a graph, and empirical networks often appear to
exhibit a complicated mixture of regular and seemingly random features (Newman
2018). Additionally, it is increasingly important to study networks with more com-
plicated features, such as time dependence (Holme 2015), multiplexity (Kivelä et al.
2014), annotations (Newman and Clauset 2016), and connections that go beyond a
pairwise paradigm (Otter et al. 2017). One also has to worry about “features” such
as missing information and false positives (Kim and Leskovec 2011). Nevertheless, it
is convenient in the present paper to restrict our attention to undirected, unweighted
graphs for simplicity.

To try to understand the large-scale structure of a network, it can be very insightful
to coarse-grain it in various ways (Fortunato and Hric 2016; Peixoto 2015b; Porter
et al. 2009; Rombach et al. 2017; Rossi and Ahmed 2015). The most popular type
of clustering is the detection of assortative “communities,” in which dense sets of
nodes are connected sparsely to other dense sets of nodes (Fortunato and Hric 2016;
Porter et al. 2009). A statistically principled approach is to treat community detection
as a statistical inference problem using a model such as a stochastic block model
(SBM) (Peixoto 2018). The detection of communities has given fascinating insights
into a variety of applications, including brain networks (Betzel and Bassett 2017),
social networks (Traud et al. 2012), granular networks (Bassett et al. 2015), protein-
interaction networks (Ayati et al. 2015), political networks (Porter et al. 2005), and
many others.

One of the most popular frameworks for detecting communities is to use an SBM, a
generative model that can produce networks with community structure (Fortunato and
Hric 2016; Peixoto 2018).1 One uses an SBM for community detection by fitting an
observed graph to a statistical model to attempt to infer the most probable community
assignment for each node. SBMs can incorporate a variety of features, including
degree heterogeneity (Karrer and Newman 2011), hierarchical structure (Peixoto
2014), and metadata (Newman and Clauset 2016). The benefits of an SBM approach
include statistical defensibility, theoretical tractability, asymptotic consistency under
certain conditions, definable transitions between solvable and unsolvable regimes,
and theoretically optimal algorithms (Moore 2017; Peixoto 2018). As reviewed in
Fortunato and Hric (2016), there are numerous other approaches for community
detection, and statistical inference using SBMs is a method of choice among many
people in the network-science community. A recent empirical study compared several

1 Networks that are generated from an SBM can also have other types of block structures, depending on
the choice of parameters; see Sect. 2.1 for details.
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types of SBMs and other community-detection approaches on a variety of examples
(Ghasemian et al. 2018).

Recently, Newman showed that one can interpret modularity maximization (New-
man 2006; Newman and Girvan 2004), which is still among the most popular
approaches for community detection, as a special case of an SBM (Newman 2016).
In another paper (Hu et al. 2013), it was shown that one can also interpret modularity
maximization in terms of graph cuts and total-variation (TV) minimization. The lat-
ter connection allows the application of methods from geometric partial differential
equations (PDEs) and �1 minimization to community detection. This relationship also
raises the possibility of formulating SBM maximum-likelihood estimation (MLE) in
terms of TV.2 In this paper, we develop such a formulation, and we also incorporate
substantial new ingredients to do so. The principal one is the notion of surface tension
as a generalization of total variation. Additionally, we need to examine an energy
landscape that requires a novel splitting–merging heuristic to navigate it, whereas
previous graph-TV methods have been able to rely on gradient descent to discover
satisfactory optima. Moreover, the dynamical systems that arise in the present work
differ from those in Bertozzi and Flenner (2012) and Hu et al. (2013), in that our modi-
fiedAllen–Cahn (AC) andMerriman–Bence–Osher (MBO) schemes involve diffusion
with all-to-all coupling in addition to coupling that arises from a potential well, balance
terms, or thresholding.

The main result of the present work is the establishment of an equivalence between
SBMs and surface-tension models from the literature on PDEs that model crystal
growth. Crystal growth is an important aspect of certain annealing processes in metal-
lurgy (Kinderlehrer et al. 2006; Mullins 1956). It is a consolidation process, wherein
the many crystals in a metal grow and absorb each other to reduce the surface-tension
energy that is associated with the interfaces between them. The various processes
involved have been modeled from many perspectives, including molecular dynam-
ics (Cleri et al. 1999), front tracking (Frost et al. 1990), vertex models (Weaire and
Kermode 1983), and many others. (See Kinderlehrer et al. (2006) for a much more
extensive set of references.) It has been observed experimentally that the interface
between any two grains evolves according to motion by mean curvature (Smith 1952).
Because mean-curvature flow is related to gradient descent (in the L2 inner product)
of the TV energy (Rudin et al. 1992), this leads naturally to formulations in terms of
level sets (Osher and Sethian 1988), phase fields (Boettinger et al. 2002), and threshold
dynamics (Merriman et al. 1992). Although the interfaces followmean-curvature flow,
each different interface can evolve at a different rate, as there are different surface-
tension densities between each pair of crystals. In realistic cases, surface tensions are
both inhomogeneous and anisotropic, and they require careful adaptation of standard
mean-curvature-flow approaches (Esedoglu and Otto 2015; Jacobs 2017), especially
for dealing with the topological challenges that arise at crystal junctions, which rou-
tinely form and disappear.

Recently, Jacobs showed how to apply techniques from models of crystal growth
to graph-cut problems from semisupervised learning (Jacobs 2017). (See Jacobs et al.

2 Another recent paper (Tudisco et al. 2018) used total variation for maximizing modularity, although the
paper’s exposition was not phrased in those terms.
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(2018) for additional related work.) Several other recent papers, which do not directly
involve surface tension, have used ideas from perimeter minimization and/or TV min-
imization for graph cuts and clustering in machine learning (Bertozzi and Flenner
2016). Three of those papers are concerned explicitly with ideas from network sci-
ence (Boyd et al. 2018; Hu et al. 2013; Tudisco et al. 2018).

Each community in a network is analogous to a crystal, and the set of edges between
nodes from a pair of communities is akin to the topological boundary between a
pair of crystals. The surface-tension densities correspond to the differing affinities
between each pair of communities. To demonstrate the relevance of this viewpoint,
we develop and test discrete analogs of surface-tension numerical schemes on several
real and synthetic networks, and we find that straightforward analogs of the continuum
techniques successfully recover planted community structure in synthetic networks
and reveal meaningful structure in the real networks. We also prove a theoretical
result, in terms of �-convergence, that one can meaningfully approximate the SBM
MLE problem by smoother energies. Finally, we introduce three algorithms, which are
inspired by work on crystal growth, that we test on synthetic and real-world networks.

Our paper proceeds as follows. In Sect. 2, we present background information
about stochastic block models, total variation, and surface tension. In Sect. 3, we
state and prove our main result, which establishes an equivalence between discrete
surface tension and maximum-likelihood estimation via an SBM. In Sect. 4, we dis-
cuss three numerical approaches for performing SBM MLE: mean-curvature flow,
�-convergence, and threshold dynamics. We discuss our results on both synthetic and
real-world networks in Sect. 5. In Sect. 6, we conclude and discuss our results. We
give additional technical details in appendices.

2 Background

2.1 Stochastic Block Models (SBMs)

Themost basic type of SBMhas N nodes and an assignment g:1, . . . , N −→ 1, . . . , n̂
that associates each node with one of n̂ sets. It also has an associated n̂× n̂ symmetric,
nonnegative matrix ω that encodes the affinities between pairs of communities. One
generates an undirected, unweighted graph as follows: For each pair of nodes, i and j ,
we place an edge between them with probability ωαβ , where α and β denote the com-
munity assignments of nodes i and j , respectively. Similar models have been studied
and rediscoveredmany times (Condon andKarp 2001; Fienberg andWasserman 1981;
Fortunato and Hric 2016; Frank and Harary 1982; Holland et al. 1983; Peixoto 2018;
Snijders and Nowicki 1997). In the present paper, we use the SBM from Newman
(2016).

There is considerable flexibility in the choice of ω, which leads in turn to flexibility
in the SBMs themselves (Fortunato and Hric 2016; Peixoto 2018). Three examples of
ω, using n̂ = 2, will help illustrate the diversity of possible block structures.
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1. If ω11 = ω22 > ω12, one obtains traditional assortative community structure,
in which nodes have a larger probability to be adjacent to nodes in the same
community, instead of ones in different communities.

2. If ω11 = ω22 < ω12, nodes tend to associate more with nodes that are in other
communities. As ω12 → 1, the graph becomes increasingly bipartite.

3. If ω11 > ω12 > ω22, there is a core–periphery (CP) structure: Nodes from set 1
are connected densely to many nodes, but nodes from set 2 are connected sparsely
to other nodes (Csermely et al. 2013; Rombach et al. 2017).

We illustrate these three examples in Fig. 1. To simplify our presentation, we refer to
latent block structures as “community structure,” regardless of the form of the matrix
ω.

The above SBM is not realistic enough for many applications, largely because each
node has the same expected degree (Karrer and Newman 2011). To address this issue,
one can suppose that one knows a network’s degree sequence {ki } (with k denoting
the associated vector of degrees) and then define connection probabilities to take
this information into account. The easiest approach [see the discussion in Karrer and
Newman (2011)] is to model the adjacency-matrix elements Ai j (which is generated

by the SBM) as Poisson-distributed with the parameter ω̃gi g j := ωgi g j

ki k j
2m , where m

is the number of edges in the associated network and ωαβ is now allowed to take any
value in [0,∞). This allows both multi-edges and self-edges. Such edges can have
important effects, including in configuration models (Fosdick et al. 2018). Observe
that the parameters ω, k, and g are necessary and sufficient to specify A as a random
variable. In the present paper, we focus on the SBM thatwe described in this paragraph;
it is known as a “degree-corrected” SBM (Karrer and Newman 2011).

Given an observed network, one can attempt to infer some sort of underlying com-
munity structure by statistical fitting methods. There are several ways to do this,
including maximum-likelihood estimation (MLE), maximum a posteriori (MAP) esti-

Community structure Core–periphery structure Bipartite structure

Fig. 1 Examples of different connectivity patterns that one can generate using stochastic block models.
Each panel corresponds to a different type of structure. In each panel, the upper-left and lower-right squares
represent the density of connections between nodes in the same set, and the upper-right and lower-left
squares represent the density of connections between nodes in different sets. Darker squares represent more
densely connected sets of nodes. In (assortative) community structure, nodes are densely connected to other
nodes in the same community but sparsely connected to nodes in other communities. In core–periphery
structure, core nodes (as illustrated by the dark square in the upper left) are densely connected to other core
nodes and somewhat densely connected to peripheral nodes, but the latter predominantly have connections
only to core nodes. In bipartite block structures, nodes in a set are more densely connected to nodes in other
sets than to nodes in their own set. One can also model other structures, such as hierarchical and role-based
structures, using SBMs. See Sect. 2.1 for additional discussion. [This figure is inspired by a figure from Jeub
et al. (2015).]
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mation, and maximum marginal likelihood (MML) estimation. In MLE, one chooses
the parameters g and ω under which an observed network is most probable (with-
out using a prior), MAP estimation yields the most probable parameter configuration
under a Bayesian prior, and MML estimation yields the best community assignment
for each node individually by integrating out all of the other variables (Moore 2017;
Peixoto 2018). We use MLE, which is the simplest approach. In mathematical terms,
the problem is to determine

argmaxg,ω P(A|g, ω) , (1)

where P is the probability density function. Because we determine the edges inde-
pendently, P is given by

P(A|g, ω) =
∏

i≤ j

P(Ai j |g, ω) =
∏

i≤ j

P

(
Ai j

∣∣∣∣wgi g j

ki k j
2m

)
.

We use a Poisson distribution, so

P(Ai j |λ) =
⎧
⎨

⎩

λ
Ai j

Ai j ! e
−λ , i �= j ,

λ
Ai j /2

(Ai j /2)!e
−λ , i = j ,

where the need for cases arises from our convention that Aii = 2 if a self-edge is
present. To solve (1), one can equivalentlymaximize the logarithm of P(A|g, ω). Con-
veniently, this changes the multiplicative structure into additive structure and allows
us to drop irrelevant constants. The resulting problem is

argmaxg,ω
∑

i, j

[
Ai j log(ωgi g j ) − ωgi g j

ki k j
2m

]
. (2)

If ωgi g j = 0, the quantity Ai j log(ωgi g j ) is understood to be 0 if Ai j = 0 and −∞
otherwise.

Common optimization heuristics for solving (2) include greedy ascent (Karrer and
Newman 2011), Kernighan–Lin (KL) node swapping (Karrer and Newman 2011;
Kernighan and Lin 1970), and coordinate descent (Newman 2016). As far as we are
aware, the theory of these approaches has not received much attention.

In light of the extreme non-convexity of the modularity objective function (Good
et al. 2010) [which is known to be related to the planted-partition form of SBMs
(Newman 2016)], we expect that it is necessary to use multiple random initializations
for any local algorithm. Ideas fromconsensus clusteringmay also be helpful (Fortunato
and Hric 2016).

Ways to elaborate SBMs include incorporating overlapping and hierarchical com-
munities (Peixoto 2014, 2015b), generalizing to structures such as time-dependent
and multilayer networks (Peixoto 2015a), and incorporating metadata (Newman and
Clauset 2016). There are also Bayesian models and pseudo-likelihood-based meth-
ods (Amini et al. 2013; Peixoto 2018). We do not consider such embellishments in this
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paper, although we conjecture that it is possible to generalize our approach to some
(and perhaps all) of these settings.

2.2 Total Variation

Consider a smooth function f : � ⊂ R
d → R for some d. The total variation (TV)

of f is

| f |TV =
∫

�

| ∇ f |dx . (3)

For d = 1, Eq. (3) describes the total amount of increase and decrease of the function
f . If f is smooth except for jump discontinuities along a smooth hypersurface �, one
can interpret the derivative of f in a generalized sense, yielding

| f |TV =
∫

Rd−�

| ∇ f |dx +
∫

�

|[ f ]| dx ,

where [ f ] is the height of the jump across the discontinuity. The first integral uses a
d-dimensional measure, and the second one uses a (d − 1)-dimensional measure. In
the particular case in which d = 2 and f is the characteristic function of some set S,
we see that | f |TV is the perimeter of S. Similarly, when d = 3, we obtain surface area.

Total variation is an important regularizer in machine learning. It is worth con-
trasting it with the Dirichlet energy

∫
�

| ∇ f |2dx , which has minimizers that satisfy
	 f = 0, a condition that guarantees smoothness.However,minimizers of TVneed not
be smooth, as they can admit jump discontinuities. In image denoising, for instance,
regularization using Dirichlet energy tends to blur edges to remove discontinuities,
whereas a TV regularizer preserves the edges (Candès et al. 2006; Rudin et al. 1992).

Another use of TV energy is in relaxations, in which one can transform a non-
convex problem involving piecewise-constant constraints into a convex problem with
the same minimizers (Candès et al. 2006; Merkurjev et al. 2015). A common heuristic
explanation for this phenomenon (see Fig. 2) uses the shape of the 1-norm unit ball.
The simplest case is in two dimensions, where the 1-norm ball is diamond-shaped, and
minimizing the 1-norm over certain domains (e.g., a line) gives a sparse solution, in
the sense that most components of the solution vector are 0. In this case, minimizing
the 1-norm, constrained to a line, is the same as minimizing the number of nonzero
elements of the vector, subject to the same constraint.

In the context of TV minimization, we take the 1-norm of a function’s gradient,
rather than of the function itself. Therefore, instead of promoting sparsity of the func-
tion values, we promote sparse gradients, thereby incentivizing piecewise-constant
minimizers for TV. Although our discussion is heuristic, note that the ideas therein
can be treated rigorously (Candès et al. 2006).

Algorithmically, one can minimize TV using approaches such as phase-field mod-
els (Boettinger et al. 2002) or threshold dynamics (Merriman et al. 1992), both of
which rely on the fact that the gradient descent (in the L2 inner product) of TV is
related to mean-curvature flow (Rudin et al. 1992). The alternating-directions method
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Fig. 2 Image of the 1-norm unit ball and a line in the plane. The point on the line with the smallest 1-norm
is almost always on one of the axes

of multipliers (ADMM) (Goldstein and Osher 2009) and graph-cut methods, such as
the one in Boykov et al. (2006), are also very effective at solving such problems.

Thus far, we have restricted our discussion of TV to a continuum setting. There exist
graph analogs of the mathematical objects—gradients, measures, integrals, tangent
spaces, divergences, and so on—that one uses to define TV in a continuum setting.
For instance, for any function f on the nodes of a graph and for any edge between
nodes i and j , the discrete derivative at i in the direction j is

∇ f (i, j) = f ( j) − f ( j) .

Using the inner products

〈 f , g〉 =
N∑

i=1

fi gi ,

〈φ,ψ〉 =
∑

i, j

Ai jφi jψi j

on the spaces of functions on the nodes and edges, respectively, gives the divergence
as the adjoint of the gradient:

(div φ)i =
∑

j

Ai jφ j i .

In a continuum setting, an alternative definition of TV is

| f |TV = sup〈div φ, f 〉 , (4)

where the supremum is over an appropriate set of test functions. For a graph, (4) is
equivalent to
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| f |TV = 1

2

∑

i, j

Ai j | f (i) − f ( j)|.

See Gilboa and Osher (2008) and van Gennip et al. (2014) for a detailed justification
of these definitions.

Some methods for graph clustering (e.g., see von Luxborg (2007)) rely on the
combinatorial graph Laplacian L = diag(k) − A, which is a discrete analog of the
continuum Laplacian 	. The continuum Laplacian arises in solutions to constrained
optimization problems that involve the Dirichlet energy, so it is reasonable to expect
minimizers of energies that involve the combinatorial graph Laplacian to have anal-
ogous properties to minimizers of the Dirichlet energy. Indeed, minimizers that arise
from graph spectral methods are usually smooth3, instead of having sharp interfaces,
so one needs to threshold them in some way. Such thresholding is a major source of
difficulties for attempts to obtain theoretical guarantees about the nature of minimizers
after thresholding. By contrast, methods that use graph TV can directly accommodate
piecewise-constant solutions (Merkurjev et al. 2015), which do not require thresh-
olding to give classification information. Several previous papers have exploited this
property of TV on graphs (Bertozzi and Flenner 2012; Hu et al. 2013; Trillos et al.
2016; Zhu et al. 2017).

2.3 Surface Tension

Very roughly, one can consider a metal object as being composed of a large number
of crystals that range in size from microscopic to macroscopic (Ashcroft and Mermin
1976). Each crystal is a highly ordered lattice; and there is a thin, disordered interface
between crystals. The sizes and orientations of these crystals affectmaterial properties,
and one goal of annealing processes is to allow crystals to reorganize to produce a
useful metal (see Fig. 3).

The potential energy of a crystal configuration is roughly

∑

α,β

σαβArea(�αβ) , (5)

where �αβ is the interface between crystals α and β, and σαβ is the surface-tension
energy density between these crystals. Each σαβ is different, based on physical con-
siderations that involve the exact offset between the orientations of the lattices in
each pair of crystals. When prepared and heated appropriately, the individual crystals
decrease (5) by growing to consume their neighboring crystals. See Esedoglu and
Otto (2015), Jacobs (2017), and Kinderlehrer et al. (2006) for further background
information.

3 In this context, “smooth” entails that a value varies gradually along edges in a graph (i.e., adjacent nodes
have similar values), although this notion of smoothness is not one with a strict mathematical meaning.
Minimizers of Dirichlet-type energies on graphs normally have this type of smoothness property, whereas
minimizers of graph-TV energies often have sharp interfaces between sets of nodes. (Such an interface
occurs, for example, if a solution must have a value of either 0 or 1.)
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Fig. 3 An example arrangement of crystals. The interfaces between pairs of crystals grow into each
other according to motion by mean curvature. [This image is from Cenna/Wikimedia Commons/Public
Domain (Cenna 2012)]

In the study of SBMs, one can use TV to express (2), but we find a more natural
formulation in terms of surface-tension energy (a related notion). Specifically, we
exploit the appearance of surface area in (5) to cast it as a TV problem.Mathematically,
wemodel themetal as a region of space that is partitioned into n̂ regions, corresponding
to the crystals in the metal. Let uα and uβ , respectively, denote the characteristic
functions of the regions α and β. Therefore,

Areaαβ = |uα|TV + |uβ |TV − |uα + uβ |TV .

Each interface between two regions evolves according to mean-curvature flow. Conse-
quently, the surface-tension flow is locally mean-curvature flow, except at the junction
of three or more crystals (Esedoglu and Otto 2015; Jacobs 2017). Because of this con-
nection, one can use some of the ideas [such as phase-field and threshold-dynamics
methods (Esedoglu and Otto 2015)] fromTVminimization to perform surface-tension
minimization. When using threshold dynamics, it is possible to do theoretical analysis
in the form of Lyapunov functionals, �-convergence, and descent conditions (Jacobs
2017).
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3 An Equivalence Between SBMMLE and Discrete Surface Tension

We now present a mathematical result that connects SBM MLE and discrete surface
tension.

Proposition 3.1 Maximizing the likelihood of the parameters g ∈ {1, n̂}N (i.e., node
assignments) and ω (i.e., affinities) in the degree-corrected SBM (see Sect. 2.1) is
equivalent to minimizing

∑

α,β

[
WαβCutg,A(α, β) + e−Wαβ

volg,A(α) volg,A(β)

2m

]
, (6)

where Cutg,A(α, β) = ∑
gi=α
g j=β

Ai j , the volume term is volg,A(α) = ∑
gi=α ki , and

Wαβ = − logωαβ (so W ∈ (−∞,∞]n̂×n̂ ).

One immediately has the following well-posedness results. For a fixed W , the
expression (6) has a solution, because the state space over which one is minimizing
is of finite cardinality. Furthermore, for fixed g, one can find the optimal W = W (g)
in closed form by differentiating with respect to each component of W and setting
the result to 0 (Karrer and Newman 2011). (We obtain a minimum of (6) because it
is concave up.) Therefore, the full problem, in which we allow W to vary, also has a
solution, because there are a finite number of candidate pairs (g,W (g)). Uniqueness is
not guaranteed, because one can permute the community labels (and the correspond-
ing entries in W ) to obtain another minimizer. Another source of non-uniqueness is
the possibility of symmetries in the underlying graph, which allows any optimizer to
be converted to another optimizer by permuting the node labels. Continuous depen-
dence of the minimizer on A is automatic, because the set of possible values for A is
discrete.

The analogy with continuum surface tension is as follows. Graph cuts are anal-
ogous to surface area. Given a domain in R

3, one can superimpose a fine grid
on space and count the number of edges that cross the boundary to estimate its
surface area. In the limit of an infinitely fine grid, this estimate converges to the
surface area under appropriate conditions (Boykov and Kolmogorov 2003). Sim-
ilarly, graph volumes are analogous to continuum volumes.4 The quantities Wαβ

play the role of surface tensions σαβ , so the first set of terms is analogous to (5).
One can view the second set of terms as a soft volume constraint. A constraint
is “soft” if violating it adds a finite penalty to an objective function, so minimiz-
ers usually approximately satisfy the constraint. Volume-constrained versions of (5)
have received a great deal of attention (Jacobs et al. 2018; Kinderlehrer et al.
2006).5

4 For example, in a uniform square grid (ignoring boundaries), the sum of degrees for a set of nodes is
proportional to the number of nodes, which in turn is roughly proportional to the area encompassed by
filling in the squares that are associated with the selected grid nodes.
5 As far as we are aware, our formulation of SBM MLE in terms of graph cuts and volumes is novel,
although similar formulas have appeared previously in the literature (see, e.g., Peixoto 2018).
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We now prove Proposition 3.1.

Proof (Proposition 3.1) In Newman (2016), it was shown that maximizing the log-
likelihood of the parameters g and ω for a particular version of the degree-corrected
SBM amounts to maximizing (2). Let (G, n̂) be the set of partitions of the nodes of
a graph G (associated with an adjacency matrix A) into at most n̂ sets. Substituting
Wαβ = − logωαβ into (2) gives

argmin
Wαβ∈(−∞,∞]
g∈(G,n̂)

∑

i, j

[
Ai jWgi g j + ki k j

2m
e−Wgi g j

]
.

Rearranging the summations gives

argmin
Wαβ∈(−∞,∞]
g∈(G,n̂)

⎡

⎢⎢⎣
∑

α,β

∑

gi=α
g j=β

Ai jWαβ +
∑

α,β

∑

gi=α
g j=β

ki k j
2m

e−Wαβ

⎤

⎥⎥⎦ ,

where the inner sums are over all nodes i and j such that gi = α and g j = β.
Rearranging again gives

argmin
Wαβ∈(−∞,∞]
g∈(G,n̂)

⎡

⎢⎢⎣
∑

α,β

Wαβ

∑

gi=α
g j=β

Ai j +
∑

e−Wαβ
∑

gi=α
g j=β

ki k j
2m

⎤

⎥⎥⎦ .

Using the definition of Cutg,A in the first set of terms and summing over the j index
independently in the second set of terms gives

argmin
Wαβ∈(−∞,∞]
g∈(G,n̂)

⎡

⎣
∑

α,β

WαβCutg,A(α, β) +
∑

α,β

e−Wαβ
∑

gi=α

ki
2m

volg,A(β)

⎤

⎦ .

Finally, we sum over the i index in the second set of terms to obtain

argmin
Wαβ∈(−∞,∞]
g∈(G,n̂)

∑

α,β

[
WαβCutg,A(α, β) + e−Wαβ

volg,A(α) volg,A(β)

2m

]
. (7)

One difference between the graph setting (6) and the continuum setting (5)
is that in (6), one performs optimization over the Wαβ , whereas in (5) (i.e.,
in a continuum), one ordinarily treats the surface-tension densities as fixed by
the choice of material that one is modeling. Another difference is that the
surface-tension coefficients in the graph setting can be any element of (−∞,∞],
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subject only to the symmetry condition Wαβ = Wβα (see Sect. 2). By con-
trast, for a continuum, one needs further restrictions to ensure well-posedness.
Esedoglu and Otto (2015) proved the following sufficient conditions for well-
posedness:

(1) σαβ ≥ 0 ,
(2) σα,α = 0 ,
(3) σαγ + σγβ ≥ σαβ .

In a graph setting, one can use a straightforward change of variables, Wαβ →
Wαβ − 1

2Wαα − Wββ , to make W satisfy requirement (2).6 In general, how-
ever, at least one of requirements (1) and (3) is not necessarily satisfied for
a graph. Requirement (1) is false whenever some component of W is nega-
tive; this occurs exactly when ω has a component that is larger than 1. In
the continuum, requirement (3) has the interpretation of preventing “wetting,”
where one phase can spontaneously appear between two others. In the graph
case, such a restriction is unnecessary, because the number of points is fixed
and finite, with no possibility of inserting points of another phase between two
nodes.

The analogy of (6) with continuum surface tension is simplest for the case of assor-
tative communities, although it is also relevant for other types of block structure. For
disassortative blocks, rather than an energy cost from surface area, particles in one
phase can achieve a lower energy by interacting with particles in a different phase.
This leads to solutions that maximize surface area, and the evolutions that we will
consider in Sect. 4 then involve backward diffusion. In the continuum case, this is
ill-posed; however, a graph does not include arbitrarily small length scales, so ill-
posedness does not cause a problem. Backward diffusion on graphs also appeared
recently in Welk et al. (2018) in the context of image processing, and it would be
interesting to see if their techniques would be insightful in our context. For core–
periphery structure, one phase has an energy penalty from interacting with itself
but lowers its energy by interacting with the other phase. The other phase, how-
ever, prefers to interact with itself. As far as we are aware, such structures have
not been studied previously in the literature on surface-tension models of crystal
growth. For more complicated block structures, it is concomitantly more compli-
cated to interpret the analogy with continuum surface tension. In a sense, one should
view the SBM in (6) as a generalization of discrete surface tension, rather than as
an analog. In the present paper, we emphasize applications to assortative community
structure.

4 Mean-Curvature Flow (MCF), 0-Convergence, and Threshold
Dynamics

We now outline three algorithmic approaches that illustrate how one can use tools
from surface-tension theory to solve SBM MLE problems. Our three algorithms

6 See Appendix A for the change of variables, which causes the sum in (6) to instead be over all α �= β, so
that there are no “internal” surface tensions.
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are graph versions of mean-curvature flow (MCF), Allen–Cahn (AC) evolution,
and Merriman–Bence–Osher (MBO) dynamics. In Sect. 5, we will conduct sev-
eral numerical experiments to demonstrate that these algorithms can effectively
solve (2). We expect the performance of these algorithms to be good relative
to other algorithms for SBM MLE, although a full evaluation of this claim
is beyond the scope of our paper. We have posted our code at https://github.
com/zboyd2/SBM-surface-tension, and we encourage readers to experiment with
it.

In the next three subsections, we describe howwe infer g whenω is fixed and finite.
We then describe how to jointly infer ω and g.

4.1 Mean-Curvature Flow

Surface-tension dynamics are governed by mean-curvature flow except at junctions.
Intuitively, each point on a surface moves in the direction normal to the surface at a
speed given by the mean curvature at that point. In the two-phase case, such dynamics
have been well studied, and there exist notions of viscosity solutions and regularity
theory (Mantegazza 2011). In the multi-phase case, the situation is much more com-
plicated, especially because of the topological changes that can occur and the issue of
defining the behavior at the junction of three or more phases. In two-phase surface-
tension dynamics, it was shown in Boykov et al. (2006) that one can approximate
the flow by solving a discrete-time minimizing-movements problem. Let Cn be one
of the two regions at time n dt , where dt denotes the time step. To update Cn , one
calculates

Cn+1 = argminC

[
SurfaceArea(C) + 1

dt

∫

Cn	C
ρ̂(p,Cn)dp

]
, (8)

where

ρ̂(p,Cn) = inf
x∈∂Cn

‖x − p‖ ,

the operation 	 denotes the symmetric difference, C is the generic notation for a
region, and ∂ is the topological boundary operator. The idea behind this approach is,
at each time step, to shrink the region as much as possible without straying too far
from the region location at the previous time step.

In the setting of graphs, a similar approach was developed in van Gennip et al.
(2014), where the mean-curvature flow was given by

Cn+1 = argminC

⎡

⎣Cutg,A(C,Cc) + 1

dt

∑

i∈Cn	C

ρ(i, ∂(Cn))

⎤

⎦ , (9)

the operation	 is again the symmetric difference, and ρ(i, ∂(Cn)) is the shortest-path
distance from node i to the boundary ∂(Cn) of Cn . In this context, the bound-
ary of a set of nodes is the set of nodes in Cn with at least one neighbor in
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Cc
n along with the nodes in Cc

n that have at least one neighbor in Cn . We use
the term boundary node for any node that lies on the boundary. In the limit of a
small time step dt , (9) may still evolve, as opposed to the MBO scheme (which
we use later), which becomes “stuck” when the time step is too small. Such evo-
lution can still occur, because the penalty (associated with moving any node in
∂(Cn)) induced by the second set of terms in (9) is 0, regardless of the value of dt .
Conveniently, this implies for sufficiently small dt that the only acceptable moves
at each time step are ones that are allowed to change only the boundary nodes
themselves. This makes it possible to drastically reduce the search space when solv-
ing (9).

Because careful studies in the spirit of van Gennip et al. (2014) are not yet available
for multi-way graph partitioning, we resort to a heuristic approach based on what is
known for bipartitioning. Specifically, we are motivated by the situation in which time
steps are sufficiently small that only boundary nodes can change their community
assignment. Ideally, we wish to compute an optimal reassignment of all boundary
nodes jointly tominimize (6). To save computation time and facilitate implementation,
we instead decouple the computations in the following manner. During a single time
step, for each boundary node, we determine an optimal community assignment of
that node, assuming that all other nodes keep their assignment from the beginning
of the time step. After this (but before the end of the time step), we assign each
boundary node to its community, as determined previously in the time step. Because
most nodes are boundary nodes7 in our SBM-generated graphs, we find it both more
efficient and easier to consider reassigning all nodes in each time step, rather than
maintaining and referencing a separate data structure to track the boundary. For other
networks and initialization techniques, such as in networks that arise from nearest-
neighbor graphs with initialization from spectral clustering, it may be more efficient
to loop over only the boundary nodes. (This idea aligns particularly with the spirit
of mean-curvature flow.8) In Algorithm 1, we give pseudocode for this graph MCF
procedure.

7 Recall that a node is a boundary node if it shares an edgewith a node that lies outside of its own community,
so most reasonable partitions of many real graphs have many boundary nodes. Additionally, because we
initialize g with nodes assigned to communities uniformly at random, most nodes are initially boundary
nodes for most graphs.
8 There are similarities between gradient-descent methods and greedy approaches, because both attempt to
make locally optimal moves. Our decisions to move nodes such that eachmove is conditionally independent
and to not track boundary nodes are also reminiscent of greedy approaches. Ultimately, which nodes are
considered at each time step is an implementation detail, because only boundary nodes change assignment
(at least in the assortative case that we emphasize in this paper). For larger graphs with more communities
and fewer boundary nodes, it may be possible to increase efficiency by considering moves of boundary
nodes only to neighboring communities, rather than employing our present approach of considering moves
of nodes to any community. At the scale of our examples (up to millions of edges), this implementation
choice is not necessary.
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4.2 Allen–Cahn (AC) Evolution

Another approach for studying MCF is approximation by a Ginzburg–Landau (GL)
functional. This approach is popular due to its simple implementation and the existence
of unconditionally stable numerical methods (Bertozzi and Flenner 2012).

In the two-phase case, the GL functional is

∫

�

[
ε |∇ u|2 + 1

2ε
u2(1 − u)2

]
dx , (10)

where u : � ⊂ R
N → R is a smooth function and ε is a small parameter.

The L2 gradient descent of the GL functional is

ut = ε	u − 1

2ε

d

du

[
u2(1 − u)2

]
,

which is theAllen–Cahn (AC) equation. Theminimizers of theGL energy are predom-
inantly piecewise constant, with O(ε)-width transition layers between the constant
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regions. One can show that the GL energy �-converges to the TV energy as ε → 0,
assuming that

∫
�
u dx = const (Modica 1987). Consequently, if uε is a minimizer of

the constrained GL energy with parameter ε and the minimizers converge in L1 as
ε → 0, then the accumulation point is a minimizer of the TV energy.

In the setting of graphs, the first use of AC schemes for TV minimization was
in Bertozzi and Flenner (2012). One can invoke the combinatorial graph Laplacian
L = diag(k) − A to obtain a graph GL functional

UT LU + 1

ε
U 2(1 −U 2) , (11)

whereU is a function on the graph nodes (so it is an N -element vector) and ε is again a
positive number. Expression (11) �-converges to graph TV (van Gennip and Bertozzi
2012).

In the multi-phase case, we represent the community assignments g in terms of
an N × n̂ matrix whose i, α entry is δgiα , where δ is the Kronecker delta. Instead
of a double-well potential, we use a multi-well potential on R

N×n̂ whose value is
minimized by arguments with exactly one nonzero entry in each row. For example,
Garcia-Cardona et al. (2014) proposed the following potential:

T (U ) =
N∑

i=1

⎛

⎝
n̂∏

α=1

1

4
‖Ui − ek‖2�1

⎞

⎠ ,

where Ui is the i th row of the N × n̂ matrix U and ek is an n̂-element vector that is
equal to 0 except for a 1 in the kth entry.

For the particular case of surface-tension dynamics, we proceed as follows. Addi-
tionally, we assume in this subsection and the next that we have already eliminated
the diagonal of W (see Appendix A).

Given community assignments (and hence a partition of a network), if U is the
corresponding N × n̂ matrix, one can show that W .∗ (UT LU ) = −W .∗ (UT AU ),
where .∗ is the entry-wise product.9 Therefore, an appropriate GL functional for our
problem is

∑

α,β

[
−WαβU

T
α LUβ + volg,A(α) e−W

αβ volg,A(β)

2m

]
+

∑

α

Wααvolg,A(α)+ 1

2ε
T (U ) .

(12)

9 As a proof, we note that [W .∗ (UT diag(k)U )]αβ = ∑
i WαβUiαkiUiβ = 0, because UiαUiβ = 0 if

α �= β and Wαα = 0.
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Because kTU gives the vector of volumes, one can rewrite (12) as

∑

α,β

[
−WαβU

T
α LUβ + kTUαe

−W
αβ UT

β k

2m

]
+

∑

α

Wααvolg,A(α) + 1

2ε
T (U ) ,

(13)

where e−W is the entry-wise exponential.
As in a continuum setting, one can prove �-convergence.

Theorem 4.1 Let W ∈ R
n̂×n̂ . The functionals in (13) �-converge (as functions on

R
N×n̂ ) to (6) as ε → 0.

See Appendix B for a proof. As far as we are aware, this is the first �-convergence
result for a multi-phase graph energy on arbitrary graphs. However, see Osting and
Reeb (2017), Trillos and Slepčev (2018), and Trillos et al. (2016) for �-convergence
applied to consistency of multi-phase geometric graph energies.

The resulting AC equation is

Ut = LUW − 1

2m
kkTUe−W − k.∗ diag(W ) − 1

ε
T ′(U ) . (14)

See Appendix C for further details on the numerical solution of (14).

4.3 MBO Iteration

In Merriman et al. (1992), Merriman, Bence, and Osher showed that continuum
MCF is well-approximated by the simple iteration in Algorithm 2. In a rectangular
domain, the iteration is extremely efficient, as one can use a fast Fourier transform
when solving the heat equation. Esedoglu and Otto (2015) developed a generalized
version of the MBO scheme (see Algorithm 3) for computing the evolution of multi-
phase systems that are modeled by (5).
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One can apply the MBO idea to community detection in networks by replacing the
continuum Laplacian with the (negative) combinatorial graph Laplacian, replacing
σ with W , changing u to U , and adding appropriate forcing terms for the gradient
descent of the volume-balance terms. See Appendix C for additional implementation
details.

4.4 LearningW

TheMCF, AC, andMBO algorithms are able to produce a good partition of a network,
givenW , but they do not include a way to findW . A simple way to address this issue is
to use an expectation-maximization (EM) algorithm, in which one alternates between
solving for g with fixedW (using MCF, AC, or MBO) and solving forW with fixed g.
Given g, one can find a closed-form expression for the optimalW by differentiating (6)
with respect to any component of W and setting the result to 0 (Karrer and Newman
2011).

One must be careful, however, because the optimal Wαβ is infinite when
Cutg,A(α, β) = 0. This is problematic, because once one of the entries inW is infinite,
it prevents g in subsequent iterations from taking any nonzero value of Cutg,A(α, β);
this gives bad results in our test examples. (See Sect. 5 for a discussion of these exam-
ples.) We address this issue by modifying the EM algorithm to reset all infinite values
of W to 1.1 × Wmax, where Wmax is the largest non-infinite element of W and 1.1 is
a (hand-tuned) parameter that allows moderate growth in W .

We also need to address another practical issue for an EM approach to work. Specif-
ically, the algorithm that we have described thus far in this section often finds bad local
minima in which communities are merged erroneously or a single community is split
inappropriately.10

To overcome this issue, we implement a wrapper function (see Algorithm 4) that
checks each community that is returned by MCF, AC, or MBO for further possible

10 In other words, one can improve these local minima either by merging or by splitting existing commu-
nities. This is a special (and convenient, in this case) form of non-convexity.
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splitting or merging with other communities. Whenever we call MCF, AC, or MBO
on a subgraph, we use the values of k and m for the whole graph rather than those for
a subgraph. A similar idea was used in Hu et al. (2013) and Newman (2006) for their
recursive partitioning procedures.

There is also a danger of overfitting by setting n̂ = N , which gives a likelihood
of 1 in (2). The proper selection of n̂ is a complicated problem, both algorithmically
and theoretically (Newman and Reinert 2016; Riolo et al. 2017). For our tests, we
were very successful by using a simple heuristic approach. (Our framework is also
compatible with more sophisticated methods for selecting n̂.) For each data set, we
supply an expected value of n̂ for that data set, and we then add a quadratic penalty
to the objective-function value whenever n̂ differs from its expected value. This helps
curtail overfitting, while still allowing our algorithms to perform merges and splits to
escape bad local minima. Notably, this penalty does not alter the MCF, AC, or MBO
procedures; instead, it is part of Algorithm 4.

*  For this step, note that we use the degrees and number of edges from the entire graph, rather than 
from the induced subgraph, when computing volumes. See Boyd et al. (2018) and Hu et al. (2013), 
which make an analogous adjustment in the associated recursive step of their algorithms

5 Empirical Results

We now discuss our results from several numerical experiments to (1) confirm that
our algorithms can successfully recover g and ω from networks that we generate
using SBMs and (2) explore their applicability to real-world networks. In our exper-
iments, we use three different families of SBMs, three Facebook networks [whose
community structure is partly understood (Traud et al. 2011, 2012)], and an example
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related to hyperspectral video segmentation. Because of the random initialization in
our approach, we perform three trials on each of the networks for each algorithm; we
report the best result in each case.11 For comparison, we also report the results of a
Kernighan–Lin (KL) algorithm, which was reported in Karrer and Newman (2011) to
be effective.We summarize our results in Table 1, andwe highlight thatwe consistently
recover the underlying structure in the synthetic examples. For the real networks, we
compare our results with a reference partition based on metadata that is thought to be
correlated with the community structure. We find that the MCF scheme performs the
best among our three schemes on these networks, and we note that it finds partitions
with a larger likelihood than the reference partition.12 We implement our methods in
Matlab, so one should interpret computation times in Table 2 as indicative that the
run time is reasonable for networks with millions of edges. Given a careful implemen-
tation in a compiled language, it is possible to study even larger networks.13 For an
example of code for a similar problem that was solved by an MBO scheme at large
scale (including a weighted graph with almost 14 million nodes and 1.8×1014 edges),
see Meng et al. (2017).

We briefly describe the three families of SBM-related networks that we use in our
numerical experiments.

11 We use three trials (using three different networks drawn from the random-graph models) to illustrate
that our algorithms do not require a large number of attempts to reach a good optimum. In most of our
trials, even a single run of a solver is likely to give good results. In Table 1, we report our best scores. Our
worst scores for MCF are 0.00, 0.00, 0.00, − 0.14, and 0.01 for the PP, MS, LFR, Caltech, and Princeton
networks, respectively. (We did not record the worst score for Penn. State or the plume network.) Our
corresponding worst scores for AC and MBO are 0.00, 0.00, 0.01, 0.22, and 0.86 (for AC) and 0.15, 0.00,
0.02, 0.53, and 1.12 (for MBO). Comparing these results with those in Table 1, we see that our best and
worst scores are often similar to each other.
12 In synthetic networks, the reference partitions represent a “ground truth,” in the sense that they reflect
the principle upon which we constructed the network. For these networks, finding a partition with higher
likelihood than the reference partition reflects the fact that the data is stochastic, and a maximum-likelihood
partitionmay differ slightly from the ground-truth one. An algorithm that achieves a likelihood that is higher
than ground truth is more successful at optimizing the likelihood function than one that does not. In real
networks, the reference partition is not a “ground truth.” Instead, it is a point of reference that is based
on a “natural” grouping of the nodes when one is available. In most applications of community detection,
there is no ground truth (Peel et al. 2017). Real networks can have many different organizing principles
and multiple insightful partitions, including both (1) partitions that are slight variations of each other that
yield similar values of objective functions and (2) partitions that are very different from each other that
yield similar values of such functions (Good et al. 2010). In particular, the fact that some of our methods
find partitions with higher likelihood scores than the reference partition is not indicative of a failure of the
maximum-likelihood approach, because there is no reason for a reference partition to be the best possible
partition of a network. [For the Facebook networks, for example, it is known that this is not the case (Hric
et al. 2016).] To the extent that SBM MLE is appropriate for the data and application, our partitions are
sometimes better than the reference partitions.
13 One may perhaps construe from Table 2 that the MCF method’s speed on the large plume example
indicates that its scaling is better than linear with the number of nodes; this is of course not the case, because
we alter each node during each iteration in our implementation. Several factors influence the observed
computation times. For example, using a larger data set improves the effectiveness of parallelization and
vectorization of operations (which Matlab does automatically for certain operations). Furthermore, the
operation count can be quadratic in the number of communities, which is heterogeneous across the data
sets that we examined and is largest in the LFR example. Finally, the different networks are very different
structurally, which affects the number of iterations that are necessary for convergence.
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Table 2 Median computation times (in seconds) for our example networks

PP LFR MS Caltech Princeton Penn. State Plume

MCF 5.36 17.71 3.47 1.39 1.46 38.91 77.91

AC 5.37 26.27 7.28 8.84 480.4 3853 268.7

MBO 4.27 11.05 1.73 0.67 7.43 382.31 270.0

KL 16,566 176 5117 20 662 95,603 980,520

• Planted partition (PP) is a 16,000-node graph that consists of 10 equal-sized com-
munities. It is produced by the method that was described in Karrer and Newman
(2011). It builds a degree-corrected SBMwith a truncated power-law degree distri-
butionwith exponent 2. The parameterλ fromEquation (27) inKarrer andNewman
(2011) is 0.001, indicating a fairly clear separation between communities.

• Lancichinetti–Fortunato–Radicchi (LFR) is a standard benchmark SBM network
(Lancichinetti et al. 2008). We construct 1000-node LFR graphs with a power-
law degree distribution (with exponent 2), mean degree 20, maximum degree
50, power-law-distributed community sizes (with exponent 1), community sizes
between 10 and 50 nodes, and mixing parameter 0.1.

• Multiscale SBM (MS). To construct such a graph, we take a sequence of disjoint
components; in order, these are a 10-clique, a 20-clique, and a sequence of Erdős–
Rényi (ER) graphs (drawn from the G(n, p) model with n nodes and np = 20)
of sizes 40, 80, 160, …, 5120. Each of these graphs has a total of 10,230 nodes.
In each such graph, we connect the components to each other by adding a single
edge, from nodes chosen uniformly at random, between each consecutive clique
or ER graph. This construction tests whether an algorithm can find communities
of widely varying sizes in the same graph (Arenas et al. 2008; Fortunato and
Barthélemy 2007).

The hyperspectral video is a recording of a gas plume as it was released at the
Dugway Proving Ground (Gerhart et al. 2013; Manolakis et al. 2001; Merkurjev et al.
2014). A hyperspectral video is different from an RGB video, in that each pixel in
the former encodes the intensity of light at a large number (e.g., 129, in this case)
of different wavelengths rather than at only 3, with each channel corresponding to a
wavelength. We consider the classification problem of identifying pixels that include
similar materials (such as dirt, road, grass, and so on). This problem is difficult because
of the diffuse nature of the gas, which leads to a faint signal that spreads out among
many wavelengths and with boundaries that are difficult to determine. We construct
a graph representation of this video using “non-local means,” as described in Buades
et al. (2005). Specifically, we use the following construction. For each pixel p and
in each of 7 frames, we construct a vector vp by concatenating the data in a 3 × 3
window that is centered at p. We then use a weighted cosine similarity measure (which
is a common choice for hyperspectral imaging applications) on these (3 × 3 × 129)-
component vectors, where we give the most weight to the components from the center
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Fig. 4 Segmentation of a hyperspectral video using graph MCF. The gas plume is clearly represented in
the yellow and orange pixels. The two blue communities on the bottom are the ground, and the other two
communities are the sky. This image is frame 3 of 7. (It is best to view this plot in color.) (Color figure
online)

Table 3 Optimal surface tensions for the MS SBM example

0 5.22 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
5.22 0 6.1817 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ 6.1817 0 6.8471 ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 6.8471 0 7.6316 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 7.6316 0 8.362 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 8.362 0 9.0869 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 9.0869 0 9.7926 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 9.7926 0 10.4911 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 10.4911 0 11.1869

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11.1869 0

The entries are heterogeneous, so there are different surface tensions between different pairs of communities.
The infinite entries correspond to pairs of communities with no observed edge between them

of the window.14 Finally, using theVLFeat software package (Vedaldi and Fulkerson
2008), we build an unweighted 10-nearest-neighbor graph using the similaritymeasure
and a k-dimensional tree (with k = 10) (Bentley 1975). We see from Fig. 4 that
partitions with small values of (6) correspond to meaningful segmentations of the
image.

In Table 3, we show an example of a W matrix that we obtain from an MS net-
work to illustrate that we recover different surface tensions between different pairs of
communities.15

14 We weight the center pixel components by 1, the components from adjacent pixels by 0.5, and the
components from corner pixels by 0.25. That is, we let vi j be the 129-element vector at pixel (i, j), and we
define wi j as the concatenation of vi j , .5vi+1, j , .5vi−1, j , .5vi, j+1, .5vi, j−1, .25vi+1, j+1, .25vi+1, j−1,
.25vi−1, j+1, and .25vi−1, j−1. We then calculate the cosine similarity between each pair of wi j vectors.
15 For this example, we used the change of variables from Appendix A to eliminate the diagonal elements.
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6 Conclusions and Discussion

We have shown that a particular stochastic block model (SBM) maximum-likelihood
estimation (MLE) problem is equivalent to a discrete version of a well-known surface-
tension problem. This equivalence, which associates graph cuts to surface areas
and SBM parameters to physical surface tensions, gives new geometric and phys-
ical interpretations to SBM MLE problems, which are traditionally viewed from a
statistical perspective.We used the new connection to adapt three well-known surface-
tension-minimization algorithms to community detection in graphs. Our subsequent
computations suggest that the resulting algorithms are able to successfully find under-
lying community structure in SBM-related graphs. When applied to graphs that are
constructed from empirical data, our mean-curvature-flow (MCF) method performs
very well, but the other two methods face some issues (which will be interesting to
explore in future studies).16 We also proved a �-convergence result that gives theo-
retical justification for our algorithms.

Although our paper has focused on a specific form of an SBM and an associated
MLE problem, our techniques should also be insightful for other studies of SBMs and
their applications. One straightforward adaption is to consider SBMs without degree
correction, although that is more interesting for theoretical work than for applications.
Additionally, it seems promising to incorporate priors on the values of g and ω as
regularizers in the surface-tension energy [perhaps in a way that is similar to the
procedure in Bertozzi et al. (2018)]. Another viable extension is to incorporate a
small amount of supervision into the community-inference process using techniques
(such as quadratic fidelity terms) from image processing. A similar idea was used for
modularity maximization in Hu et al. (2013) and was tested further in Boyd et al.
(2018).

Introducing supervision helps alleviate severe non-convexity by penalizing local
minima that are inconsistent with the (ideally) ground-truth classifications fromwhich
one draws the supervision. It is also important to generalize our approach to more
complicated types of networks, such as multilayer (Kivelä et al. 2014) and temporal
networks (Holme and Saramäki 2012), and to incorporate metadata (Newman and
Clauset 2016) into our inference methodology. For example, given our successful
results on the hyperspectral video, it may be particularly interesting to use temporal
network clustering to analyze time-dependent communities in the video.

16 Several factors seem to contribute to the performance difference, and it is impossible to disentangle them
without extensive additional testing. The following are some possible contributing factors. The Facebook
networks are not generated from an SBM, and the former have more complicated structures than those in
synthetic networks. Our particular solution method involving eigenvectors may thus be less appropriate for
solving diffusion equations in the Facebook networks than in synthetic networks. It is empirically clear that
the Facebook networks have more eigenvector localization (e.g., as measured using inverse participation
ratio) in the combinatorial graph Laplacian than the synthetic networks. The AC and MBO methods deal
with the non-convexity differently than MCF. (The former two use pseudospectral methods to jump to
better regions, whereas MCF allows all boundary nodes to move independently and simultaneously.) It
would be interesting to conduct a detailed study of these various factors using a large variety of networks,
as it will likely improve scientific understanding of the geometry and associated flows for different families
of networks.
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Approaches such as inference using SBMs and modularity maximization are also
related to other approaches for community detection, and the results in the present
paper may help further illuminate those connections. These include recent work that
relates SBMs to local methods for community detection that are based on personalized
PageRank (Kloumann et al. 2017) and very recent work that established new connec-
tions between modularity maximization and several other approaches (Veldt et al.
2017). We expect that further investigations of the relations between the diverse avail-
able perspectives on community detection (and other problems in network clustering)
will yield many new insights for network theory, algorithms, and applications.
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A. Eliminating the Diagonal Elements ofW

It is difficult to interpret the parameters Wαα in the context of (6) and our surface-
tension analogy, because they correspond to “internal” surface tensions of a single
crystal. In this appendix, we use a change of variables to eliminate these diagonal terms
and replace them with additional volume terms, which are much easier to interpret.

We begin with the identity

∑

α,β

WαβCutg,A(α, β) =
∑

α

∑

β �=α

WαβCutg,A(α, β) +
∑

α

WααCutg,A(α, α) ,

(15)

and we compute

∑

α

WααCutg,A(α, α) =
∑

α

Wα,α

∑

gi=α,g j=α

wi j

=
∑

α

Wα,α

⎛

⎝
∑

gi=α, j=1,...,N

wi j −
∑

gi=α,g j �=α

wi j

⎞

⎠

=
∑

α

Wα,α

⎛

⎝
∑

gi=α

ki −
∑

β �=α,gi=α,g j=β

wi j

⎞

⎠

=
∑

α

Wα,α

⎛

⎝volg,A(α) −
∑

β �=α

Cutg,A(α, β)

⎞

⎠ . (16)
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Combining (16) with (15) yields

∑

α,β

WαβCutg,A(α, β)=
∑

α �=β

(
Wαβ −Wαα

)
Cutg,A(α, β)+

∑

α

Wααvolg,A(α) , (17)

assuming17 that Wαα is finite for each α. This formulation removes the diagonal
from the double sum at the cost of introducing asymmetry into the subscripts of the
coefficients. We can fix this new issue by replacing (17) with

∑

α,β

WαβCutg,A(α, β) =
∑

α �=β

(
Wαβ − 1

2
Wαα − 1

2
Wββ

)
Cutg,A(α, β)

+
∑

α

Wααvolg,A(α)

=
∑

α �=β

σ̂αβCutg,A(α, β) +
∑

α

Wααvolg,A(α) , (18)

where σ̂αβ = Wαβ − 1
2Wαα − 1

2Wββ . The matrix σ̂ is symmetric and has 0 values on
the diagonal.

Finally, we expand a bit on the role of the volume terms in (6). The term

∑

α

Wααvolg,A(α) (19)

is the inner product of the vector of volumeswith the diagonal ofW .Weminimize (19),
subject to the constraints

∑
α volg,A(α) = 2m and volg,A(α) ≥ 0, by placing all of

the nodes in the community that corresponds to the smallest18 entry in the diagonal
of W . Therefore, these terms incentivize placing more mass in the communities that
have the smallest volume penalties.

B. 0-Convergence of the Ginzburg–Landau Approximation of (6)

The notion of �-convergence is defined as follows.

Definition B.1 Let Y be a metric space, and let Fn be a sequence of functionals that
take values in R∪ {∞} ∪ {−∞}. We say that Fn �-converges to another functional F
if for all x ∈ Y , the following bounds hold:

1. (Lower bound) For every sequence xn → x , we have F(x) ≤ lim inf
n→∞ Fn(xn) .

2. (Upper bound) For every x ∈ Y , there is a sequence xn → x such that F(x) ≥
lim sup
n→∞

Fn(xn) .

17 The case in which Wαα = ∞ does not occur in our methods.
18 When referring to “smallest” eigenvalues in the appendices, we mean the smallest positive or most
negative values, rather than those that are smallest in magnitude.
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We now prove Theorem 4.1.

Proof We largely follow van Gennip and Bertozzi (2012), although we general-
ize to account for the multi-phase nature of our problem. The terms that do not
involve the potential T are continuous and independent of ε, so they cannot inter-
fere with �-convergence (Dal Maso 1993).19 Consequently, it suffices to prove that
1
ε
T : RN×n̂ → R �-converges to

χ(U ) =
{
0 , ifU corresponds to a partition ,

+∞ , otherwise .

To prove the lower bound, let Un → U and εn → 0. (In this proof, the subscript n
indexes the sequence, rather than the matrix columns.) IfU corresponds to a partition,
χ(U ) = 0, which is automatically less than or equal to 1

εn
T (Un) for each n. IfU does

not correspond to a partition, χ(U ) = +∞.There exists a constant c > 0 such that the
distance (in, for example, the Frobenius norm) from Un to the nearest feasible point
(i.e., a point corresponding to a partition) is at least c as n → ∞. Let Tc be the infimum
of T on all ofRN×n̂ except for the balls of radius c that surround each feasible point (so,
in particular, T0 > 0). It follows that lim infn→∞ 1

εn
T (Un) ≥ limn→∞ 1

εn
T0 = +∞.

Therefore, the lower bound always holds.
To prove the upper bound, letU be any N×n̂matrix. IfU corresponds to a partition,

then lettingUn = U for all n gives the required sequence. If u does not correspond to
a partition, then Un = U for all n still satisfies the upper bound.

Therefore, both the upper and lower bound requirements hold, and we have proven
�-convergence. ��

C. Additional Notes on the AC andMBO Schemes

In this appendix, we discuss some practical details about our implementation of the
AC and MBO solvers.

The choice of ε in AC is important, because it selects a characteristic scale of the
transition between the Uα ≈ 1 and Uα ≈ 0 regions. If ε is too small, the barrier
to transition is large, and no evolution occurs. If it is too large, the transition layer
includes so many nodes that U does not approximately correspond to a partition of a
graph. Furthermore, Theorem 4.1 asserts only that the minimizers of (6) and (13) are
related when ε is sufficiently small. In our numerical experiments, we set ε = 0.004,
a choice that we selected by hand-tuning using our synthetic networks. There is no
reason to believe that the same value should work for all networks. For example, for
the well-known Zachary Karate Club network (Zachary 1977), we obtain much better
results for ε = 0.04. A very interesting problem is to determine a correct notion of
distance and accompanying quantitative estimates to allow an automated selection

19 The graph-TV term is a composition of addition, subtraction, projection onto components, and taking
absolute values; therefore, it is continuous.
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of ε to obtain a transition layer with an appropriate width to give useful results. We
discretize the AC equation via convex splitting (Eyre 1998):

(1 + c dt)Un+1 − LUn+1W = −dt

(
cUn + k.∗ diag(W ) + T ′(Un) + 1

2m
kkTUe−W

)
,

where L is the combinatorial graph Laplacian matrix (see our previous discussions),
T ′ denotes the derivative of T , and c > 2/ε (Luo and Bertozzi 2017). Using the
constant c leads to an unconditionally stable scheme, which negates the stiffness
caused by the 1/ε scale.

It is necessary to solve a linear system of the form

(1 + c dt)Un+1 − LUn+1W = Fn (20)

many times. In a continuum setting, one can use a fast Fourier transform, but we
do not know of a graph analog with comparable computational efficiency. Instead,
we find the 2n̂ eigenvectors that correspond to the smallest eigenvalues20 of L; and
we employ the entire spectrum of W . Therefore, L is approximated by VLDLV T

L ,
where DL is a 2n̂ × 2n̂ diagonal matrix of the smallest eigenvectors of L , sorted from
smallest to largest, and VL is the associated matrix of eigenvectors. Furthermore, let
W = VW DWV T

W be the full spectral decomposition of W . The system (20) is then
approximately equivalent to

(1 + c dt)V T
L Un+1VW − DLV

T
L Un+1VW DW = V T

L FnVW .

Letting Û n = V T
L UnVW and F̂n = V T

L FnVW , we write

(1 + c dt)Û n+1 − DLÛ
n+1DW = F̂n, (21)

which is easy to solve for Û n+1. We convert Û n+1 to a solution using Un+1 =
VLÛ N+1V T

W . See Bertozzi and Flenner (2012) for a discussion of this method of

recovering Un+1 from Û n+1.
One final detail that we wish to note is that we want the evolution of U to be

restricted to have a row sum of 1, so that we can interpret it in terms of probabilities.
To do this, we use a modification of the projection algorithm from Chen and Ye (2011)
at each time step.21

The MBO solver uses a very similar pseudospectral scheme, although it does not
include convex splitting. Unlike in the AC scheme, we need to estimate two time steps

20 The number 2n̂ is somewhat arbitrary; we choose it to exceed n̂, but for computational convenience, we
do not want it to be too large.
21 The algorithm from Chen and Ye (2011) acts on a single row vector, and our modification is simply
to process all rows at once by replacing operations on row-vector components with operations on matrix
columns. The result is mathematically equivalent (up to round-off errors), but it is much faster because it
vectorizes the operations.
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automatically, instead of tuning them by hand.22 The first is the inner-loop step (i.e.,
the time step that we use for computing the diffusion), which we determine using a
restriction (which one can show is necessary for stability23) that the time step should
not exceed twice the reciprocal of the largest eigenvalue of the linear operator that
maps U → 1

m kk
TUe−W . The time step between thresholdings of U is given by the

reciprocal of the geometricmean of the largest and smallest eigenvalues of the operator
that maps U → LUW . The associated intuition is that linear diffusion should have
enough time to evolve (to avoid getting stuck) but not enough time to evolve to steady
state (because the steady state does not depend on the initial condition, so it carries no
information about it). The reciprocal of the smallest eigenvalue gives an estimate of
the time that it takes to reach steady state, and the reciprocal of the largest eigenvalue
gives an estimate of the fastest evolution of the system.We choose the geometric mean
between these values to produce a number between these two extremes.24 Boyd et al.
(2018) and van Gennip et al. (2014) proved bounds (although in a simpler setting) that
support these time-step choices for MBO schemes.
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