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Forecasting fracture locations in a progressively failing disordered

structure is of paramount importance when considering struc-

tural materials. We explore this issue for gradual deterioration via

beam breakage of 2-dimensional (2D) disordered lattices, which

we represent as networks, for various values of mean degree.

We study experimental samples with geometric structures that

we construct based on observed contact networks in 2D gran-

ular media. We calculate geodesic edge betweenness centrality,

which helps quantify which edges are on many shortest paths in

a network, to forecast the failure locations. We demonstrate for

the tested samples that, for a variety of failure behaviors, failures

occur predominantly at locations that have larger geodesic edge

betweenness values than the mean one in the structure. Because

only a small fraction of edges have values above the mean, this

is a relevant diagnostic to assess failure locations. Our results

demonstrate that one can consider only specific parts of a sys-

tem as likely failure locations and that, with reasonable success,

one can assess possible failure locations of a structure without

needing to study its detailed energetic states.

failure | lattices | networks | centrality

C
ellular foams (1), semiflexible fiber and polymer networks
(2), and many recently developed mechanical metamaterials

(3–5) all belong, in idealized form, to a general class of disor-
dered lattices. Such lattices can range in size from microscopic
scaffolds for biological tissue growth (6) to modern architec-
tural structures (7). In each case, one can further idealize the
material or structure as a mathematical network of connections
between slender beams that intersect at various points within
the material. From an engineering perspective, such materials
are promising because of their light weights and their tunable,
designable properties: a Poisson ratio from the auxetic (4, 8, 9)
to the incompressible limits (4), a targeted local response to a
remote perturbation (5), or the ability to change shape (3). A
disadvantage of these materials is that those that are constructed
from stiff materials can degrade progressively through successive
abrupt failures of the beams during loading (8, 10, 11). To design
optimized structures and safely use them for structural applica-
tions, it is necessary to assess the most likely locations of fracture.
Such predictive understanding would further enable the design
of a material to fail in a prescribed way.

Fracture experiments have been conducted previously on
printed, disordered auxetic materials (8) and 2-dimensional (2D)
laser-cut, disordered honeycomb lattices (10). In these stud-
ies, very different fracture behaviors (ductile vs. brittle) have
been obtained by changing the loading direction (8) or tun-
ing the rigidity (10). In the latter study, a clear change arose
in the spatial organization of fractures: they can either be dis-
persed throughout a system or be localized in the form of
a narrow crack. Therefore, although some tunable parame-
ters for controlling failure behavior have been identified, what
determines these particular failure locations remains an open
question. According to the theory of Griffith (12), damage in
brittle materials focuses at the tip of a crack. However, factors
such as material disorder (13–17), material rigidity (10), and

the connectivity (specifically, mean degree) of networks (10, 18)
can affect the spatial organization of damage. As one tunes
each of these factors, one can make failures spread through-
out a system (diffuse damage) rather than form a narrow crack
(localized damage).

Zhang and Mao (11) showed recently that failures can also
be delocalized in topological Maxwell lattices (in which freely
rotating joints that are linked by rigid struts are on the verge of
mechanical instability) (19). They performed numerical experi-
ments on the tensile fracture of deformed square and kagome
lattices, demonstrating that stress and fracture concentrate on
self-stress domain walls, even in the presence of damage that
is introduced elsewhere in the system. In another recent paper,
Tordesillas et al. (20) studied damage locations in discrete ele-
ment simulations of concrete samples under uniaxial tension.
From a network-flow analysis of the contact-network topology
and contact capacities of a specimen, the authors determined
the location of the principal interacting macrocracks. In their
samples, they observed that secondary macrocracks develop in
the prefailure regime after damage occurs elsewhere, but before
the formation of a dominant macrocrack that sets the ultimate
failure pattern of a sample.

In this paper, we investigate where damage occurs in dis-
ordered lattices that consist of identical-width beams, with a
network topology specified by contacts that are measured from
a real quasi-2D granular packing (Fig. 1). We identify a common
property, a large value of geodesic edge betweenness centrality
(GEBC) (25), that is shared by the failure locations of progres-
sive damage events of our tested samples. Even without modeling
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Fig. 1. (A) Force chains (cyan) recorded in a 2D assembly of frictional pho-
toelastic disks (red), which we image via a circular polariscope (21). Brighter
particles carry stronger forces. (B) Contact network (yellow), which was
extracted using an open-source photoelastic solver (21–23), overlaid on the
reconstructed “pseudo-image” (21). (C) Network representation in which
each particle center is a node (orange dots) and each load-bearing contact is
an edge (blue lines) (24). (D) Corresponding physical sample that we laser cut
from an acrylic sheet, with the edges represented by beams that intersect at
cross-links (which correspond to the nodes in the network).

the physical interactions between nodes, this property provides a
diagnostic for identifying likely failure locations. Such an indica-
tor would permit assessing these locations in a structure without
studying its detailed energetic or stress states. Ultimately, the
choice of a granular-inspired geometry for a disordered lattice
will provide a route toward generalizing these studies across
inherently different systems, which are linked by their network
topology.

For each network, we laser cut an acrylic sheet using a con-
tact network that matches the one observed in a packing, and
we then test its behavior under compressive or tensile loading.
Because the set of contacts in a packing forms a network that is
embedded in a plane, our lattice does as well. Such a lattice
network consists of edges (representing the beams of the lat-
tice) that intersect at nodes, which occur at the cross-links of
the lattice. Conceptually similar structures occur in streets and
intersections in the study of road networks (26, 27), connections
between internet routers, plant veins (28), fungi (29), and many
other spatial systems (30, 31).

Network analysis provides useful approaches—including mea-
sures, algorithms, and theory—for characterizing complex spa-
tial systems at multiple scales, ranging from local features to
mesoscale and macroscale ones, and examining how they evolve
(24, 32). As discussed by Smart and Ottino (33), it is appealing to
investigate what insights network analysis and associated topics
(e.g., graph theory and algebraic topology) can yield on physical
systems, especially in comparison with traditional approaches.
For example, this perspective was adopted by Tordesillas et al.
(20) to study quasibrittle failure using network-flow analysis.
Such approaches have also been useful for the study of mesoscale
structures, such as dense communities of nodes, in granular sys-

tems (34). Therefore, network analysis seems to be a promising
route to identify common analytical tools that are capable of
relating failure behaviors across a variety of disordered systems.

One important approach in network analysis is the calculation
of “centrality” measures to ascertain the most important nodes,
edges, and other subgraphs in a network (32, 35). One particu-
larly popular type of centrality, known as betweenness centrality,
measures whether one or more parts of a network lie on many
short paths; it has been used to characterize the importance of
nodes (36), edges (25), and other subgraphs. The most com-
mon type of betweenness centrality uses geodesic (i.e., strictly
shortest) paths.

Recently, in a study of granular materials, Kollmer and
Daniels (37) showed that there is a positive correlation between
the geodesic betweenness centrality value of a node and the
pressure on the corresponding particle. Previously, Smart et al.
(38) reported that edges with large geodesic betweenness cen-
trality exert a strong influence on heat transport in granular
media. Inspired by these investigations, we selected from among
the variety of network measures (31, 32) and focus on calculat-
ing GEBC. We show its definition in Eq. 5 (see Materials and
Methods).

As was reported in Berthier et al. (23), one can control the
compressive and tensile failure behaviors of a disordered lattice
by tuning the mean degree of its associated network. This con-
trol parameter provides a way to create systems with a variety
of failure behaviors, ranging from ductile-like to brittle-like fail-
ure. In this paper, we show for samples across the spectrum from
brittle-like to ductile-like failure (see Mechanical Testing Proto-
col) that individual beam failures occur predominantly on edges
with GEBC values that are above the mean of the network. From
this result, we conclude that GEBC is a useful diagnostic for fore-
casting possible failure locations in our contact networks. We
demonstrate the ability of a GEBC-based test, which consists of
comparing the GEBC value of an edge with a threshold value,
to discriminate between beams that fail and those that remain
intact. This finding, together with the work of ref. 38, suggests
that betweenness centrality is a useful measure for capturing
essential physical properties in disordered systems. Our study
also confirms that tools from network analysis give a promising
paradigm for the study of fracture.

The effectiveness of GEBC, which depends on network topol-
ogy rather than on specifying mechanical interactions, is unex-
pected. This motivates a deeper analysis to determine which
behaviors do not depend primarily on the detailed physical prop-
erties of a system, but instead depend on its geometry (and
associated network topology). Our use of unweighted networks
focuses our investigation on network topology, and we compare
results for both a measure (specifically, GEBC) that ignores the
physics and a well-known scalar electrical analogy of elasticity
known as a random fuse network (RFN) model (17, 39). The
RFN model identifies the most stressed beams as the edges with
the largest currents, as determined by solving Kirchhoff’s laws,
for a given voltage drop across the boundaries. We show that the
RFN model, even with its incorporation of physical considera-
tions, does not markedly improve performance over GEBC. This
indicates that one can capture essential features of lattice failure
behavior by geometric (rather than physical) considerations.

Results
Spatial Heterogeneity and Changes with Applied Strain of GEBC.
We examine the ability of GEBC Ẽ (Eq. 5) to forecast the
specific locations at which our samples fail. For each initial
(and subsequently altered) network, we find that geodesic edge
betweenness takes a broad range of values across the network.
In Fig. 2A, we show the probability density function (PDF) of
the initial geodesic edge betweenness Ẽ0 for each initial net-
work at each value of the mean degree z 0. To facilitate notation,
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Fig. 2. Characterization of geodesic edge betweenness (re-)distribution.
(A) PDF of the initial GEBC Ẽ0 for the different initial networks. We show the
PDFs for several values of mean degree. (B) Changes in GEBCs Ẽ after a fail-
ure event that occurs at the red ellipse at a compressive strain of "⇡ 1.98%
on a network with mean degree z0 = 2.40. The values of the lavender edges
change by less than 10�2.

we use the subscript 0 to designate our initial networks and the
quantities that we measure and compute with them. In all cases,
the distribution of values is approximately exponential, and it is
largely independent of z 0. Because each failure event (with asso-
ciated edge removals) results in a new set of shortest paths, we
obtain a new distribution of GEBC values for each altered net-
work. Just as stress redistributes after damage (40–43), GEBC
(due to its nonlocal nature) also redistributes in a system. In
Fig. 2B, we show a characteristic example of redistribution after
a failure event. The redistributions are system-wide: some edges
are “reloaded,” becoming more important with respect to the
others (i.e., Ẽs+1 > Ẽs when going from strain step s to strain
step s +1), others are “unloaded” (i.e., Ẽs+1 < Ẽs), and some
edges (in lavender in Fig. 2B) have the same (or almost the
same) value. By contrast, removal of unimportant edges (i.e.,
those with small values of GEBC) results in small (in amplitude)
changes.

Damage occurs progressively through a sequence of tensile or
compressive loading. In Fig. 3, we show examples of damage pro-
gression for 3 values (1 per row) of z 0. Within each row, a sample
progresses from its initial intact network G0 (an unweighted and
undirected graph) through an altered network at which about
50% of its beams have failed, and then to the network imme-
diately before the final failure. For each row of Fig. 3, in the
network immediately after the last image that we show, there
is no longer a set of beams that connects the top and bottom
boundaries of the sample. We color each edge in each network
according to the value of Ẽs at that strain step.

Geodesic edge betweenness is spatially heterogeneous across
a network, and we observe that large values (bright colors)
can occur throughout a network. These locations shift both in
space and in time due to the disordered structure (which arises
from geometry) of our lattices. By contrast, for a regular lattice,
the importance of edges decreases with their distance from the
geometric center of a system (31). The introduction of disorder—
such as by rewiring, addition, or removal of edges—results in
more complicated distributions and can lead to geographically
central edges with smaller importance than elements that are
farther from the geometric center (44). Importantly, although
the topologies of the networks underlying our lattices are inher-
ited from uniaxially compressed granular packings, we do not
observe a preferred orientation for edges with GEBC values that
are above the mean. Granular packings encode their prepara-
tion history in the form of anisotropic stresses (45, 46), but this
anisotropy is not readily identifiable from the contact network
(which is unweighted).

The GEBC values at a given strain step illustrate the broad
distribution of values, as we observed in the exponential PDF
of Ẽ0 (Fig. 2). Even in these small systems, some edges have
values up to 20 times the mean of the system; these are ones
that are particularly important for connecting different parts of a
network. Many other edges occur only infrequently as shortest-
path connectors. The variations in spatial distribution along the
rows of Fig. 3 highlight the importance of the removed edges,
as we emphasized in Fig. 2B. Importantly, although Ẽ tends to
decrease with distance from the geometric center, this need not
be true for specific samples. For the near-final networks (Fig. 3,
Right) at z 0 =2.40 and z 0 =3.00, the maximum of Ẽ is located
near the left boundary of the sample, rather than near the mid-
dle. In both cases, the largest values of Ẽ occur on edges that
connect the top and bottom parts of the network, and these are
also the next beams that will break (and lead to the final cascade
of failures).

GEBCs of Failed Edges. Such observations suggest that there is a
correlation between large values of Ẽ and future failure loca-
tions. To assess the generality of this finding, for each breaking
beam, we calculate the GEBC Ẽf during step s � 1 immedi-
ately before its failure at step s . For all of our samples and for
all small failure events (which we take to mean that no more
than 3 beams are involved), we enumerate the immediately pre-
ceding values of Ẽ for the failed edges. In Fig. 4A, we show
the cumulative distribution function (CDF) of this set of values,
together with the corresponding PDF in Fig. 4A, Inset. We fit
the PDF with an exponential with mean Ẽ⇤

f ⇡ 10.3 (with R2 ⇡
0.96). There is a corresponding gradual increase for Ẽf ' 10 of
the CDF, suggesting that few failing edges have a value that is
significantly larger than the mean. We observe such large val-
ues of Ẽ only when the samples are near full failure; at this
point, only a few paths are available to connect the top and
bottom boundaries of the network. One can see this situation
in Fig. 3, Right. Focusing on Ẽf =1, we see that about 76%
of the breakages occur on edges with values of Ẽf that are
above the mean. Because only a small subset of the network’s
edges have Ẽ > 1 (see the distribution in Fig. 2A), even the
value of Ẽ alone is a valuable diagnostic for forecasting failure
locations.

We can refine this diagnostic by directly considering the pop-
ulation of edges that exceed a threshold value Ẽth. We illustrate
this population by plotting the complementary cumulative dis-
tribution function (CCDF) on the left vertical axis in Fig. 4B.
Because the proportion of edges that satisfy Ẽ > Ẽth evolves
after each edge removal and differs across initial networks, we
choose each point of the curve to be the maximum value that
we encounter among all networks. The success rate of this diag-
nostic is the fraction of failed beams that satisfy Ẽ > Ẽth, and
the failure rate is the fraction for which Ẽ  Ẽth. We show the
latter as orange diamonds on the right vertical axis of Fig. 4B
for all small failure events among all tested samples, regard-
less of the tensile or compressive nature of the applied loading.
In Fig. 4C, we focus on the point at which the CCDF and the
failure-rate curves cross; this intersection occurs at Ẽth ⇡ 1.1,
corresponding to a value on the CCDF curve (i.e., the fraction
of edges for which Ẽ ' 1.1) of about 0.34 and a failure rate of
about 0.26. This intersection point indicates that considering all
edges with above-mean GEBC values provides a reasonable pop-
ulation of edges to consider, but one can choose other values
in a tradeoff between forecast failure rate and the fraction of
examined edges.

The above general results exhibit sample-to-sample variation.
To highlight this, we include an envelope of the failure rate in
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Fig. 3. Example images of the spatial distribution of normalized GEBCs Ẽ (given by the color bar), which we plot at a particular applied strain " (in
Mechanical Testing Protocol, we discuss the strain steps) for samples that are subject to compression. The rows show samples with (Top) z0 = 2.40, (Middle)
z0 = 3.00, and (Bottom) z0 = 3.60. Within each row, we show the progression (of strain steps) in " from (Left) initial intact networks G0 with adjacency
matrix A0 to (Center) the step at which 50% of breakages have occurred (with "⇡ 3.39, "⇡ 1.68, and "⇡ 1.90% from Top to Bottom), and finally to (Right)
the strain step immediately before a system-spanning failure (with "⇡ 9.56, "⇡ 3.66, and "⇡ 1.95% from Top to Bottom).

Fig. 4C. To obtain this envelope, we determine a failure-rate
curve for each of the 14 samples (see Materials and Methods).
We obtain each curve by examining the failure events that occur
on each initial intact network. For each threshold value, we
track the best (lower point) and worst (upper point) failure-
rate value among the 14 curves. The envelope is the set of
points between these lower and upper bounds for each thresh-
old value. Although the scatter is nonnegligible, for a threshold

of Ẽth =1, we still obtain success rates above 65% for all
samples.

Test Sensitivity and Specificity. Performing sensitivity and speci-
ficity analyses (47) allows a more detailed determination of the
suitability of using Ẽ > Ẽth to identify beams that are likely to
fail. We define the outcome of this test as true positive (TP),
false positive (FP), true negative (TN), or false negative (FN)

Berthier et al. PNAS | August 20, 2019 | vol. 116 | no. 34 | 16745
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Fig. 4. (A) CDF of GEBC of failed edges of all experiments. We show the PDF in the Inset. (B) Fraction of edges in the network for which Ẽ > Ẽth (blue dots,
left axis) and fraction of failed beams for which Ẽ  Ẽth (orange diamonds, right axis). (C) Magnification of the cross-over point between the CCDF and the
failure rate (and the envelope of the results of individual samples).

according to the state of the beam (failing or remaining intact).
We summarize these possible outcomes in Table 1.

“Sensitivity” is defined as the empirical probability of obtain-
ing a positive test result for the population of failed beams (i.e.,
the proportion of TPs); therefore, sensitivity=TP/(TP+FN).
Similarly, “specificity” is the empirical probability of obtaining
a negative test result for the population of intact beams (i.e.,
proportion of TNs); therefore, specificity=TN/(TN+FP).
These 2 measures quantify the success of our test for correctly
identifying beams that will fail or remain intact.

We calculate sensitivity and specificity in considering all small
failure events of all experiments as a function of the threshold
Ẽth, and we show the results in Fig. 5A. As expected, sensitivity
and specificity show opposite trends: as one lowers the threshold,
the TP fraction (sensitivity) increases, but so does the FP frac-
tion, such that the specificity (i.e., the TN fraction) decreases.
As one increases the threshold, the opposite occurs: we obtain
a smaller TP fraction (sensitivity decreases), and the FP fraction
decreases (specificity increases). There is a cross-over between
sensitivity and specificity at Ẽth ⇡ 1.1, which is close to the value
1 that we used above.

Computing a receiver operating characteristic (ROC) curve
(48) provides additional insight into the choice of Ẽth. As we
show in Fig. 5B, we measure sensitivity and specificity as a func-
tion of Ẽth. A test with perfect forecasting of failing vs. intact
beams would go through the upper-left corner (in which sensitiv-
ity and specificity are both 1), and a test without any predictive
power would follow the dashed diagonal line in Fig. 5B. (Any-
thing below this line gives a result that is worse than random
guessing and indicates that we should reverse our criterion, such
that a positive test indicates “less than” rather than “greater
than”.)

To obtain a global estimate of the accuracy of the test that goes
beyond visual examination, we compute the area under the curve
of the ROC curve. This ranges from 0.5 (no discrimination) to
1 (perfect accuracy). The value for the curve in Fig. 5B is 0.79,
indicating a good capability of our test to discriminate between
beams that will remain intact vs. those that will fail.

Discussion
Other Network Diagnostics and Approaches for Forecasting Failures.
Motivated by the results in ref. 38 and the geometric origin of our
samples, we have focused on using GEBC for forecasting failures
in them. However, other network measures are also worth con-
sidering as possible diagnostics for forecasting failure locations.
In particular, it is desirable to take advantage of the fact that the
various flavors of betweenness are correlated with other quanti-

ties in certain types of networks. In some networks, for example,
geodesic node betweenness can scale approximately with node
degree (49). To give another example, Scellato et al. (50) studied
the relation between GEBC and a quantity known as “informa-
tion centrality” in networks based on the road systems of several
cities. For the edge eij of a network, information centrality is

Jij =
F [G]�F [G 0]

F [G]
, [1]

where

F [G] =
1

N (N � 1)

X

i,j=1,...,N ; i 6=j

dEucl
ij

dij
[2]

is the efficiency of an N -node graph G , the graph G 0 results
from removing edge eij from G , the quantity dij is the dis-
tance between nodes i and j (e.g., from the smallest number of
steps between i and j in an unweighted graph), and dEucl

ij is the
Euclidean distance between those nodes.

We investigate the relation between GEBC and informa-
tion centrality using a modified expression for efficiency, where
we set dEucl

ij =1 for all pairs (i , j ) with i 6= j . To calculate
information centrality, we compute efficiency using code from
ref. 51. (We compute GEBC using the code “BETWEENNESS
WEI.M” and efficiency using “EFFICIENCY WEI.M”.) Infor-
mation centrality gives an indication of the perturbation of
transmission across a network when one removes an edge. In
other words, we ask the following question: how harmful is a
beam failure for connections across a sample? When consider-
ing all edges of all of our networks (both initial and altered),
we obtain a reasonably large correlation (with a Spearman rank
correlation coefficient of 0.55± 0.014) of information central-
ity with GEBC. For failed edges, the Spearman correlation
coefficient (0.77± 0.01) is even larger. Motivated by these cal-
culations, we checked and confirmed that considering values
above the mean for information centrality yields similar results
as using GEBC as a test for potential failures. Therefore, infor-
mation centrality is an alternative to GEBC to probe systems
for likely failure locations. Measures based on shortest paths are
not always highly correlated with each other (and the extent of

Table 1. Definition of the outcome of a test

Test: is Ẽ > Ẽth? Beam fails Beam does not fail

Positive TP FP
Negative FN TN

16746 | www.pnas.org/cgi/doi/10.1073/pnas.1900272116 Berthier et al.
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Fig. 5. Evaluation of our test’s accuracy. (A) Sensitivity and specificity vs. the
threshold Ẽth. (B) ROC curve summarizing the ( , 1 � )
pairs that we obtain for different values of Ec. The dashed diagonal line
indicates the behavior of a test that cannot discriminate between failing
and intact beams.

such correlations also depends on network type) (27). Therefore,
different measures related to betweenness can give complemen-
tary insights.

Comparison with Other Diagnostics. To disentangle the roles of
physical and geometric effects, we evaluate the importance of
introducing physical considerations by repeating our analysis
using an RFN-based test (see RFN Model). In place of Ẽ , we
determine the current Ĩ that flows through a network. As with
GEBC, we determine the fraction of edges in a network with a
current above a threshold current Ĩth and the fraction of fail-
ing beams for which Ĩf  Ĩth (where Ĩf denotes the current of an
edge during step s � 1 immediately before its failure at step s).

For threshold values in the range [0, 2.5], we find that this
test performs somewhat better than the test using GEBC (SI
Appendix, Fig. S1A). However, in the range [0, 1.4], the fraction
of edges with a current above the threshold is slightly larger than
the fraction of edges with a GEBC above the same threshold.
Consequently, the tradeoff between the forecast failure rate and
the fraction of possible edges differs between the 2 tests for the
same threshold value. This tradeoff diminishes the advantage.

We also find that the current and GEBC values of the failed
edges are positively correlated, with a Pearson correlation coef-
ficient of R⇡ 0.81 (SI Appendix, Fig. S1B). This suggests that
failing beams, most of which have a larger stress than the mean
value in a network (i.e., Ĩf > 1 for these edges), lie on many short-
est paths, explaining the small improvement in forecast capability
from using the RFN-based test. This finding is similar to the
results of Kollmer and Daniels (37), who observed in 2D pack-
ings of frictional particles that ones with large node betweenness
centralities are statistically likely to be highly stressed. Conse-
quently, it is appropriate to examine betweenness centralities
(of both nodes and edges) to capture important mechanical
properties of physical systems.

Interestingly, as we show in SI Appendix, Fig. S2, the 2 tests
do not systematically misdiagnose failure locations (i.e., yield
FN outputs) for the same edges. Using the RFN-based test,
we observe a correlation between beam angle and current flow
(SI Appendix, Fig. S3A) and find a bias toward misdiagnosed
edges that are roughly perpendicular to the loading direction (SI
Appendix, Fig. S3B). It seems that failures occur at edges at all
distances from the boundaries (SI Appendix, Fig. S4A). However,
for some threshold values, most GEBC-misdiagnosed edges tend
to occur near boundaries (SI Appendix, Fig. S4B), where large
values of GEBC are less frequent.

The dependency of GEBC with distance from a sample’s geo-
metric center, even altered by the presence of disorder, is an
important feature of networks that are embedded in a plane. To

examine whether we can circumvent this limitation of our GEBC
test, we calculate GEBCs on a collection of modified networks.
For a given network G and for each edge eij , we generate a
duplicated network such that the edge eij is at the geometric
center. To construct such a graph, we first duplicate the net-
work with mirror symmetries with respect to each boundary.
We then calculate the GEBC of eij by considering only a sec-
tion of this duplicated network that is approximately centered
at eij . We repeat this procedure for each edge of the network
G to obtain centrality values for the network centered at that
edge. Using this approach yields a cumulative distribution for
Ẽf and a test (Ẽf > Ẽth) success rate similar to the original net-
works. Indeed, although boundary edges can have large Ẽ values,
the distributions of Ẽ are more homogeneous than in the origi-
nal networks, such that the test can misdiagnose edges in other
locations. Consequently, the use of a duplicated network does
not improve the forecasting ability of our approach. Preliminary
calculations that account for the boundaries’ loading (using mas-
ter particles that are adjacent to corresponding loaded nodes)
suggest that this simple physical consideration provides a way
to improve our test’s ability to forecast failure locations. Devel-
oping methods to appropriately consider the role of boundaries
remains a central question for planar graphs—not only for granu-
lar materials, but also for other applications, such as determining
high-traffic edges in road networks (27) and nutrient transporta-
tion networks (29)—and more generally in spatially-embedded
networks.

In our comparison of GEBC-based and RFN-based tests,
we observe a correlation between the physical and geometric
properties of failing beams. Interestingly, a test that includes a
minimal set of physical ingredients (i.e., the RFN-based test) per-
forms only somewhat better than a test (the GEBC-based test)
that is based on geometric considerations. Because these 2 tests
have rather different limitations—with less successful forecast-
ing of near-perpendicular edges vs. near-boundary edges—it is
useful to use both as complementary approaches. Finally, it is
worth noting that, although the RFN-based test is faster compu-
tationally than the GEBC-based one, neither approach requires
significant computational resources for the system sizes that we
consider in this study.

Conclusions
The idea, proposed in papers such as ref. 33 and reviewed in ref.
24 in the context of granular and particulate systems, to use net-
work analysis to achieve insights on physical systems seems very
promising for studies of fracture. In this paper, we explored the
application of centrality measures (based on shortest paths) to
forecast failure locations in physical samples. Many other tools
from network analysis, such as those based on exploration of
mesoscale structures, also promise to yield fascinating insights
into investigations of physical networks. In particular, examin-
ing how network analysis can contribute to forecasting not only
where, but also when, failures occur in disordered networks is a
central point for future studies.

In our investigation, we found that calculations based on short-
est paths can help forecast failure locations in disordered lattices.
Specifically, calculating the geodesic betweennesses of the edges
in a network permits one to assess which edges are more prone
to failure than others. Considering only edges with values above
the mean GEBC of a network allows one to discard a large frac-
tion of edges as unlikely failure locations. This feature of our
test makes it very valuable, especially because it avoids a detailed
analysis of energetics.

Combined with refs. 37 and 38, our work provides evidence
that betweenness centrality successfully identifies physical prop-
erties in both granular packings and lattices that are derived
from them. Similarly, analyses inspired by rigidity percolation
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in granular materials have identified that our disordered lat-
tices undergo a ductile–brittle failure transition as a function of
connectivity z 0, as determined by counting degrees of freedom
and constraints (23). We have focused on testing the sensitivity
and specificity of our approach in the context of disordered lat-
tices that we generated from force networks in quasi-2D granular
packings, and this does not ensure its success for other network
structures. Indeed, it has been established that the origin of a
disordered structure—whether from numerical spring networks,
frictionless jammed sphere packings, or pruned networks—can
strongly affect elastic responses and the rigidity transition (52,
53). Therefore, we expect that both the granular origins of our
samples (and hence their geometry) may affect the particular
failure behavior that we have observed in this study. Collectively,
these investigations (and our investigations) point toward a need
to understand the importance of network topology and geometry
themselves, regardless of their manifestation as a granular pack-
ing or a lattice. This is an important step toward distinguishing
between geometric effects and system-specific physical effects.
Therefore, an important future direction is to examine networks
that one obtains by other methods. Examples include overcon-
strained granular packings, leaf-venation patterns, and randomly
pruned crystalline lattices.

Our work also opens the door for structure design and the
purposeful setting of desired failure locations. One can build par-
ticular network topologies into designed materials that permit
the constraining of failures to regions of a sample or, by contrast,
promote desirable patterns of damage spreading to ensure the
robustness of structures.

Materials and Methods
Experimental Samples. We conduct experiments on a set of disordered struc-
tures that we derived from experimentally determined force networks in
granular materials, as done in Berthier et al. (23). The original data used in
the paper is available in the Dryad repository (22). The methodology to cre-
ate these experimental samples is inspired by refs. 4, 9, 10, 52, and 53, which
performed similar processes numerically. We begin from observed force-
chain structures in a quasi-2D photoelastic granular material. The granular
packings consist of N = 824 bidisperse circular discs (of 2 distinct radii, r1

and r2, with r1/r2 = 1.4) in approximately equal numbers (Fig. 1A). We uni-
axially load each packing under a series of finite displacements of one wall,
generating multiple realizations of both packings and force networks.

Using an open-source photoelastic solver that is based on the method
described in ref. 21, we identify all load-bearing contacts in a system, yield-
ing a network of physical connections between particles that we use to
generate a disordered lattice (Fig. 1B). We construct a network by assign-
ing each particle center as a node of a graph G and then placing an edge
between 2 nodes wherever we observe a load-bearing contact. The net-
work is associated with an N ⇥ N binary (i.e., unweighted) adjacency matrix
A, with elements

Aij =

⇢
1 , if particles i and j are load bearing,
0 , otherwise.

[3]

We showed an example network in Fig. 1C. It is undirected, because
each contact is bidirectional; its associated adjacency matrix is therefore
symmetric about the diagonal (Aij = Aji).

We laser cut the physical samples from acrylic plastic sheets (with an elas-
tic modulus of about 3 GPa) of thickness h = 3.17 mm. Each edge becomes a
beam of width 1.5 mm; beams intersect at cross-links that correspond to the
centers of particles (i.e., the nodes), and the particles’ radii set the length of
the beams. We adopt the term “cross-link” from the study of fiber networks
(2, 18), which consist of filaments (bonds) that are bound via cross-linkers
that either allow energy-free rotations or associate angular variations to a
finite cost of energy (as “welded” cross-links). We showed an example sam-
ple in Fig. 1D; note that samples that we construct multiple times based
on the same mathematical networks by cutting from different sheets of
material are not perfectly identical due to small details of processing during
cutting.

A simple characteristic of a network is its mean degree z (also known as
the “connectivity” or “coordination number”), which is equal to the mean
number of edges per node. That is,

z =
1

2N

NX

i,j

Aij. [4]

It is known that the bulk properties of amorphous solids (23, 54) are
influenced strongly by z. We use the subscript 0 to denote initial net-
works (i.e., networks before any subsequent modifications from lattice
beam failures). We study 6 different initial networks, with mean degrees
z0 = {2.40, 2.55, 2.60, 3.00, 3.35, 3.60}± 0.02, which we draw from 2 differ-
ent initial granular configurations. We do a total of 14 experiments; we test
each network at least once in compression and once in tension. For the net-
works with z0 = 2.60 and z0 = 3.00, we do an additional tensile test on a
second set of fully intact samples. To obtain a sample that is as close as
possible to the isostatic value ziso = 3.00 of an infinite-friction packing (55),
we prune a network that initially has a value of z0 = 3.60 by progressively
removing its contacts with the smallest force values.

Mechanical Testing Protocol. We perform compression and tension tests
using an Instron 5940 Single Column system with a 2-kN load cell. We use a
displacement rate of 1.0 mm/min for tension experiments and 1.5 mm/min
for compression experiments. In compression, we confine a sample between
2 parallel acrylic plates to constrain out-of-plane buckling. We record each
experiment using a Nikon D850 digital camera at a frame rate of 24 or 60
fps. During the course of each experiment, beams break throughout a sam-
ple as damage progresses. Using the time series of measured compressive
and tensile forces, we identify each failure event, which corresponds to a set
of 1 or more breakages that occur simultaneously. Our frame rates are insuf-
ficient to distinguish multiple successive breakage events that occur within
a single failure event, but they are sufficient to easily separate the failure
events from each other. In all cases, we are able to determine the locations
of individual beam failures by examining the images collected immediately
after a recorded drop in force. The failure events occur sequentially, dete-
riorating the structure until complete failure of a sample. This corresponds
to a crack spanning the sample from one lateral side to the other, such that
there is no set of beams that connects the top and bottom boundaries.

As damage progresses, the adjacency matrix A (and the associated net-
work G) (Eq. 3) that encodes the network structure changes after each
failure event. When the beam that connects nodes i and j fails, we set Aij =
Aji = 0 to record this event. We thus do a series of computations on net-
works that are based on measurements at a particular strain step s, which is
associated with an applied strain value ". We distinguish between the initial
network G0 (with adjacency matrix A0), which is associated with a fully intact
sample, and altered networks Gs (with associated adjacency matrices As).

Note that, as characterized in ref. 23, both tensile and compressive load-
ing of samples with z0 < ziso will fail from breakages that are well-separated
in time and are spatially spread out in a sample (i.e., ductile-like failure). By
contrast, it was shown in ref. 23 that, for z0 > ziso, a few temporally sepa-
rated breakages take place before the samples break abruptly and all of the
failed beams are localized, forming a narrow crack (i.e., brittle-like failure).
Therefore, for the samples with z0 = 3.35 and z0 = 3.60, the deterioration
of a sample’s structure occurs via both small (1 to 3 breakages at a time) and
large (more than 3 simultaneous breakages) failure events. In our analysis,
we remove corresponding edges from the networks as failures take place,
and we then perform fresh calculations of centrality. Our analysis of failure
locations excludes the large events, because we are specifically interested
in the progression of failures. Our results are qualitatively similar for sam-
ples tested in tension vs. in compression. Therefore, we do not distinguish
between these 2 loading conditions in our analysis.

GEBC. Because failures in our samples consist mostly of breaking beams
(rather than the thicker cross-links), we focus on an edge-based counterpart
of geodesic node betweenness centrality (25). This measure gives insight
into the importance of edges in a network in terms of how often they are on
shortest paths between origin and destination nodes. Considering an edge
eij that links nodes i and j in a graph G, we calculate a symmetric GEBC matrix
based on the fraction of shortest paths that traverse an edge when consid-
ering all origin–destination pairs of nodes in a network (including nodes i

and j) (31):

Eij =
X

s 6=t

�st(eij)
�st

, [5]

where �st is the number of shortest paths from node s to node t and �st(eij)
is the number of those paths that include the edge eij . We compute Eij using
open-source code from ref. 51 (which uses an algorithm that is a slight mod-
ification of the one in ref. 56). Computing GEBCs can be computationally
costly for large networks. The computation time to calculate GEBC for all
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edges is O(Nm) for sparse networks, where N and m denote the numbers
of nodes and edges, respectively, of a network (25). All of our graphs G

are undirected and unweighted, but one can also study notions of edge
betweenness centrality for directed and weighted graphs.

It is common to normalize Eij by 1
2 N(N � 1) � 1 (i.e., the number of edges

other than the one under consideration) (57) or by (N � 1)(N � 2)/2 (i.e., the
number of node pairs) (31) to ensure that GEBC values lie between 0 and 1.
However, because we compare the relative importance of edges to others in
a given network and as successive edge removals occur, we use a different
normalization. In our calculations, for a given network at strain step s and
characterized by its adjacency matrix As (where s = 0 for the initial network),
we define the normalized GEBC matrix Ẽs = Es/Es, where Es is the mean over
all edges of the network Gs. To study the importance of the failing beams,
for each strain step, we compute the matrix Ẽs and extract the values Ẽf of
the edges that fail in the next failure event.

RFN Model. We create an RFN (17, 39) in which each fuse matches an edge of
the network for one of our samples. All fuses have identical conductance,

because the beams have identical thickness. We load the top and bottom
boundaries by applying a fixed voltage to the top nodes and connecting the
bottom nodes to ground (0 voltage). We determine edge voltages and their
associated currents by solving Kirchhoff’s laws. Analogous to our examina-
tion of GEBC, we normalize the current by the mean over all edge currents
in a network. We define a current matrix at strain step s by Ĩs = Is/Is, where
s = 0 denotes the initial network and associated quantities. We then pro-
ceed as with GEBC: for each strain step s, we calculate the matrix Ĩs and
extract the normalized current (i.e., stress) Ĩf of the edges that fail in the
next failure event.
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Random-fuse network (RFN) current versus geodesic edge betweenness (GEBC) tests of failure locations. To elucidate the11

role of geometry in capturing failure locations, we compare the forecasting ability of a test that uses current that we compute12

from a random-fuse network (RFN) model to that of a test that uses geodesic edge betweenness centrality (GEBC). In the13

left axis of Fig. S1A left, we show the fraction of edges in a network with a current Ĩ (respectively, GEBC Ẽ) that is larger14

than a threshold current Ĩth (respectively, threshold GEBC Ẽth). On the right axis, we show the failure rate as the fraction15

of misdiagnosed edges, which we define as failed edges with a current (respectively, GEBC) that is less than or equal to the16

threshold current (respectively, threshold GEBC). That is, Ĩf Æ Ĩth (respectively, Ẽf Æ Ẽth) as a function of the threshold.17

To explain the small improvement that we obtain when using a model with physical considerations (the RFN-based test),18

we show in Fig. S1B the relation between the current (Ĩf ) of failed edges and the GEBC (Ẽf ) of these edges. The Pearson19

correlation coe�cient between these two quantities is R ¥ 0.81.20

These two tests are not systematically misdiagnosing (obtaining a false negative outcome) failure locations for the same21

edges. We show this in Fig. S2, where we plot the fraction of failed edges that are misdiagnosed using the RFN-based test and22

correctly diagnosed using the GEBC-based test as a function of the threshold. (Depending on the test, this is either a current23

threshold or a GEBC threshold.)24

Dependency of current on orientation. Consider a special case of a perfectly ordered squared lattice with identical resistors25

on each edge and a voltage di�erence that we apply across the top and bottom boundaries. In this configuration, no current26

flows in the horizontal edges. (This contrasts with the situation for GEBC, which is orientation-independent.) Therefore, we27

expect that — to an extent that depends on the amount of structural disorder — any anisotropy remains imprinted in the28

current flow in the system. Indeed, as we see in Fig. S3A, there is a strong dependence of the edge voltage on the edge angle29

(between 0 and 90 degrees) with respect to the vertical loading for a network with connectivity (i.e., mean degree) z0 = 3.60.30

The Spearman rank-correlation coe�cient is fl ¥ 0.77.31

To determine the e�ect of this dependency on the forecasting ability of the RFN-based test, we show in Fig. S3B, for various32

current thresholds Ĩth, the fraction P of misdiagnosed edges (Ĩ≠
f ) that have an orientation with an angle ◊ that is smaller than33

a threshold ◊th. We thereby identify a bias towards misdiagnosing edges that are almost perpendicular (i.e., those with small ◊)34

to the loading vertical direction.35

Dependency of GEBC on edge distance to the boundaries. Because one computes the GEBC of an edge based on the fraction36

of shortest paths that traverse an edge when considering all origin–destination pairs of nodes in a network, we expect edges near37

boundaries to have smaller values of Ẽ, and we hence expect that they will be misdiagnosed more frequently by a GEBC-based38

test than edges that are located near the center of a network. To assess this possible limitation of our GEBC-based test, we39

calculate (in terms of the number of edges) the normalized shortest-path distance ” to reach a node on a boundary starting40

from a given node in the network. The normalized shortest-path distance ranges from 0 (for a node on a boundary) to 1 (if41

its shortest-path length to a boundary is the longest in a network). Therefore, nodes near boundaries have values of ” that42

are close to 0, and those that are near the center of a network have values that are close to 1. Specifically, the normalized43

shortest-path distance for a node i in a network G is44

”i = 1 ≠ min
jœB

1
dmax ≠ dij

dmax

2
, [1]45

where B is the set of boundary nodes and dmax is the distance of a longest path between a node and a boundary in the network.46

We define the boundary B as the set of nodes that are located within one radius (where the radius is equal to half of the length47

of the longest beam in the network) from the nodes with highest or lowest vertical position (i.e., top or bottom nodes) and48

highest or lowest horizontal position (i.e., leftmost or rightmost nodes).49

For each failing edge, we compute the normalized shortest-path distance for both nodes that are associated with the edge,50

and we take the smaller value to define ”f for each such edge. In Fig. S4A, we show the histogram of distances ”f ; and we51

thereby highlight that failing edges occur at all (normalized shortest-path) distances from the boundaries. However, as we show52

in Fig. S4B, most misdiagnosed edges tend to occur near boundaries.53

A comparison between the RFN model and GEBC on a small network. In Fig. S5, we show a schematic that highlights the54

fundamental di�erence between the RFN model and GEBC. Specifically, the latter is independent of the loading direction,55

whereas the former depends on it. In the simple example in this schematic, when we load the top and bottom nodes (see56

the arrows), we observe that the stresses in each beam change if we rotate the configuration by 90 degrees. This is captured57

successfully by the RFN, which identifies the fact that di�erent current values flow in each edge. Note, however, that the RFN58

model does not systematically predict the correct stress distribution: the central horizontal edge (in the top configuration) has59

a null current, whereas this beam is stressed if we load the corresponding beam structure. By contrast, the GEBC values60

do not change when we rotate the structure. Therefore, GEBC is unable to capture physical properties at the scale of a few61

edges. Nevertheless, as these e�ects e�ectively average over multiple directions in our disordered lattices, GEBC and the RFN62

measure similar values on average, and the GEBC-based test performs well at the scale of our samples.63
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Fig. S1. (a) Comparison of the ability of the tests to forecast failure locations using currents from a random-fuse network (RFN; curves with circles) and geodesic edge
betweenness centrality (GEBC; curves with crosses). On the left axis (in blue), we show the fraction of edges in a network for which the current is above a certain threshold (i.e.,
Ĩ > Ĩth) and the fraction of edges for which GEBC is above a certain threshold (i.e., Ẽ > Ẽth). On the right axis (in orange), we show the fraction of failed beams for which
Ĩ Æ Ĩth and Ẽ Æ Ẽth. The axis label “Threshold” indicates Ĩth for the RFN-based test and Ẽth for the GEBC-based test. (b) Scatter plot between the current (Ĩf ) and
GEBC (Ẽf ) of failed edges. The Pearson correlation coefficient between Ĩf and Ẽf is R ¥ 0.81.
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Fig. S2. Probability P (Ĩ≠
f

fl Ẽ+
f

) that a misdiagnosed edge from the RFN-based test is diagnosed successfully using the GEBC-based test. The quantity Ĩ≠
f

denotes an

edge that is misdiagnosed using the RFN-based test (i.e., Ĩf Æ Ĩth), the quantity Ẽ+
f

denotes an edge that is diagnosed successfully using the GEBC-based test (i.e.,

Ẽf > Ẽth), and Ĩ≠
f

fl Ẽ+
f

denotes an edge that is misdiagnosed using the RFN-based test but diagnosed correctly using the GEBC-based test. The axis label “Threshold”

indicates the current Ĩth for the RFN-based test and the GEBC Ẽth for the GEBC-based test.
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Fig. S3. (a) For the initial network with connectivity z0 = 3.60, we show a scatter plot between edge current Ĩ and the edge orientation ◊ between 0 degrees and 90 degrees.
(b) For different values of the current threshold, we show the probability P

Ĩ≠
f

that a misdiagnosed failed edge (i.e., with a current of Ĩf Æ Ĩth), which is denoted by Ĩ≠
f

, has

an orientation ◊ that is less than or equal to a threshold value ◊th. The dashed blue line indicates the theoretical behavior of misdiagnosed edges with no preferred orientation.
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Fig. S4. (a) Histogram of ”f , the normalized shortest-path distance of failing edges to a boundary. (See the definition in the main text.) (b) For different GEBC threshold values
Ẽth, we show the probability that a misdiagnosed failed edge (i.e., ones with with a GEBC of Ẽf Æ Ẽth), which we denote by Ẽ≠

f
, is located at a distance ”f that is less

than or equal to a threshold value ”th. The dashed blue line indicates the theoretical behavior of misdiagnosed edges with no preferred (normalized shortest-path) distance to
the boundary in a network.
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Fig. S5. Random-fused network versus geodesic edge betweenness centrality at the scale of few edges. When we load the top and bottom nodes, the GEBC distribution is the
same in the top and bottom configurations; by contrast, the RFN current distribution is different in these two configurations.
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