
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Physica A 389 (2010) 1131–1141

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Mutually-antagonistic interactions in baseball networks
Serguei Saavedra a,∗, Scott Powers b, Trent McCotter c, Mason A. Porter d,e, Peter J. Mucha b,f
a Kellogg School of Management and NICO, Northwestern University, Evanston, IL, 60208, USA
b Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA
c School of Law, University of North Carolina, Chapel Hill, NC 27599-3380, USA
d Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, OX1 3LB, UK
e CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP, UK
f Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, NC 27599-3216, USA

a r t i c l e i n f o

Article history:
Received 7 August 2009
Received in revised form 25 October 2009
Available online 5 November 2009

PACS:
64.60.aq
02.50.-r
05.40.Fb
87.23.-n

Keywords:
Bipartite networks
Ranking systems
Random walkers
Competition dynamics

a b s t r a c t

We formulate the head-to-head matchups between Major League Baseball pitchers and
batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions.
We consider both the full network and single-season networks, which exhibit structural
changes over time. We find interesting structure in the networks and examine their
sensitivity to baseball’s rule changes.We then study a biased randomwalk on thematchup
networks as a simple and transparent way to (1) compare the performance of players who
competed under different conditions and (2) include information about which particular
players a given player has faced. We find that a player’s position in the network does not
correlate with his placement in the random walker ranking. However, network position
does have a substantial effect on the robustness of ranking placement to changes in head-
to-head matchups.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of networks has experienced enormous growth in recent years, providing foundational insights into numer-
ous complex systems ranging from protein interaction networks in biology to online friendship networks in the social sci-
ences [1–3]. Research on ecological and organizational networks has provided a general framework to study themechanisms
that mediate cooperation and competition dynamics between individuals [4–9]. In such networks, competitive interactions
result from the indirect competition betweenmembers of different populations who either compete for the same resources
or are linked through consumer–resource relationships. However, data onmutually-antagonistic interactions—which occur
between individuals who directly fight or compete against each other—have beenmore difficult to collect [10,11]. Mutually-
antagonistic interactions also occur frequently in different social contexts, such as sports. In the present paper, we consider
head-to-head matchups between Major League Baseball (MLB) pitchers and batters: Pitchers benefit by ‘‘defeating’’ batters
and vice versa. Using data from www.retrosheet.org [12], we characterize the more than eight million MLB plate appear-
ances from 1954 to 2008. We consider full careers by examining head-to-head matchups over a multi-season (‘‘career’’)
network and single-season performances by constructing networks for individual seasons.
Major League Baseball uses votes by professional journalists to recognize career achievement of players through

induction into a Hall of Fame (HOF) and single-season performance through awards such asMost Valuable Player (MVP) and
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CyYoung (for pitching performance) [13]. Although theHOFpurports to recognize the best players of all time, the selection of
players to it iswidely criticized by fans andpundits each year because of the lack of consistencywhen, e.g., comparing players
from different eras, who play under fundamentally different conditions—in different ballparks, facing different players,
etc. [14–16]. Such arguments come to the fore when attempting to draw comparisons between players elected to the HOF
and others who did not make it. For instance, how can one tell whether Jim Rice (elected to the HOF in 2009) had a better
career than Albert Belle (who dropped off the ballot because of low vote totals after only two years [17])? Does Bert Blyleven,
who appeared on 62.7% of the HOF ballots in 2009 – short of the 75% required for election – belong in the HOF? Is Sandy
Koufax, who played from 1955–1966 and is in the HOF, better than Pedro Martinez (an active player), who will presumably
eventually be elected to the HOF? To address such questions, it is insufficient to rely purely on raw statistics; one must
also consider quantitative mechanisms for comparison between athletes who played under different conditions. We take
a first, simple step in this direction through the study of biased random walkers [18,19] on baseball networks. This allows
us not only to construct a quantitative, systematic, and transparent ranking methodology across different eras but also to
investigate the interplay between these dynamics and the underlying graph structure. We thereby reveal key properties of
mutually-antagonistic interactions that can potentially also be applied in other settings.
While ‘‘water-cooler’’ discussions about which players should and should not be enshrined in the HOF (and, more

generally, how to rank players) can often be fascinating, as indicated by the above paragraph, the primary goal of our paper is
to investigate interesting features of the baseball networks and the impact that network structure can have on rankings. It is
necessary to include some example rank orderings to have a proper context for such a discussion, but it is important to note
that the rankings we show in the present paper must be taken with several grains of salt because our efforts at simplicity,
which are crucial to highlighting the interplay between network structure and player rankings, require us to ignore essential
contributing factors (some of which we will briefly discuss) that are necessary for any serious ranking of baseball players.
The rest of this paper is organized as follows. In Section 2, we define and characterize the mutually-antagonistic baseball

networks and study the time evolution of various graph properties. In Section 3, we provide a description of the biased
randomwalker dynamics thatwe employ as a rankingmethodology across eras and for single-season networks. In Section 4,
we study the interplay between the randomwalker dynamics and graph structure, paying special attention to the sensitivity
of the player rankings. In Section 5, we conclude the paper and discuss a number of potential applications of our work. We
explain additional technical details in two appendices.

2. Network characterization and evolution

We analyze baseball’s mutually-antagonistic ecology by considering bipartite (two-mode) networks of head-to-head
matchups between pitchers and batters. As shown in Fig. 1, bipartite networks are formed using two disjoint sets of vertices,
P (pitchers) and B (batters), and the requirement that every edge connect a vertex in P to one in B [8,20,21]. (Note that we
track the pitching and batting performances of pitchers as two separate nodes.) We consider such interactions in terms of
three different bipartite representations (with corresponding matrices): (1) The binary matchups A in which the element
Aij equals 1 if pitcher i faced batter j at any point and 0 otherwise; (2) the weighted matchupsW in which the elementWij
equals the number of times that i faced j; and (3) the weighted outcomes M in which the element Mij equals a ‘‘score’’ or
performance index, which is determined using what are known in baseball as ‘‘sabermetric’’ statistics (see Section 3) [14,15,
22] and which characterizes the results of all matchups between i and j. For each of these bipartite pitcher–batter networks,
we also utilize corresponding square adjacency matrices:

Â =
(

0 A
AT 0

)
, Ŵ =

(
0 W
WT 0

)
, M̂ =

(
0 −M
MT 0

)
,

so that they are appropriately symmetric (Â and Ŵ) and anti-symmetric (M̂). We construct and analyze each of these
representations for the single-season networks and the aggregate (career) network that contains all pitcher–batter
interactions between 1954 and 2008.
To identify the changes in time in the organization of baseball networks, we examine the graph properties of single-

season networks. The number of distinct opponents per player, given by the distribution of player degree ki =
∑
j Âij,

follows an exponential distribution for a large range and then has an even faster decay in the tail (see Fig. 2). (A
recent study has observed power-law behavior for other cumulative quantities in baseball networks using different data
sets and observation periods [23].) The mean values of the geodesic path length between nodes and of the bipartite
clustering coefficient are only somewhat larger than what would be generated by random assemblages (see Appendix A).
However, as with mutually-beneficial interactions in ecological networks [24], the mutually-antagonistic baseball matchup
networks exhibit nontrivial relationships between player degree and player strength si =

∑
j Ŵij, which represents

the total number of opponents of a player (counting multiplicity) [1,20]. As shown in Fig. 3A, the relation between
strength and degree is closely approximated by a power-law s ∼ kα that starts in 1954 at α ≈ 1.64 for pitchers
and α ≈ 1.41 for batters but approaches α ≈ 1 for each by 2008. The 54-year trend of a decreasing power-
law exponent indicates that real-life events such as the increase in the number of baseball teams through league
expansion (e.g., in the 1960s, 1977, 1993, and 1998), the reorganization of the leagues (e.g., in 1994, to three divisions
in each league instead of two), and the introduction of interleague play (in 1997) and unbalanced schedules (in 2001)
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Fig. 1. Bipartite baseball networks. (A) A subset of the bipartite interactions between pitchers (left column) and batters (right column) during the 1989
baseball season. The area of each circle is determined by the node degree (i.e., how many different opponents were faced). Each line indicates that a given
pitcher faced a given batter, and the darkness of each line is proportional to the number of plate appearances that occurred (i.e., the node strength). (B) The
matrix encoding the complete set of bipartite interactions from 1989, with pitchers (columns) and batters (rows) arranged from the lowest to the highest
node degree. An element of the matrix is black if that particular pitcher and batter faced each other and white if they did not. Observe the presence of a
core of high-degree players that are heavily connected to each other (top right corner), an important presence of asymmetric interactions (i.e., high-degree
players connected to low-degree players), and a dearth of connections between low-degree players (bottom left corner), which are all characteristics
of nested networks [21]. Some of the batters are actually pitchers (e.g., Mitch Williams), as National League pitchers (and, since 1997, American League
pitchers as well) have a chance to bat and face a small number of pitchers while at the plate.

have modified the organizational and team-competition properties of the networks (also see relevant discussions in
Refs. [23,25]). Fascinatingly, this long-term decreasing trend in power-law exponent also seems to exhibit non-punctuated
behavior that does not have an obvious explanation via known changes in baseball scheduling or rules. Understanding the
origins of this observation thus remains an interesting open question.
An important property mediating the competition dynamics of mutualistic networks in ecology is nestedness [9].

Although the definition of nestedness can vary, a network is said to be nested when low-degree nodes interact with proper
subsets of the neighbors of high-degree nodes [21] (see Fig. 1). To calculate the aggregate nestedness in the binary matchup
network A, we employed the nestedness metric based on overlap and decreasing fill (NODF) [26], which takes values in the
interval [0, 1], where 1 designates a perfectly-nested network (see Appendix A). Fig. 3B (black circles) shows that single-
season baseball networks consistently have nestedness values of approximately 0.28. This value is slightly but consistently
higher than those in randomized versions of the networks with similar distribution of interactions (red squares) [21],
which we also observe to decrease slightly in time. In common with bipartite cooperative networks [8], this confirms that
nestedness is a significant feature of these mutually-antagonistic networks.
Although nestedness is defined as a global characteristic of the network, we can also calculate the individual contribution

of each node to the aggregate nestedness [26]. Comparing node degrees and individual nestedness (see Appendix A) before
1973, batters and pitchers collapse onto separate curves (see Fig. 3C). Starting in 1973, however, each of these groups of
nodes splits into two curves (see Fig. 3D), corresponding to players in the two different leagues: the American League (AL)
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Fig. 2. (Color online) Cumulative degree distribution. Semi-log plot of the cumulative degree distribution Pcum(k) for pitchers and batters in the career
(1954–2008) network. The dashed line correspond to a theoretical exponential distribution.

and the National League (NL). This structural change presumably resulted from the AL’s 1973 introduction of the designated
hitter (DH), a batter who never fields but bats in place of the team’s pitchers (see Fig. 1), apparently causing the AL to
become less nested due to the replacement of low-degree batting pitchers with higher-degree DHs. As we discuss below,
this suggests that the network position of a playermight affect his own ranking (while, of course, network position is strongly
influenced by a player’s longevity and thus by his performance). We examined ecological mutualistic networks with similar
aggregate nestedness values but found no correlation between degree and individual nestedness in those examples.

3. Biased random walkers

To compare the performance of players, we rank them by analyzing biased random walkers on the bipartite network
M encoding the outcomes of all mutually-antagonistic interactions between each player pair. Our method generalizes
the technique we previously used for NCAA football teams [18,19], allowing us to rank players in individual seasons
and in the 1954–2008 career network. It thereby yields a quantitative, conceptually-clear method for ranking baseball
players that takes a rather different approach from existing sabermetric methods used to project player performance. Such
existing methods include DiamondMind (which uses Monte Carlo simulations), PECOTA (which uses historical players as a
benchmark), and CHONE (which uses regression models) [27,28].
To describe the aggregate interaction Mij between pitcher i and batter j, we need to quantify each possible individual

pitcher–batter outcome. For simplicity, we focus on the quantity runs to end of inning (RUE) [15], which assigns a value
to each possible plate appearance outcome (single, home run, strikeout, etc.) based on the expected number of runs that
a team would obtain before the end of that inning, independent of the situational context (see Appendix B for specific
values). Higher numbers indicate larger degrees of success for the batter. For each season, we add the RUE from each plate
appearance of pitcher i versus batter j to obtain a cumulative RUE for the pair. Note that any performance index that assigns
a value to a specific mutually-antagonistic interaction can be used in place of RUE without changing the rest of our ranking
algorithm. We define the single-season outcome element Mij by the cumulative extent to which the batter’s outcome is
better (Mij > 0) or worse (Mij < 0) than the mean outcome over all pitcher–batter matchups that season. When defining
the career outcome element Mij for 1954–2008, we account for the offensive inflation in baseball’s modern era [14,15] by
summing over individual seasons (i.e., we examine outcomes relative to mean outcomes on a per season basis).
We initiate our ranking methodology by considering independent random walkers who each cast a single vote for the

player that it believes is the best. Each walker occasionally changes its vote with a probability determined by considering
the aggregate outcome of a single pitcher–batter pairing, selected randomly from those involving its favorite player, and by
a parameter that quantifies the bias of the walker to select the winner of the accumulated outcome. A random walker that
is considering the outcome described by this matchup is biased towards but not required to choose the pitcher (batter) as
the better player ifMij < 0 (Mij > 0).
The expected rate of change of the number of votes cast for each player in the random walk is quantified by a

homogeneous system of linear differential equations v′ = D · v, where

Dij =

Ŵij + rM̂ij, i 6= j
−si + r

∑
k

M̂ik, i = j. (1)
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The long-time average fraction of walkers ṽj residing at (i.e., voting for) player j is then found by solving the linear algebraic
system D · ṽ = 0, subject to an additional constraint that

∑
j ṽj = 1. If the bias parameter r > 0, then successful players will

on average achieve higher rankings than unsuccessful players. For r < 0, the randomwalker votes will instead tend toward
the ‘‘loser’’ of individual matchups.
Eq. (1) gives a general one-parameter system for a biased walker with probabilities that are linear in RUE, but the

approach is easily generalized by using other functional forms to map observed plate appearance outcomes (in M) into
selection probabilities. By restricting our attention to a form that is linear in RUE, the interpretation that the off-diagonal
components of D correspond to random walker rate coefficients requires that these components remain non-negative, a
preferable state that leads to a number of beneficial properties in the resultingmatrix. For example, this allowsus to apply the
Perron–Frobenius theorem, which guarantees the existence of an equilibrium ṽwith strictly positive entries (and similarly
guarantees the existence of positive solutions in algorithms such as PageRank) [19,20,29,30]. In practice, this requirement
is equivalent in the baseball networks to |r| . 0.7, so that the result of a home run in a single plate appearance matchup
(i.e., the case in which a batter faces a pitcher exactly once and hits a home run in that appearance) maintains a small but
non-negative chance that a random walker will still select the pitcher.
Because the aggregate outcome of most pairings remains close to themean, the bias in the randomwalk is small, and the

rankings become essentially independent of the bias parameter. The linear expansion in bias r thereby yields a ranking with
no remaining parameters beyond the statistically-selected RUE values. This expansion is ṽ = v(0)+ rV+O(r2). Generalizing
the similar expansion described in detail in Ref. [19], the zeroth-order term results in a constant number of votes per player.
The additional contribution at first order is given by the solution of a discrete Poisson equation on the graph:∑

j

LijVj =
4
n

∑
j

M̂ij, (2)

subject to the neutral charge constraint
∑
j Vj = 0. (By analogy with electrostatics, we refer to Vj as the RUE ‘charge’ of node

j.) In Eq. (2), n = P + B is the total number of players, L = S − Ŵ is the graph Laplacian, S is the diagonal matrix with
elements sii =

∑
j Ŵij (and sij = 0 for i 6= j). We restrict our attention to the first-order ranking that is specified by V and

obtained using the solution of equation Eq. (2).
We tabulate this rank ordering separately for pitchers and batters for both individual seasons and the career network.

We compare the results of the random walker ranking to major baseball awards in Table 1. We note that the rankings are
highly correlated with the underlying RUE per plate appearance of each player (the correlation is ρ ≈ .96 for 2008; we
obtain similar values for other seasons), so that the top players in the rankings produced by our method have a strong
but imperfect correlation with the lists produced by ranking players according to (suitably normalized) raw RUE values.
For instance, Todd Helton, who is widely lauded by sabermetrics gurus as a significantly underrated player even when
taking into account the likely inflation of his raw statistics from his home ballpark (Coors Field, which highly-ranked
batter Larry Walker also called home for several seasons) [31], ranks third among all batters in the career network in
RUE values, which we consider in each year relative to the annual average (i.e., before any network structure is taken
into account) [32]. One similarly finds a strong correlation between rankings with and without network information
using any other sabermetric quantity that one might consider in place of RUE. That is, although the differences in rank
ordering that result from considering a player’s position in the network are typically small, they are still present: it matters
which players one has faced, and that is codified by the network. For example, the differences between random walker
rankings and raw RUE rankings appear to appropriately capture the caliber of opponents (e.g., pitchers from teams with
relatively anemic offenses – such as the 2008 Nationals, Astros, and Reds – tend to get a boost in their random walker
ranking, reflecting that they never had the good fortune of facing the batters on their own teams). We also compared our
rankings with a leading contender in baseball analysis, ESPN’s MLB Player Ratings, which combines ratings from ESPN,
Elias, Inside Edge, and The Baseball Encyclopedia [33]. Of the top 99 players who are listed in the 2008 Player Ratings, 12
did not meet our threshold for plate appearances. Comparing the random walker results for the remaining 87 players
with the Player Ratings yields a correlation of ρ ≈ .5601. We thus proceed to study the random walker results for the
career network both with confidence that it correlates with methods that are currently used for single-season analysis
and caution that the ranking details do not capture all effects according to current best practices in quantitative baseball
analysis [34].
The career ranking allows credible comparisons between players from different eras. Considering the rankings restricted

to individuals who played in at least 10 seasons (i.e., HOF-eligible players) during the time capsulated in the employed
data set, we find that Barry Bonds (batter), Pedro Martinez (starting pitcher), and Mariano Rivera (relief pitcher) are the
best players in their respective categories from 1954 to 2008. We show additional rankings in Table 2. Returning to some
of our motivating examples, we note that Albert Belle (29th among batters) is ranked much higher than Jim Rice (115th),
suggesting that Belle’s hitting performance perhapsmerits HOFmembershipmore than that of Rice. Similarly, Bert Blyleven
ranks higher not only than current HOF competitors such as Jack Morris and Tommy John but also higher than three HOF
pitchers with over 300 wins (Steve Carlton, Phil Niekro, and Don Sutton), which is one traditional benchmark for selecting
elite pitchers. Direct comparisons with other rank orderings of players across different eras would necessitate restricting
the data to sufficiently similar time periods and is beyond the scope of the present study.
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Table 1
Single-season awards and random walker rankings. We show the MVP and CY Young award winners for various years from 1954 to 2008. In parentheses,
we give the ranking of the player within his own category (pitcher or batter) that we obtained using our random walker ranking system applied to
the corresponding baseball season. For most of the seasons, there is reasonable agreement between award winners and their random walker ranking
considering that the ranking only considers batter events, thus ignoring other ways in which players contribute. (Note that the Cy Young award was
awarded to a single pitcher—rather than one from each league—until 1967.)

1954 1958 1963

MVP (AL) Yogi Berra (11th) Jackie Jensen (8th) Elston Howard (20th)
MVP (NL) Willie Mays (2nd) Ernie Banks (6th) Sandy Koufax (1st)
Cy Young (AL) N/A Bob Turley (14th) Sandy Koufax (1st)
Cy Young (NL) N/A Bob Turley (14th) Sandy Koufax (1st)

1968 1973 1978

MVP (AL) Denny McLain (4th) Reggie Jackson (11th) Jim Rice (3rd)
MVP (NL) Bob Gibson (1st) Pete Rose (6th) Dave Parker (1st)
Cy Young (AL) Denny McLain (4th) Jim Palmer (13th) Ron Guidry (1st)
Cy Young (NL) Bob Gibson (1st) Tom Seaver (1st) Gaylord Perry (30th)

1983 1988 1993

MVP (AL) Cal Ripken Jr. (11th) Jose Canseco (3rd) Frank Thomas (3rd)
MVP (NL) Dale Murphy (3rd) Kirk Gibson (17th) Barry Bonds (1st)
Cy Young (AL) LaMarr Hoyt (21st) Frank Viola (24th) Jack McDowell (17th)
Cy Young (NL) John Denny (14th) Orel Hershiser (7th) Greg Maddux (3rd)

1998 2003 2008

MVP (AL) Juan Gonzalez (18th) Alex Rodriguez (7th) Dustin Pedroia (23rd)
MVP (NL) Sammy Sosa (7th) Barry Bonds (1st) Albert Pujols (1st)
Cy Young (AL) Roger Clemens (3rd) Roy Halladay (15th) Cliff Lee (8th)
Cy Young (NL) Tom Glavine (10th) Eric Gagne (8th) Tim Lincecum (1st)

Table 2
Player rankings. Top 10 pitchers (P) and batters (B) according to geodesic node betweenness (Btw), nestedness (N), and randomwalker ranking (R). Pitchers
are divided into relief pitchers (RP) and starting pitchers (SP). In accordance with HOF eligibility, this table only includes players who played at least
10 seasons between 1954 and 2008. The random walker ranking values for batters, which we obtained from equation Eq. (2), are (in units of 10−5):
Bonds ≈ 9.22, Helton ≈ 7.94, Mantle ≈ 7.79, Ramirez ≈ 7.52, Thomas ≈ 7.15, Mays ≈ 6.90, McGwire ≈ 6.88, Rodriguez ≈ 6.86, Walker ≈ 6.85, and
Guerrero ≈ 6.82. Note that if we consider all players with careers of at least 10 seasons, no matter how many of those seasons occurred between 1954
and 2008, the only change is that Ted Williams becomes the highest-ranking batter. If we consider all players with at least 8 seasons, the only additional
change is that Albert Pujols is ranked just behind Barry Bonds.

Btw(P) N(P) R(RP) R(SP) Btw(B) N(B) R(B)

Nolan Ryan Jamie Moyer Mariano Rivera Pedro Martinez Julio Franco Rickey Henderson Barry Bonds
Jim Kaat Roger Clemens Billy Wagner Roger Clemens Rickey Henderson Barry Bonds Todd Helton
Tommy John Greg Maddux Troy Percival Roy Halladay Carl Yastrzemski Steve Finley Mickey Mantle
Dennis Eckersley Mike Morgan Trevor Hoffman Curt Schilling Hank Aaron Craig Biggio Manny Ramirez
Jamie Moyer Randy Johnson Tom Henke Sandy Koufax Pete Rose Gary Sheffield Frank Thomas
Greg Maddux David Wells B. J. Ryan Randy Johnson Tony Perez Ken Griffey Jr. Willie Mays
Charlie Hough Kenny Rogers Armando Benitez John Smoltz Joe Morgan Luis Gonzalez Mark McGwire
Don Sutton Terry Mulholland John Wetteland Mike Mussina Dave Winfield Julio Franco Alex Rodriguez
Phil Niekro Jose Mesa Keith Foulke J. R. Richard Ken Griffey Jr. Jeff Kent Larry Walker
Roger Clemens Tom Glavine Robb Nen Greg Maddux Al Kaline Omar Vizquel Vladimir Guerrero

4. Linking structure to performance

As we suggested previously, the network architecture should have important effects on the performance of players, as
the quality of head-to-head competition is affected. In particular, central players in the network might have a systematic
advantage in the rankings relative to those who are not as well-connected. Such structurally-important players (see Table 2
for examples), who have high values for both betweenness centrality and nestedness, have had long—and usually extremely
successful—careers, so it is of significant interest (yet difficult) to gauge the coupled effects on their rank ordering from
statistical success versus structural role in the network. With this in mind, we found almost no correlation (ρ ≈ 0.001)
between a player’s position – i.e., individual nestedness and betweenness – and his success measured by the fraction of
votes received. Accordingly, network position by itself (i.e., without also taking performance into account) does not seem to
give any systematic advantage in a player’s ranking.
To investigate this further, we examine the correlation between the sensitivity of rankings and changes in outcomes in

individual pitcher–batter pairs. We do this by calculating the Moore–Penrose pseudo-inverse L+ of the graph Laplacian.
Consider changing the outcome of the single edge that corresponds to the aggregate matchup between players i and j. If
we increase the former’s aggregate matchup by a unit amount at the expense of the latter, then the total change in votes
V is proportional to the difference between the ith and jth columns of L+. This difference yields a node-centric measure of
the sensitivities of rankings to individual performances. The constraint

∑
i L
+

ij = 0 implies that L
+

ii (the diagonal element of
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Fig. 3. (Color online) Time evolution and summary statistics of the baseball networks. Panel A shows the relation between player degree k and player
strength s from 1954 to 2008. The vertical axis gives the value of the exponent α in the power-law relationship s ∼ kα (see the discussion in the main
text), where we observe that α tends to decrease as a function of time. Shuffling the strengths in the network while keeping the player degrees fixed
yields a power-law relationship with α ≈ 1 for all years. Blue circles denote pitchers and gray crosses denote batters. Each error bar corresponds to one
standard deviation. The inset shows on a log–log scale the relationship between degree k and strength s for the 2008 season. Panel B shows the time
evolution of the network’s nestedness (which we defined using the NODF metric [26]). Black circles and red squares represent, respectively, the values for
the original data and those for the standard nullmodel II [21]. Each error bar again corresponds to one standard deviation. Panels C andD show, respectively,
the relationship between node degree and individual nestedness for the 1972 and 1973 networks. For comparison purposes, the degrees of pitchers and
batters are respectively scaled by a multiplicative factor of P/l and B/l, where P is the number of pitchers, B is the number of batters, and l is the number of
undirected edges in the network. In 1973, the American League introduced the designated hitter rule, which caused a significant change in the structure
of that and all subsequent single-season networks. Between 1954 and 1972, pitchers and batters each collapse onto a single curve. From 1973 to 2008,
however, pitchers and batters each yield two distinct curves, revealing a division between the American league (bottom curve) and National League (top
curve).

the pseudo-inverse of the graph Laplacian), which describes the direct control that player i has on his own ranking, is equal
and opposite to the total change his performance directly imposes on the rest of the network. Additionally, as illustrated in
Fig. 4A, the quantity L+ii is closely related to the total root-mean-squared (RMS) change in votes across the network due to
the performance of player i. In particular, consider a player i on the right part of this figure. Such a player has low strength
si and few appearances, so the largest value by far of the ith column of L+ is L+ii ≈ 1/si (see the discussion below for more
information on the relation to si). For instance, at the extreme right edge of the diagonal of L+ for 2008, one finds Philadelphia
Phillies middle reliever Geoff Geary (who we label as node g), who made an out in his only plate appearance and gives a
diagonal entry of L+gg ≈ 1.0656. Adding to Geary’s charge in the network raises not only his value but also that of any pitcher
that he faced. However, the value added to each of those pitchers is only about 0.0662. Hence, when we take the square
root of the sum of squares, we obtain a value that is essentially indistinguishable from 1.0656. The asymptote on the right
of Fig. 4A is thus the line y = x.
Note that the element L+ii is related to the mean of the commute distances between nodes i and j (averaging over all

j) [35]. Given the constraint discussed above, the sum over j of the commute distances, given by tij = L+ii + L
+

jj −2L
+

ij , yields a
linear function of L+ii . Consequently, L

+

ii provides a node-centricmeasure of the average distance from node i to the rest of the
network. The notion of average commute distance is reminiscent of the measures known as information centrality [36] and
randomwalk centrality [37] (though the results of applying the different measures can still be quite different). The negative
relationship between L+ii and both betweenness centrality and nestedness (see Fig. 5) thus yields a corresponding negative
relationship between the mean commute distance and the betweenness and nestedness of a player. A player who is highly
embedded in the network (i.e., one with high individual nestedness) has a small mean commute distance to the rest of the
network, and the ranking of that player is not very sensitive to the outcome of a single matchup. In contrast, a player who is
in the periphery of the network (i.e., one with low individual nestedness) typically has a very large mean commute distance
to other portions of the graph, and his place in the rank ordering is consequently much more sensitive to the results of his
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Fig. 4. (Color online) Network quantities versus graph Laplacian. We plot the diagonal elements L+ii of the Moore–Penrose pseudo-inverse of the graph
Laplacian for the 2008 baseball network versus (A) the root-mean-squared (RMS) change of votes across the network due to the RUE ‘charge’ at each node
and (B) node strength. In each case, we use logarithmic coordinates on both axes. (In this example, we keep track of all players regardless of number of
appearances.) The plateau that we observe in the left of panel A is unsurprising, as it corresponds to a bevy of high-strength players with a large number
of interconnections—i.e., what seems to be a core structure in the nested network—so the total RMS effects appear to be independent of the increase in
charge on any particular core player. We discuss the asymptotic behavior on the right of panel A in the main text and note the L+ii ≈ s

−1
i relationship in

panel B. We observe similar properties in the other seasons.
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Fig. 5. (Color online) Betweenness and Nestedness versus Graph Laplacian. We plot the diagonal elements of the Moore–Penrose pseudo-inverse of the
graph Laplacian for the 2008 baseball network versus (A) node betweenness and (B) individual nestedness. (In this example, we keep track of all players
regardless of number of appearances.) The two sets of points in Panel B reveal two subsets of the data (namely, batters and pitchers). We observe similar
properties in the other seasons.

individual matchups [38]. This suggests that players in the AL tend on average to be very slightly more prone to changes in
their individual matchup outcomes than players in the NL (see Fig. 3D).
Remarkably, we can make these general notions much more precise, as L+ii ≈ s

−1
i , where we recall that si is the strength

of node i (see Fig. 4B). Some similarities between these quantities is expected. (Consider, e.g., the role of relaxation times
in a similar relationship—which can be quantified via an eigenvalue analysis—with random walk centrality in Ref. [37].)
The accuracy of this simple relationship belies a stunning organizational principle of the baseball matchup networks: The
global quantity of average commute distance of a node is well approximated by its strength, a simple local quantity. That
is, in the appropriate perturbation analysis to approximate the pseudo-inverse of the Laplacian, the higher-order terms
essentially cancel out, contributing little beyond the (zeroth-order) local contribution. We also found a rougher relationship
for nestedness and betweenness (see Fig. 6).
These results have two interesting implications. First, they reveal that the success of well-connected players depends

fundamentally on a strong aggregate performance rather than simply on their position in the network. Second, they imply
that neophyte players would need to face well-connected players if they want to establish a stronger connection to the
network and a ranking that is less vulnerable to individual matchups. Similarly, recent research on mutualistic networks in
ecology has found that neophyte species experience lower competition pressures by linking to well-connected species [9].
Our findings on baseball player rankings suggest the possibility that onemight find similar competition patterns inmutually-
antagonistic interactions in ecological and social networks.

5. Conclusions

Drawing on ideas from network science and ecology, we have analyzed the structure and time evolution of mutually-
antagonistic interaction networks in baseball. We considered a simple ranking system based on biased random walks on
these graphs and used it to compare player performance in individual seasons and across entire careers. We emphasize
that our ranking methodology is overly simplistic, as there are several considerations that one might use to improve it (see,
e.g., Appendix B) while maintaining a network framework that accounts for the opponents that each player has faced. We
also examined how the player rankings and their sensitivities depend on node-centric network characteristics.
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A B

Fig. 6. (Color online) Degree, Strength, Betweenness, and Nestedness. We show a log–log plot of (A) player degree k versus node betweenness centrality
and (B) degree versus individual nestedness in the career network. The insets show the analogous relationships obtained by replacing degree with strength
s. Pitchers are shown by blue dots and batters are shown by gray crosses. Pitchers with betweenness b ≈ 2 × 10−4 and low degree tend to be position
players whomade a few pitching appearances (e.g., Keith Osik), pitchers with short careers (e.g., Wascar Serrano), or recent pitchers with fewMajor League
appearances (e.g., John Van Benschoten, who has split time between the Major Leagues and the Minor Leagues since 2004).

We expect that similar considerations might be useful for developing a better understanding of the interplay between
structure and function in a broad class of competitive networks, such as those formed by antigen–antibody interactions,
species competition for resources, and company competition for consumers. We are optimistic that this might lead to
interesting ecological insights, perhaps by compensating for the difficulty in collecting data on the regulatory dynamics of
mutually-antagonistic networks in ecology—such as the ones formed by parasites and free-living species [11]—or by helping
to assess the potential performance of invasive species from different environments [39].
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Appendix A. Quantities for bipartite networks

In this appendix, we review some important quantities for bipartite networks and discuss their values for the baseball
matchup networks.
A clustering coefficient for unweighted bipartite networks can be defined by [40]

C4,mn(i) =
qimn

(km − ηimn)+ (kn − ηimn)+ qimn
, (A.1)

where qimn is the number of complete squares involving nodes i, m, and n; the quantity ηimn = 1 + qimn enforces the
requirement in bipartite graphs that there are no links between nodes of the same population; and we recall that ki is the
degree of node i. Hence, the numerator in (A.1) gives the actual number of squares and the denominator gives themaximum
number of possible squares. For the single-season unweighted matchup networks, we calculate the ratio rc = 〈C4〉/〈C4r〉
between the mean clustering coefficient 〈C4〉 summed over all nodes i and the mean clustering coefficient 〈C4r〉 generated
by a randomization of the network that preserves the original degree distribution [41]. We find that the unweighted
matchup networks have average clustering coefficients that are just above that of random networks. Interestingly, the ratio
rc decreases gradually (and almost monotonically from one season to the next) from rc ≈ 2.5 in 1954 to rc ≈ 1.3 in 2008.
The geodesic betweenness centrality of nodes over the unweighted network Â is defined by [1,42]

b(i) =
∑
j,k

∆j,k(i)
dj,k

, (A.2)

where∆j,k(i) is the number of shortest paths between players j and k that pass through player i and dj,k is the total number
of shortest paths between players j and k. For the single-season baseball networks, we calculate the ratio rb = 〈b〉/〈br〉
between the mean path length 〈b〉 summed over all nodes i and the mean path length 〈br〉 generated by a randomization of
the network that preserves the degree distribution [41]. As with clustering coefficients, we find that the mean path lengths
of baseball networks are only slightly larger than those of random networks, finding in particular that rb ∈ (1, 3).
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Nestedness is an important concept that has been applied to ecological communities, in which species present in sites
with low biodiversity are also present in sites with high biodiversity [43]. Although the general notion of nestedness can
vary, the concept has nonetheless been employed quite successfully in the analysis of ecological networks [21]. In a nested
network, interactions between two classes of nodes (e.g., plants and animals) are arranged so that low-degree nodes interact
with proper subsets of the neighbors of high-degree nodes. A nested network contains not only a core of high-degree nodes
that interact with each other but also an important set of asymmetric links (i.e., connections between high-degree and low-
degree nodes). The importance of nestedness measures is twofold: (1) they give a sense of network organization; and (2)
they have significant implications for the stability and robustness of ecological networks [9,21].
To avoid biases in nestedness based on network size (i.e., the number of nodes), degree distribution, and other structural

properties, we employ the nestedness calculations introduced recently in Ref. [21]. The aggregate nestedness (of an
unweighted matchup network) is given by [26]

NODF =

∑
i,j
Ni,j +

∑
l,m
Nl,m

([P(P − 1)/2] + [B(B− 1)/2])
. (A.3)

For every pair of pitchers (i and j), the quantity Ni,j is equal to 0 if ki ≤ kj and is equal to the fraction of common opponents
if ki > kj. We also define a similar quantity for every pair of batters (l and m). The nestedness metric takes values in the
interval [0, 1], where 1 designates a perfectly-nested network and 0 indicates a network with no nestedness.
The NODF version of nestedness also allows one to calculate the individual nestedness of each pitcher (column) or batter

(row) using the equation

z(i) =
∑
j

Ni,j/(T − 1), (A.4)

where T = P (total number of columns) for pitchers, T = B (total number of rows) for batters, and Ni,j is calculated as
above. In this way, the individual nestednessmetric takes values in the interval [0, 1], where 1 designates a perfectly-nested
individual and 0 indicates an individual with no nestedness.
The null model used to provide a comparison for the nestedness calculation is [21]

qi,j =
ki
2B
+
kj
2P
, (A.5)

where qi,j is called the occupation probability of an interaction between node i and node j and we recall that B and P are,
respectively, the total number of nodes j (batters) and nodes i (pitchers) in the network. In a bipartite network, j and i
represent two different types of nodes, so qi,j is the mean of the occupation probabilities of the row and column. For our
study, we also calculate the standard error—given by Z = (NODF −〈NODF〉)/σ , where NODF corresponds to the nestedness
values of the empirical networks and 〈NODF〉 and σ are, respectively, the average and standard deviations of nestedness
values of random replicates generated by the null model. For the unweighted matchup networks, we find that Z > 3 in all
seasons (see Fig. 3B).

Appendix B. Definition of Runs to End of Inning (RUE)

To quantify the outcome of each plate appearance, we used the sabermetric quantity runs to end of inning (RUE) [15],
which assigns a value to each of the possible outcomes in a plate appearance based on the expected number of runs a team
would obtain before the end of that inning following that event, independent of game context. (RUE can also be adjusted by
subtracting the initial run state [34].) Higher numbers indicate larger degrees of success for the batter. The possible events
(and their associated numerical RUE values) are as follows: generic out (0.240), strikeout (0.207), walk (0.845), hit by pitch
(0.969), interference (1.132), fielder’s choice (0.240), single (1.025), double (1.311), triple (1.616), and home run (1.942).
Note thatwe are ignoring events such as passed balls and stolen bases that can occur in addition to the above outcomes in

a given plate appearance. This might lead to some undervaluing in the ranking for a small number of position players (such
as Tim Raines) that rely on stolen bases. We also considered the metric known as weighted on base average (wOBA) [44]
and note that any metric that assigns a value to a specific plate appearance can be used in place of RUE without changing
the rest of our ranking algorithm. This includes, in particular, popular sabermetric quantities such as win shares and value
over replacement player (VORP) [13,15]. One can also incorporate ideas such as ballpark effects into the metric employed at
this stage of the algorithm without changing any other part of the method. Although it would make the methodology more
complicated (in contrast to our goals), it is also possible to generalize our algorithm to include more subtle effects such as
estimates for when player performance peaks and how it declines over a long career. Some of the active players in the data
set have not yet entered a declining phase in their careers and might have higher rankings now than they will when their
careers are over. We expect that the relatively high rankings of modern players versus ones who retired long ago might
also result in part from the increased performance discrepancy between the top players and average players in the present
era versus what used to be the case and in part from performing well against the larger number of relatively poor players
occupying rosters because of expansion [45]. Finally, we note that batter–pitchermatchups are not fully random but contain
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significant correlations (e.g., in a given baseball game, the entire lineup of one team has plate appearances against the other
team’s starting pitcher) that can be incorporated to generalize the random walker process itself [34].
To include the outcomes of players who did not have many plate appearances without skewing their rankings via small

samples, we separately accumulated the results for all pitchers and batters with fewer than some threshold number of plate
appearances K into a single ‘‘replacement pitcher’’ and ‘‘replacement batter’’ to represent these less prominent players. In
the results presented in this paper, we used the threshold K = 500 for both the single-season and career networks. Note that
similar thresholds existwhen determining single-season leadership in quantities such as batting average (which requires 3.1
plate appearances per team game, yielding 502 appearances in a 162-game season) and earned run average (which requires
1 inning per team game).
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