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We classify the local bifurcations of one dov quantum billiards, showing that only saddle-center
bifurcations can occur. We analyze the resulting planar system when there is no coupling in
the superposition state. In so doing, we also consider the global bifurcation structure. Using a
double-well potential as a representative example, we demonstrate how to locate bifurcations
in parameter space. We also discuss how to approximate the cuspidal loop using AUTO as well
as how to cross it via continuation by detuning the dynamical system. Moreover, we show that
when there is coupling, the resulting five-dimensional system — though chaotic — has a similar
underlying structure. We verify numerically that both homoclinic orbits and cusps occur and
provide an outline of an analytical argument for the existence of such homoclinic orbits. Small
perturbations of the system reveal homoclinic tangles that typify chaotic behavior.

1. Introduction

Quantum chaos is an underdeveloped area of dy-
namical systems theory. One purpose of studying
it is to generalize the notions of classical Hamilto-
nian chaos to the quantum regime, which has not
yet been done in a universally accepted manner.
One type of quantum chaos is often called semi-
quantum chaos, as these systems consist of classi-
cal (Hamiltonian) variables coupled with quantum
variables. [Blümel & Reinhardt, 1997]. Vibrat-
ing quantum billiards are a representative example
of semiquantum chaotic systems [Liboff & Porter,
2000; Porter & Liboff, 2001]. They may be used as
models for quantum-well microdevice components
(such as quantum dots and quantum wires), Fermi
accelerators [Badrinarayanana & José, 1995], and
intranuclear particle behavior.

In the present paper, we consider the bifurca-
tion structure of vibrating billiard systems. Quan-
tum billiards describe the motion of a point particle

undergoing perfectly elastic collisions in a bounded
domain. The particle’s motion is described by the
Schrödinger equation with Dirichlet boundary con-
ditions. One defines the “degree-of-vibration” (dov)
of a billiard as the number of boundary dimen-
sions that vary with time. If the boundary is time-
independent, the billiard is said to have zero dov.
The linear vibrating billiard and the radially vi-
brating spherical billiard have a single dov, and the
rectangular billiard with time-varying length and
width has two dov.

A zero dov quantum billiard exhibits only
integrable behavior if it is globally separable
[Gutzwiller, 1990]. It must, for example, be con-
vex and describable by a noncomposite geometry
[Katok & Hasselblatt, 1995; MacDonald & Kauf-
man, 1988]. If part of the billiard is concave (or
is composite, like the stadium billiard), it may be-
have chaotically, as it shares many of the instability
properties of the Anosov diffeomorphism. Blümel
and Esser [1994] found quantum chaos in the
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904 M. A. Porter & R. L. Liboff

one-dimensional vibrating quantum billiard. Porter
and Liboff [2001] extended these results to spheri-
cal quantum billiards with vibrating surfaces and
derived necessary conditions for chaotic behavior.
They also generalized their results to other one dov
billiards [Porter & Liboff, 2001]. The purpose of the
present paper is to examine bifurcations in single
dov quantum billiards that occur when one alters
the potential in which the billiard resides.

Vibrating quantum billiards are important for
several reasons. Though an idealized model, they
are nevertheless useful for the study of quantum
chaos. From a more practical standpoint, vibrating
quantum billiards may be applied to several prob-
lems in physics. The radially vibrating spherical
quantum billiard, for example, may be used as a
model for particle behavior in the nucleus [Wong,
1900] as well as for the quantum dot microdevice
component [Lucan, 1998]. Additionally, the vibrat-
ing cylindrical billiard may be used as a model for
the quantum wire, another microdevice component
[Zaren et al., 1989]. Other geometries of vibrating
quantum billiards have similar applications. They
may also be used as models of Fermi acceleration
of cosmic rays [Badrinarayanan & José, 1995] The
study of quantum chaos in vibrating billiard sys-
tems is thus important both because it expands the
mathematical theory of dynamical systems and be-
cause it can be applied to problems in nuclear and
mesoscopic physics.

In the present paper, we show that saddle-
centers are the only type of bifurcations that can
occur in one dov quantum billiards. When there is
no coupling in the superposition state, we show how
to analyze the resulting planar system analytically
and numerically. Considering a double-well poten-
tial as a representative example, we demonstrate
how to locate bifurcations in parameter space. We
also discuss how to approximate the cuspidal loop
using AUTO as well as how to continue past it by
detuning the dynamical system. We also mention
a shooting method for a more detailed analysis of
the cuspidal loop. Moreover, we show that when
there is coupling, the resulting five-dimensional sys-
tem — though chaotic — has a similar underlying
structure. We verify numerically that both homo-
clinic orbits and cusps occur, and we outline an an-
alytic argument that demonstrates the existence of
homoclinic orbits. Small perturbations of the sys-
tem reveal homoclinic tangles that typify chaotic
behavior.

2. Equations of Motion

The goal of the present project is to examine the
behavior of one dov quantum billiards in various
potentials in order to determine the effects of the
potential on the behavior of the system. In partic-
ular, we analyze bifurcations of equilibria both an-
alytically and numerically. We consider a two-state
superposition solution to the vibrating billiard, and
we examine the above problem for both the case in
which the two states experience coupling and that
in which they do not.

The present problem is described by the
Schrödinger equation with solutions that are con-
strained to vanish on a time-dependent boundary
a(t) [Porter & Liboff, 2001]. That is,

ψ(r, t; a(t)) = 0 for r = a(t) . (1)

Because of the time-dependence of the boundary,
the above boundary condition is nonlinear. The
(mathematical) problem at hand is to find a bound-
ary a(t) such that Dirichlet boundary conditions
are satisfied on it. One can then, in principle,
insert a(t) into the eigenfunctions in our normal
mode expansion of the wave ψ(r, t; a(t)) in order
to obtain nonlinear normal modes. When the ra-
dius a(t) behaves chaotically, the nonlinear normal
modes are examples of quantum-mechanical wave
chaos. One derives coupled nonlinear ordinary dif-
ferential equations for a(t) (and other variables)
using a Galërkin approximation [Guckenheimer &
Holmes, 1983; Temam, 1997] considering a two-
term superposition state which then corresponds to
taking a two-term Galërkin projection. The equa-
tions of motion that one obtains depend on whether
a particular subset of the quantum numbers in the
two states are the same [Porter & Liboff, 2001].
For the case of the radially vibrating sphere, the
quantum numbers in question are the orbital and
azimuthal quantum numbers l and m, respectively
[Liboff & Porter, 2000].

If these quantum numbers are the same in the
two states, there is a coupling between them. The
evolution of the system is then described by

ẋ = −ω0y

a2
− 2µPz

Ma
, (2)

ẏ =
ω0x

a2
, (3)

ż =
2µPx

Ma
, (4)
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Bifurcations in One Degree-of-Vibration Quantum Billiards 905

ȧ =
P

M
, (5)

and

Ṗ = −∂V
∂a

+
2[ε+ + ε−(z − µx)]

a3
, (6)

where x, y, and z are Bloch variables [Allen &
Eberly, 1987]

x = ρ12 + ρ21, y = i(ρ21 − ρ12), z = ρ22 − ρ11

x2 + y2 + z2 = 1, (7)

ρmn ≡ AmA∗n is the density matrix [Liboff, 1998], a
is a displacement, P is its conjugate momentum, M
is the mass of the billiard, m � M is the mass of
the confined particle, µ > 0 is the coupling coeffi-
cient between the two eigenstates, V = V (a) is the
potential of the billiard boundary, ω0 ≡ (ε2−ε1)/~,
ε± ≡ (ε2 ± ε1)/2, and ε1 and ε2 (ε2 ≥ ε1) are the
energies of the two states. It has been shown that
these equations exhibit quantum chaotic behavior
[Porter & Liboff, 2001].

If there is no coupling between the two eigen-
states, the evolution of the system is described by a
one degree-of-freedom Hamiltonian. The equations
of motion are

ȧ =
P

M
,

Ṗ = −∂V
∂a

+
λ

a3
, (8)

where

λ ≡ 2(ε1|C1|2 + ε1|C2|2) , (9)

and C1 and C2 are constants such that |C1|2 +
|C2|2 = 1. The energy parameter λ is necessarily
positive because εi > 0 and the |Ci|2 correspond to
probabilities.

3. Integrable Case: Absence of
Coupling

For the planar case, all (a, P ) that satisfy ȧ = Ṗ =
0 are equilibrium points. Each one is of the form
(a, 0), where a satisfies

∂V

∂a
(a, 0) =

λ

a3 . (10)

The eigenvalues of the integrable system (8,9) at
the stationary point (a, 0) are

σ = ±
√
− 1

M

(
∂2V

∂a2
(a, 0) +

3λ

a4

)
. (11)

These eigenvalues are either real with opposite sign
or are pure imaginary pairs, so in the linear analy-
sis, each equilibrium is either a center or a saddle
point. If

A ≡ ∂2V

∂a2
(a, 0) +

3λ

a4 > 0 ∀(a, P ) (12)

then every equilibrium point is a linear center. This
holds, in particular, when the potential V (a) has a
single minimum (that is, for single-well potentials).
Previous studies have focused on the harmonic
potential

V (a) =
V2

a2
0

(a− a0)2 ≡ V2(a− a0)2 . (13)

Another interesting single-well potential is the quar-
tic potential

V (a) =
V4

a4
0

(a− a0)4 ≡ V4(a− a0)4 . (14)

In the above equations, the Vi are dimensionless
parameters.

It is insightful to examine the evolution (partic-
ularly in the chaotic case) of the quantum billiard
system with the above two potentials and derive
a mechanical anology in terms of spring stiffness.
Given the same initial conditions and the quar-
tic and quadratic potentials above (and assuming
V2 = V4 for ease for comparison), one observes that
the phase-plane trajectory described by the evolu-
tion of a and P for the quartic potential (14) has
a larger radius of curvature (that is, a smaller cur-
vature). For all initial conditions, the trajectory in
the quadratic potential has a larger maximum a.
For initial conditions with sufficiently small a(0),
the quadratic potential induces trajectories with
smaller maximum |P |, but the quartic potential
eventually gives a larger maximum |P | as a(0) is
increased.

Consider an equilibrium for which A < 0, which
is a saddle point. Since the present system is a
Hamiltonian system, it is invariant under reflection
about the a-axis, so that the eigenvectors repre-
senting the local stable and unstable manifolds are
mapped to each other under this reflection. Since
the only other possible types of equilibria are cen-
ters, it follows that if there is at least one saddle
point, the system must have saddle connections. If
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906 M. A. Porter & R. L. Liboff

there is exactly one, the connection is a homoclinic
orbit, and there must be two of them emanating
from the saddle because the system must have a
center (in the right-half plane) on each side of the
saddle.

As one considers increasingly excited states of
the system (corresponding to larger quantum num-
bers), the energy parameter λ is increased. Each
saddle will eventually become a center as this oc-
curs. The quantity A vanishes at such an equilib-
rium point. The stationary point then has a double
zero eigenvalue with the Jacobian(

0 1

0 0

)
(15)

so that the saddle-center bifurcation that occurs
has codimension two and gives rise to a global
bifurcation corresponding to the breaking of the
separatrix [Hale & Koçak, 1991; Guckenheimer &
Holmes, 1983]. To find the conditions satisfied
at this point one can either solve the simultane-
ous equations ȧ = 0, σ = 0 or find the points at
which the Hamiltonian has a double zero (which
is equivalent to solving the system of equations
H(a, 0) = 0, ∂H/∂a (a, 0) = 0). If the potential
has a constant term V0, it does not change the evo-
lution of the system since it does not appear in the
equations of motion. We thus let V0 = 0 without
loss of generality. One finds that a saddle-center
bifurcation occurs when

λ = a3∂V

∂a
(a, 0) (16)

at the point (a, 0) satisfying

∂V

∂a
(a, 0) = −a

3

∂2V

∂a2
(a, 0) . (17)

Any solution to (17) giving λ < 0 is discarded as
nonsensical.

At the saddle-center bifurcation point, the sta-
ble and unstable eigenvectors of the equilibrium
coincide along the a-axis, so that the stable and un-
stable manifolds overlap near the stationary point.
This cusp causes difficulties in numerical continua-
tion attempts, as standard continuation techniques
fail for this bifurcation. One observes that the two
homoclinic orbits that exist when A < 0 have co-
alesced into one. (As A increases, the homoclinic
orbit on the left shrinks, becoming a single point
at the saddle-center. The orbit has infinite deriva-
tive with respect to arclength at the saddle-center
point.)

As a specific example of this phenomenon, con-
sider the quartic potential

V (a) = V4(a− a0)4 + V3(a− a0)3

+ V2(a− a0)2 + V1(a− a0) , (18)

where Vi ≡ Vi/ai0. This potential has either one
well or two. In the latter case, there is a single
saddle-center bifurcation point. One can find a
and λ exactly in this case, since the former is a
root for a degree-three polynomial. We initially re-
strict ourselves to the case in which V3 = V1 = 0,
since all the dynamics of interest remain in this
simpler case. Note that the potential is symmet-
ric about a0. For numerical purposes, consider the
special case corresponding to the parameter values
a0 = 1, V2 = −1 and V4 = 1. There is a saddle-
center bifurcation at λ = (1/972)[3 +

√
3]3
√

3 ≈
0.1888176. The corresponding stationary point is
(1/2 +

√
3/6, 0) ≈ (0.7886751, 0). Using DsTool

[Guckenheimer et al., 1997], we plotted an approxi-
mation of the homoclinic orbit emanating from this
equilibrium (Fig. 1).

More generally, one can consider even poly-
nomials of higher degree in order to examine vi-
brating quantum billiards in an N -well potential.
If the polynomial is of degree six or higher, one
may not be able to solve for a exactly in terms of

Fig. 1. Approximate cuspidal homoclinic orbit. The ini-
tial point used was (0.7886751, 0.001), just above the
equilibrium.
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Bifurcations in One Degree-of-Vibration Quantum Billiards 907

radicals by Galois theory [Dummit & Foote, 1991],
since Eq. (17) is polynomial of degree at least five.
If its degree is exactly five, one can solve for a ex-
actly in terms of elliptic functions [Wolfram, 1999].

Consider the problem of starting at λ < λ and
attempting to continue along the bifurcation curve
past the saddle-center. Using AUTO [Doedel et al.,
1998; Doedel et al., 1993] and the homotopy method
encoded in HomCont, we followed the two homo-
clinic orbits for λ = 0.15 (Fig. 2). The saddle
connection in the present system has a codimen-
sion greater than one, as regularity and nondegener-
acy conditions are both violated [Champneys et al.,
1996; Champneys & Kuznetsov, 1994]. The present
situation is degenerate because for all λ < λ, there
are two homoclinic orbits emanating from the sad-
dle point. Regularity is violated because the sad-
dle point’s two eigenvalues are negatives of each
other. (Moreover, their eigenvectors are related
by reflection across the a-axis, since the system is
Hamiltonian.)

Because the present system is degenerate and
irregular, one cannot continue (in λ) past the
saddle-center directly as described in the AUTO
manual [Doedel et al., 1998]. Hamiltonian sys-
tems possess a continua of homoclinic orbits, and
there are numerical schemes that allow one to han-
dle this phenomenon. One can exploit the re-
versibility of the system by computing only half of
a given saddle connection. However, the cusp at
the saddle-center point prevents this from working
for the present system. AUTO is incapable of con-
tinuing past a cusp, because ∂P/∂a vanishes there

Fig. 2. Homoclinic orbits emanating from (0.8916637, 0) for
λ = 0.15. The label 12 refers to the right homoclinic orbit,
and the label 6 refers to the left one.

Fig. 3. Continuation of the detuned system in the parame-
ter λ.

and the pseudo-arclength step must become vanish-
ingly small for such a continuation step to be suc-
cessful. Because of machine precision, this cannot
occur, and so one must “detune” the system.

In general, Hamiltonian systems are described
by

ẋ = J∇H(x, λ), x ∈ R2n, (19)

where

J ≡
(

0 I

−I 0

)
(20)

is the canonical 2n × 2n symplectic matrix
[Marsden & Ratiu, 1999]. One can detune the sys-
tem by using a small perturbation parameter ε as
follows [Champneys et al., 1996]. The perturbed
dynamical system,

ẋ = J∇H(x, λ) + ε∇H(x, λ) , (21)

is no longer Hamiltonian, but the perturbation was
constructed so that the locations of all equilib-
rium points are preserved. With this detuning, the
saddle-center bifurcation becomes a saddle-node bi-
furcation (the eigenvalues of the stationary point
are now of the form a±

√
b′ (a 6= 0) rather than of

the form ±
√
b). One can then continue λ past this

point using AUTO (without utilizing the HomCont
package). Using this technique, one can compute
the value of λ at which the saddle-center bifurcation
occurs as well as the cusp point of the homoclinic
orbit corresponding to that value. Moreover, once
one has successfully continued past the cusp, one
can simply let ε → 0 and thereby work with the
system when λ > λ. This method of continuation
is useful as long as one needs to get past the cusp
rather than do computations at the cusp itself. For
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908 M. A. Porter & R. L. Liboff

the present system, we used ε < 0, since in that case
the equilibria that are centers for ε = 0 become
stable spirals. The continuation curve (in λ) is
shown in Fig. 3.

In general, AUTO has difficulties near cusps.
As with DSTool, one can approximate the cuspidal
homoclinic orbit using AUTO. In order to do this,
one provides initial values for the HomCont con-
tinuation parameters (corresponding to the initial
point in the (a, P )-plane) to the right of the saddle
point (a∗, 0). This allows AUTO to continue along
the homoclinic orbit for values of λ closer to λ than
if one had started as close to the saddle point as
machine precision would allow. For the present ex-
ample, the closest accurate plot we obtained was
for λ = 0.1887. The right homoclinic orbit is pic-
tured in Fig. 4 and the left one is pictured in Fig. 5.
Observe that the one on the right looks like it has
a cusp at the saddle point and that the left one is
very small. As the saddle-center is approached, the
left homoclinic orbit shrinks to a single point and
the right one becomes more cusplike.

There are other methods one can use to per-
form analysis near the cusp. One can, for example,
use shooting methods [Freire et al., 1999]. (AUTO
uses a collocation method.) Saddle-centers are a
degenerate case of Takens–Bogdanov (TB) bifurca-
tions [Guckenheimer & Holmes, 1983], so one can
add dummy parameters and analyze the cuspidal
loop by computing the locus of a TB bifurcation in
parameter space, moving along the TB curve un-
til one finds a Hopf bifurcation of another equi-
librium, and then following the evolution of the
periodic orbit created in the Hopf bifurcation as
the parameters follow the TB bifurcation curve. If

Fig. 4. Right homoclinic orbit for λ = 0.1887.

Fig. 5. Left homoclinic orbit for λ = 0.1887.

a cuspidal loop exists, this method will find it when
the periodic orbit collapses into the cusp point.

4. Chaotic Case: Presence of Coupling

For the chaotic case, the equilibrium points sat-
isfy x = P = y = 0, z = ±1, and ∂V /∂a =
(2/a3)(ε+ ± ε−), where the factor of ±1 in the last
quantity corresponds to the equilibrium value of z.
The eigenvalues for the equilibria of the chaotic sys-
tem [Eqs. (2)–(6)] are of the form

σ = 0,±

√
−2M(α±

√
β)

2Ma2
, (22)

where both α and β have terms whose signs depend
on whether z is 1 or −1. The quantities α± and β±
are given by

α+ = a4∂
2V

∂a2
+ ω2

0M − 4µ2ε− + 6(ε+ + ε−) , (23)

α− = a4∂
2V

∂a2
+ ω2

0M + 4µ2ε− + 6(ε+ − ε−) , (24)

β+ = I1 + I+
2 + I+

3 + I+
4 , (25)

where

I1 ≡ a8

(
∂2V

∂a2

)2

,

I+
2 ≡

∂2V

∂a2
(12a4ε+ − 2ω2

0Ma4 + 12a4ε− − 8µ2a4ε−) ,

I+
3 ≡ 16µ4ε2

− − 8ω2
0Mµ2 − 48µ2ε2

− − 12ω2
0Mε+

+ 72ε+ε− − 12ω2
0Mε− ,

I+
4 ≡ −48µ2ε+ε− + ω4

0M
2 + 36(ε2

+ + ε2
−) , (26)
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Bifurcations in One Degree-of-Vibration Quantum Billiards 909

and
β− = I1 + I−2 + I−3 + I−4 , (27)

where I1 is as before,

I−2 ≡
∂2V

∂a2
(12a4ε+ − 2ω2

0Ma4 − 12a4ε− + 8µ2a4ε−) ,

I−3 ≡ 16µ4ε2
− + 8ω2

0Mµ2 − 48µ2ε2
− − 12ω2

0Mε+

− 72ε+ε− + 12ω2
0Mε− ,

I−4 ≡ 48µ2ε+ε− + ω4
0M

2 + 36(ε2
+ + ε2

−) . (28)

Analogous to the planar system, only a general-
ization of saddle-center bifurcations can occur. As
the energy is increased, a bifurcation corresponds to
an increase in the dimension of the center manifold
by two as a pair of real eigenvalues of opposite signs
becomes a pair of pure imaginary eigenvalues. For a
double-well potential, the only possibility is a jump
in the dimension of the center manifold from three
to five. For more complicated potentials, there may
be parameter values with a one-dimensional center
manifold. As before, one can determine the loca-
tion of this bifurcation by finding the equilibria for
which H(a, P ) has a double root. One again finds
that the equilibrium points (0, 0, ±1, a, 0) at the
bifurcation satisfy

∂V

∂a
(a, 0) = −a

3

∂2V

∂a2
(a, 0) . (29)

Finding the parameter values at which this oc-
curs is not a simple issue as in the previous case.
In the planar case, λ was a probabilistic weight-
ing of two energies, so it could be varied continu-
ously past the bifurcating value λ. However, the
parameters ε1, ε2 in the present system are part
of a discrete energy spectrum, and so one cannot
vary them continuously. In practice, therefore, this
model predicts superposition states on each side of
the bifurcation, but one does not expect to observe
the system at a bifurcating value of (ε1, ε2) because
the set of all (ε1, ε2) that correspond to bifurcat-
ing values has measure zero. (One could vary V2

continuously if one wanted to examine bifurcations
corresponding to a change in the quartic potential.
If V2 is negative and sufficiently small for a given
V4 or if it is positive, the system will not exhibit
a saddle-center.) Additionally, numerical observa-
tions indicate that the bifurcation occurs at low
energies (corresponding to superpositions of low
quantum number states), so that for a given bil-
liard system, most superposition states will exhibit

an evolution with a five-dimensional center mani-
fold. The bifurcation under study may thus occur
as one considers superpositions of increasingly ex-
cited states of the quantum billiard.

Numerical investigations have shown that ho-
moclinic orbits must exist for this five-dimensional
system (Fig. 6). Slight perturbations away from
the homoclinic orbits lead to homoclinic tangles
(Fig. 7), which are traditionally analyzed using
symbolic dynamics. The details have not been
worked out, but the existence of a homoclinic or-
bit for the present case can be shown analytically
as follows. There is only one saddle point, so any
saddle connection would have to be a homoclinic
connection. By Hamiltonian symmetry and the ex-
istence of a center to the right of the “saddle-like”
(in the sense that it has one-dimensional stable and
unstable manifolds) equilibrium, there must exist a
structure to its right that looks like a homoclinic
orbit when projected into the (a, P )-plane. It may
not be a homoclinic orbit, because one must con-
sider the value of (x, y, z) at the point (ã, 0) where
the projection intersects the a-axis. One thereby
considers the two-sphere S2 and two trajectories on
it that start at the same point. One curve begins
at t = ∞ from the stable manifold, and the other
starts at t = −∞ from the unstable manifold. One
looks at the intersection of one trajectory at time
t with the other at time −t. If one can prove that

Fig. 6. Poincaré section projected into the (a, P )-plane
demonstrating that there must exist a homoclinic orbit.
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Fig. 7. A homoclinic tangle projected onto the (x, y)-plane
of the Bloch sphere.

such a point exists at t = T , then repeating the
argument shows that such an intersection occurs at
infinitely many times. To complete the proof, one
must show that P = 0 at one of these points.

Note that the homoclinic orbit for the chaotic
system [Eqs. (2)–(6)] emanates and terminates from
a nonhyperbolic equilibrium, which increases the
difficulty of numerical studies [Champneys et al.,
1996; Champneys & Kuznetsov, 1994]. As with the
planar system discussed earlier, there is also a cus-
plike structure as the stable and unstable manifolds
coalesce along the a-axis.

As an anology, consider two undamped springs,
one with a linear restoring force (F1 = −kx) and
a stiffer spring with a cubic one (F3 = −kx3).
These two springs (with mass m = 1) are described,
respectively, by the differential equations

ẍ+ kx = 0 , (30)

and
ẍ+ kx3 = 0 . (31)

One observes the same stiffness phenomena for
these spring systems as we did for the integrable
case of the vibrating billiard. (For example, the
phase space trajectory of the cubic spring [Eq. (31)]
has a larger radius of curvature than the analogous
one in the linear spring system. There is a corre-

Fig. 8. Chaotic Poincaré maps in the (a, P )-plane for bil-
liards in both a quartic and a quadratic potential. The plot
from the quartic potential is the one with a smaller maxi-
mum value for the distance a. Notice that the trajectory cor-
responding to the quartic potential generically has a larger
radius of curvature.

spondence with the other properties we discussed
as well.) By analogy with mass–spring systems, we
thus conclude that it is reasonable to consider the
“stiffness” of the potential in which a quantum bil-
liard resides as an object of interest.

The analogy with spring stiffness carries
through in the chaotic case as well as in the planar
case. For the same initial conditions, we consider
the potentials

V (a) = V2(a− a0)2 (32)

and
V (a) = V4(a− a0)4 , (33)

where for ease of comparison, V2 = V4. As shown
in Fig. 8, the quartic potential gives trajectories
with a larger radius of curvature than those in the
quadratic potential. It thus makes sense to consider
a potential’s stiffness in the chaotic case as well as
in the integrable one.

5. Conclusions

We showed that saddle-centers are the only type
of bifurcations that can occur in one dov quan-
tum billiards. When there is no coupling in the
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superposition state, we showed how to analyze the
resulting planar system analytically and numeri-
cally. Considering a double-well potential as a rep-
resentative example, we demonstrated how to locate
bifurcations in parameter space. We also discussed
how to approximate the cuspidal loop using AUTO
as well as how to continue past it by detuning the
dynamical system. We also mentioned a shooting
method for a more detailed analysis of the cuspi-
dal loop. Moreover, we showed that when there is
coupling, the resulting five-dimensional system —
though chaotic — has a similar underlying struc-
ture. We verified numerically that both homoclinic
orbits and cusps occur. Small perturbations of the
system reveal homoclinic tangles that typify chaotic
behavior.
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