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Motifs for Processes on Networks\ast 

Alice C. Schwarze\dagger and Mason A. Porter\ddagger 

Abstract. The study of motifs can help researchers uncover links between the structure and function of net-
works in biology, sociology, economics, and many other areas. Empirical studies of networks have
identified feedback loops, feedforward loops, and several other small structures as ``motifs"" that occur
frequently in real-world networks and may contribute by various mechanisms to important functions
in these systems. However, these mechanisms are unknown for many of these motifs. We propose to
distinguish between ``structure motifs"" (i.e., weakly connected graphlets) in networks and ``process
motifs"" (which we define as structured sets of walks) on networks and consider process motifs as
building blocks of processes on networks. Using steady-state covariance and steady-state correlation
in a multivariate Ornstein--Uhlenbeck process on a network as examples, we demonstrate that distin-
guishing between structure motifs and process motifs makes it possible to gain quantitative insights
into mechanisms that contribute to important functions of dynamical systems on networks.
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1. Introduction. The study of motifs in networks has advanced the understanding of
various systems in biology [4, 76, 77, 84, 92], economics [66, 93], social science [36, 44], and
other areas. When interpreting motifs as small building blocks that can contribute to a
network's functionality, it can be important to identify motifs that are necessary, beneficial,
or disadvantageous to a network's function in order to help uncover relationships between
network structure and network function.

Traditionally, scientists have considered graphlets (i.e., small graphs of typically three to
five nodes) as building blocks of a network's structure and identified them as ``motifs"" when
empirical data [20, 36, 59, 66, 84, 88, 93] or mathematical models [5, 30, 40, 85] indicate their
importance for system function. In many studies of ``real-world"" networks from empirical
data, researchers have compared graphlet frequencies in a network to graphlet frequencies in
an appropriate random-graph null model [20, 36, 59, 66, 88, 93]. They subsequently have
concluded that graphlets that are overrepresented in the network are likely to be relevant to
important functions of a system that is associated with that network. However, the results of
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such studies depend very sensitively on the choice of random-graph null model [6, 78, 82], and
this approach to motif identification does not uncover the mechanisms by which the identified
graphlets contribute to important system functions.

Other studies have aimed to provide mechanistic insights by modeling dynamical systems
on graphlets in isolation [5, 30, 40, 85]. The design of such studies requires an a priori choice of
a graphlet, a dynamical system or a class of dynamical systems, and a candidate mechanism by
which the graphlet facilitates an important system function. Therefore, it is difficult for such
studies to discover new and/or unexpected mechanisms or to provide a systematic comparison
of the importances of different graphlets and different mechanisms for a system function.

In the present paper, we propose a framework for connecting the study of dynamics on
networks with the study of motifs in networks. We propose to distinguish between ``structure
motifs"" (i.e., graphlets) in networks and ``process motifs"" (which we define in the form of
structured sets of walks) on networks, and we consider process motifs as building blocks
of processes on networks.1 We demonstrate how to use process motifs to connect network
structure to dynamics on networks and to dynamics-based notions of system functions. These
connections lead to mechanistic and quantitative insights into the contributions of all possible
structure motifs to a given system function. We give concrete examples in section 4.

We define a process motif to be a connected walk graph, which is a directed and weighted
multigraph in which each edge corresponds to a walk on a given network. In line with prior
research on motifs, we are concerned with small process motifs. Edge weights in a walk graph
correspond to the lengths of the associated walks. An occurrence of a process motif on a
network (V,E) with node set V and edge set E is a labeling of nodes and edges in the process
motif such that each node in the process motif corresponds to a node in V and each edge in
the process motif corresponds to a walk on (V,E). (This technical notion of ``occurrence"" is
consistent with the English meaning of the word.) In Figure 1, we show examples of process
motifs and their occurrences on a small network. The occurrences of the process motifs in
panels (b) and (c) use each edge in E at most once, and each node in these occurrences
corresponds to a different node in V . In the occurrences of the process motifs in panels (d)--
(f), some nodes correspond to the same node in V . In the occurrences of the process motifs
in panels (f) and (g), walks use edges in E more than once.

In Figure 2, we give an overview and an example of our process-based approach to studying
motifs in networks; we also indicate how our results can inform future studies of motifs in
network structure. We model a system function as a real-valued function Y of the state
of a dynamical system. One can identify the process motifs that are relevant to a given
mathematical function Y and associate each process motif with a numerical value b that
indicates the contribution of each of the process motif's occurrences to Y . From process motifs
and their associated contributions, one can derive (1) structure motifs that are relevant to the
function Y and (2) the contributions c of their occurrences to Y . Process motifs thus offer a
framework for identifying functionally important graphlets from mathematical models. This
approach can lead to detailed insights into the mechanisms by which structure motifs can

1In other studies, the term ``structural motif"" often has been used to refer to structure motifs, but it
sometimes has been used to refer to process motifs. We give an overview of the use of motifs in the study of
networks in subsection 2.5. We use the terms ``structure motif"" and ``process motif"" to avoid confusion with
conflicting definitions of ``structural motif"" in previous work by other scholars. We use the composite terms to
emphasize that we consider structure motifs and process motifs to be two fundamentally different concepts.
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Figure 1. Examples of process motifs. In (a), we show a small directed network (V,E). In (b)--(g), small
white nodes and blue curved edges depict examples of process motifs that occur on (V,E). Numerical edge labels
indicate the length of a walk. There are two occurrences of each process motif on (V,E). We use labeled white
nodes and curved green edges to depict these occurrences below each process motif.

affect a system function (see section 4).2 One can use contributions that are associated with
structure motifs to rank mechanisms based on their efficiencies and thereby rank structure
motifs based on their importance in contributing to a system function.

As an example system, we use the multivariate Ornstein--Uhlenbeck process (mOUP),
which is a popular model for coupled noisy systems [2]. It has been used to study neuronal
dynamics [7], stock prices [51], gene expression [79], and other systems. Properties of the
mOUP are related to properties of coupled excitable systems. For example, one can derive
the mOUP as a linear-response approximation of an integrate-and-fire model for excitable
neurons [31, 38].

As example system properties, we examine covariance and correlation in the mOUP at
steady state. Covariances and correlations between the nodes of a network are relevant to a
wide variety of topics. Researchers have used correlations between variables to construct net-
works for various applications [16, 26, 67]. For example, in networks of functional connectivity,
an edge may indicate a large positive correlation between two neurons or two brain regions
[26]. In networks of gene co-expression, an edge may indicate a strong correlation between
the expression of two genes [16]. Additionally, existing intuition and results about simple
network structures that induce covariance and correlation (see, e.g., Reichenbach's common-
cause principle [74]) make covariance and correlation interesting examples for our study. Our
approach confirms known results about covariation between variables and yields additional,
quantitative insights into the mechanisms by which network structure can enhance or reduce
covariance or correlation between nodes.

Our process-based approach to the study of motifs on networks yields a list of relevant
process motifs (with their associated contributions to a system function) and a list of relevant

2Note that we distinguish a ``system function"" (which may, for example, be a biological function in a system)
from a ``mathematical function"" like Y .
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Figure 2. Comparison of a structure-based approach to the study of motifs in networks and the process-
based approach that we introduce in this paper. In the right panel, we give an overview of the results of applying
our approach to the study of process motifs and structure motifs that are relevant to the steady-state covariance
\sigma ij (see (4.2)) for each node pair (i, j) in a multivariate Ornstein--Uhlenbeck process (mOUP) with parameters
\theta , \varsigma , and \epsilon and adjacency matrix \bfA (see (4.1)). The parameters L and \ell characterize a process motif for \sigma ij

with walk lengths \ell and L - \ell .

structure motifs (with their associated contributions to the same system function). As we
indicate in Figure 2, these results depend both on the choice of dynamical system and on the
choice of system function. However, they do not depend on the choice of network or random-
graph model. In Figure 2, the arrow from the center panel to the left panel indicates how
our results can inform future studies of graphlets in networks and can lead to quantitative
insights into the importances of graphlets for a system function in a random-graph model or
in a given network (which one obtains from data or from a random-graph model).D
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Our paper proceeds as follows. In section 2, we review some graph-theoretical concepts
and define walk graphs. The concept of walk graphs allows us to distinguish between structure
motifs and process motifs. We also provide an overview of the use of motifs in prior studies
of networks. In section 3, we show how to derive process motifs, structure motifs, and their
contributions to a given property (such as a correlation between two nodes) of a dynamical
system. In section 4, we give a brief introduction to the mOUP and derive process motifs and
structure motifs for steady-state covariances and correlations between nodes in the mOUP. We
also discuss similarities and differences between the mechanisms for steady-state covariance
and correlation in this system. In section 5, we conclude and discuss possible applications
of our process-based approach to the study of motifs in networks. We also explain why the
distinction between process motifs and structure motifs is important for many (but not all)
dynamical systems on networks. We discuss a few technical points in the appendices.

2. Process motifs and structure motifs. In this section, we define process motifs and
structure motifs. In subsection 2.1, we give a brief introduction to relevant graph-theoretical
concepts. In subsection 2.2, we introduce walk graphs. We then define process motifs as
weakly connected walk graphs and structure motifs as connected graphs. In subsection 2.3,
we introduce the concepts of matching process motifs and matching structure motifs. (These
concepts are useful for our calculations in section 4.) To further illustrate the conceptual
difference between process motifs and structure motifs, we compare methods for counting
occurrences of process motifs and structure motifs in subsection 2.4. In subsection 2.5, we
review prior uses of process motifs and structure motifs in the study of networks.

2.1. Some graph-theoretical concepts. We now give definitions of walks and trails on
networks and paths in networks. These words and other terminology for graph-theoretical
concepts are often used ambiguously, and we will need to distinguish these concepts clearly
for our work in the present paper.

We consider a graph to be an ordered tuple (V,E) that consists of a set V of nodes and
a set E \subseteq V \times V of edges [13]. Graphs can have self-edges, in which a node is connected
to itself via an edge. They cannot have multi-edges. If a graph is directed, its edges e \in E
are ordered pairs of nodes. If a graph is undirected, its edges e \in E are unordered pairs of
nodes. A weighted graph is an ordered tuple (V,E,W ); it has a node set V and an edge set
E as before, and there is also a map W that assigns a weight to each edge in E. For the
remainder of the present paper, we exclude W from our notation for graphs. However, our
definitions and results hold for both weighted and unweighted graphs, and we allow edges to
have weights.

A subgraph (V \prime , E\prime ) of a graph (V,E) is a graph that consists of a node set V \prime \subseteq V and
an edge set E\prime \subseteq E [13]. A supergraph (V \prime \prime , E\prime \prime ) of a graph (V,E) is a graph with node set
V \prime \prime \supseteq V and an edge set E\prime \prime \supseteq E [97].

We distinguish between walks and trails on graphs and paths in graphs. Consider a
directed or undirected graph (V,E). A walk on this graph is a sequence

\omega = (vi1 , ei1,i2 , vi2 , ei2,i3 , . . . , ei\ell  - 1,i\ell , vi\ell , ei\ell ,i\ell +1
, vi\ell +1

)

of nodes vi1 , vi2 , . . . , vi\ell , vi\ell +1
\in V and edges ei1,i2 , ei2,i3 , . . . , ei\ell  - 1,i\ell , ei\ell ,i\ell +1

\in E such that each
edge ei,j starts at node vi and ends at node vj [13]. The integer \ell indicates the number ofD
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edges in the walk, and we thus call it the length of the walk. If no edge in E occurs more than
once in \omega , the walk \omega is also a trail [13]. If no node in V and no edge in E occurs more than
once in \omega , one can use the set of nodes in \omega and the set of edges in \omega to construct a path. A
path is a subgraph (V \prime , E\prime ) that consists of a node set V \prime \subseteq V and an edge set E\prime \subseteq E that
one can combine to construct a sequence

(vi1 , ei1,i2 , vi2 , ei2,i3 , . . . , ei\ell  - 1,i\ell , vi\ell , ei\ell ,i\ell +1
, vi\ell +1

)

of nodes and edges [13]. The number \ell is the length of the path.
A path is a subgraph of a graph. By contrast, a walk is a combination (with repetition

allowed) of a graph's nodes and edges.3 One can use walks to describe many processes on
graphs [3, 29, 62, 87]. Additionally, one can consider the sequence of nodes and edges in a
walk to be the temporal sequence of nodes and edges that a signal, a person, or some other
entity traverses.

A closed walk of length \ell is a sequence

w = (vi1 , ei1i2 , vi2 , ei2i3 , . . . , ei\ell  - 1i\ell , vi\ell , ei\ell i1 , vi1)

of nodes and edges [13]. A cycle of length \ell is a subgraph (V \prime , E\prime ) that consists of a node set
V \prime \subseteq V and an edge set E\prime \subseteq E that one can combine to construct a closed walk [13]. One
can think of a cycle as a closed path. We say that a graph is cyclic if it is a cycle. A graph is
acyclic if it is not a cycle and none of its subgraphs is a cycle.

An undirected graph (V,E) is connected if there exists a path from i to j for every
unordered pair (i, j) of nodes in V . A directed graph (V,E) is strongly connected if there
exists a path from i to j for every ordered pair (i, j) \in V \times V . A directed graph is weakly
connected if its corresponding undirected graph is connected.

A graph has an associated adjacency matrix A = (aij). If the graph is unweighted,
aij \in \{ 0, 1\} , where aij = 1 indicates that there is an edge from node j to node i.4 For a
weighted graph, the nonzero elements of A are aij = w(e), where w(e) is the weight of the
edge e from node j to node i.

A multigraph is like a graph, except that the edge set is now a multiset E \subseteq V \times V , so an
ordered node pair (i, j) \in V \times V can be connected by multiple edges. We do not allow such
multi-edges in the graphs in our paper, and we use the name ``networks"" for our graphs. In
subsection 2.2, we define walk graphs and process motifs as special types of multigraphs that
are associated with a network's structure.

2.2. Walk graphs, process motifs, and occurrences of process motifs. We define a walk
graph to be a weighted and directed multigraph ( \~V , \~E, \ell ). We think of edges \~e \in \~E as walks
on a network. The walk-graph edge weights \ell = \ell (\~e) indicate the lengths of walks. A process
motif is a weakly connected walk graph. An occurrence of a walk graph or process motif on

3Other researchers have defined a path to be a combination of nodes and edges without repetition of edges
[61]. Using this definition, a path is a special case of a walk. For our work, it is crucial to distinguish between
paths and walks as two fundamentally different concepts, where the former is related to processes on networks
and the latter is related to graph structure.

4There are multiple conventions for encoding the directions of the edges in the adjacency matrix of a directed
graph. We use the convention from [61].D
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a network (V,E) is a labeling of nodes and edges in ( \~V , \~E, \ell ) such that each walk-graph node
\~v \in \~V corresponds to a node v \in V and each walk-graph edge \~e \in \~E corresponds to a walk
in (V,E) of length \ell (\~e). The labeling of nodes does not need to be bijective. Every node \~V
must correspond to exactly one node in V , but different nodes in \~V can correspond to the
same node in V (see, for example, Figure 1(d)--(f)). We say that a process motif occurs on a
network (V,E) if there is at least one occurrence of the process motif on (V,E).

When characterizing walk graphs, a useful property is the walk graph's (spatial) length

L :=
\sum 
\~e\in \~E

\ell (\~e) .

For the rest of our paper, we use the term ``length"" for a walk graph's spatial length.5

To give some examples of walk graphs, we recall the walk graphs in Figure 1. A walk
graph that consists of a single edge corresponds to a single walk on an associated network
(see, e.g., Figure 1(b, d, g)). If a walk graph consists of a single self-edge, then the walk graph
corresponds to a closed walk in an associated network (see, e.g., Figure 1(c)).

We noted in subsection 2.1 that one can interpret a walk to describe a type of process. One
can thus use a walk graph to describe a composite process that consists of several walks. This
interpretation motivates our definition of process motifs as weakly connected walk graphs.
We consider a structure motif to be a weakly connected graph. We consider an occurrence
of a structure motif in a network (V,E) to be a subgraph of (V,E) that is isomorphic to the
structure motif.

2.3. Matching process motifs and matching structure motifs. Consider the set Ps of
process motifs that occur on a structure motif s and the set Sp of structure motifs on which
a process motif p occurs. If one does not specify a number | \~V | of nodes and a length L of a
process motif, the set Ps for any s with one or more edges includes infinitely many process
motifs because a process motif can use each edge of the structure motif infinitely many times.
Conversely, for a given process motif p, the set Sp includes infinitely many structure motifs
because one can add nodes or edges to any s \in Sp to obtain another element of Sp.

Most elements of Ps are very long process motifs, and most elements of Sp are very large
structure motifs. Traditionally, studies of motifs in networks have focused on small motifs;
specifically, researchers have considered process motifs of length L \leq 4 [8, 53, 63] and structure
motifs with up to five nodes [59, 104]. To associate small process motifs with small structure
motifs and vice versa, we define matching process motifs and matching structure motifs. For
a given process motif p, a matching structure motif s\ast p is a structure motif on which p occurs
while using each edge in s\ast p exactly once. Conversely, for a given structure motif s, a matching
process motif is a process motif that occurs on s while using each edge in s exactly once.

For a structure motif s with a finite number of edges, the set P \ast 
s of matching process

motifs has a finite number of elements. For a process motif p with a finite length L, the set
S\ast 
p of matching structure motifs has a finite number of elements.

5One can also use a walk graph's duration (i.e., temporal length) to characterize it. The walk graphs that
we derive in section 4 are compositions of walks that start at their respective source nodes at the same time.
The derivation motivates our definition of a walk graph's duration as T := maxe\in \~E \ell (e). Walk-graph durations
are not important for the derivations that we present in this paper. However, they can be relevant to process
motifs in networked dynamical systems in which edges have associated time delays.
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Figure 3. Matching sets of structure motifs and matching sets of process motifs. On the left, we show four
structure motifs and their sets of matching process motifs. On the right, we show four process motifs and their
sets of matching structure motifs.

In Figure 3, we show sets of matching process motifs and sets of matching structure
motifs for several structure motifs and process motifs, respectively. Structure motifs that do
not include cycles have only acyclic matching process motifs. Therefore, for a given number of
edges, structure motifs that include cycles (e.g., the structure motifs in the second and fourth
rows of the left table of Figure 3) have more matching process motifs than acyclic structure
motifs (e.g., the structure motifs in the first and third rows of the left table of Figure 3).
Accordingly, acyclic process motifs have more matching structure motifs than cyclic process
motifs.

In general, a structure motif can have many matching process motifs and a process motif
can have many matching structure motifs. Motif-based research that aims to link network
structure to dynamics on networks requires careful consideration of these matching motifs. In
section 4, we demonstrate the importance of these considerations using steady-state covariance
and steady-state correlation in an mOUP as examples.

2.4. Counts of process motifs and structure motifs. It is common for studies of motifs
to associate motifs with a ``count,"" ``number,"" or ``frequency"" to indicate the prevalence of
occurrences of a given motif in a given system [59, 103, 104]. The count (i.e., number) of a
structure motif s in a network (V,E) is the number of occurrences of s in (V,E) (i.e., the
number of labeled subgraphs of (V,E) that are isomorphic to s). We consider the count of
a process motif p in an unweighted network (V,E) to be the number of occurrences of p in
(V,E). For a weighted network (V,E,W ), it is useful to weight each occurrence of a process
motif by the product \pi :=

\prod 
ew(e), where one takes the product of the weights of edges e \in E

that the walks in p traverse. (If the walks in p traverse an edge k times, the corresponding
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L = 1 L = 2 L = 3

|Ṽ
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|Ṽ
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|Ṽ
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3
|Ṽ
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N/A N/A N/A

N/A

N/A N/A

3-node feedforward loop

1 2
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Figure 4. Process motifs on a 3-node feedforward loop. We sort process motifs according to their lengths
L and their numbers | \~V | of nodes. The numerical edge labels on process motifs indicate the lengths of edges.
Some process motifs occur on the 3-node feedforward loop but not on the 3-node feedback loop. We use orange
edges and boxes with dashed boundaries to distinguish these process motifs from others. The pink inset in the
top-right corner shows the structure of a 3-node feedforward loop.

edge weight w(e) appears in \pi with multiplicity k.) For weighted networks, the count of p is
the sum of edge-weight products \pi for each occurrence of p on (V,E,W ).

The counts of structure motifs in a network and the counts of process motifs are related
to each other. Each structure motif s has an associated set Ps of process motifs that occur
on it. Consequently, a change in the number of occurrences of s (i.e., the count of s) in a
graph (V,E) leads to a change in the counts of each p \in Ps on (V,E). To illustrate this
relationship between counts of structure motifs and counts of process motifs, we consider
two small example networks: a 3-node feedforward loop and a 3-node feedback loop [59]. In
Figure 4, we show all length-L walk graphs that occur on a 3-node feedforward loop for L \leq 3.
In Figure 5, we show all length-L walk graphs that occur on a 3-node feedback loop for L \leq 3.

By comparing Figures 4 and 5, we observe that some process motifs occur on the 3-
node feedforward loop but not on the 3-node feedback loop, and vice versa. The differences
between the process motifs on the 3-node feedforward loop and those on the 3-node feedback
loop illustrate that the structure of a network constrains the structures of process motifs that
occur on it. The 3-node feedforward loop is an acyclic network with a maximum trail length
of 2. Because the feedforward loop is a directed acyclic graph (DAG), its associated walk
graphs are also acyclic. Walk graphs on a DAG with a maximum trail length of 2 cannot have
edges of length \ell (e) > 2.D
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L = 1 L = 2 L = 3
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Figure 5. Process motifs on a 3-node feedback loop. We use orange edges and boxes with dashed boundaries
to highlight process motifs that occur on the 3-node feedback loop but not on the 3-node feedforward loop.

The structure of the 3-node feedback loop leads to other constraints on the structures of
associated process motifs. For example, a process motif that occurs on the 3-node feedforward
loop but not on the 3-node feedback loop is the circular process motif with | \~V | = 2 and L = 3
in Figure 4. This process motif consists of a length-1 edge and a length-2 edge that share
both their starting node and their ending node.

2.5. Previous research on process motifs and structure motifs. To the best of our knowl-
edge, previous research on network motifs has not distinguished explicitly between process
motifs and structure motifs. Instead, studies have been concerned either with process motifs
or with structure motifs, and they have used used the term ``network motifs"" for either of
them. In this subsection, we give an overview of research on ``network motifs"" and explain
which of the reviewed studies concern process motifs and which concern structure motifs.

Many reviews of network motifs have credited Milo et al. [59] for the idea of characterizing
networks based on connected subgraphs that are more frequent in a network than one would
expect [4, 19, 57]. (The expectation is usually based on the frequency of connected subgraphs
in a configuration model [59, 82, 92].) Other researchers have indicated that the search for
frequent patterns in networks was already a topic of interest in, for example, ecology in the
1970s [92].

Milo et al. [59] compared several gene-regulatory networks, a neural network of the worm
C. elegans, several food webs, several electronic circuits, and the World Wide Web. They
viewed gene-regulatory networks and neural networks as systems ``that perform informationD
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processing"" and reported that these networks have similar overrepresented connected sub-
graphs. They also reported that other networks, such as food webs and the World Wide
Web, have different overrepresented subgraphs than those in the considered gene-regulatory
networks and the C. elegans neural network. Subsequently, many researchers have studied var-
ious networks by identifying overrepresented connected subgraphs (e.g., see [20, 36, 66, 88, 93]).
They have used the terms ``motif"" or ``network motif"" to refer to an overrepresented connected
subgraph, which is a structure motif or an occurrence of a structure motif.

Closely related to the idea of characterizing networks by examining overrepresented sub-
graphs is the idea of characterizing networks based on the numbers or frequencies of one or
several specified subgraphs [10, 11, 21, 27, 28, 41, 54, 56, 83, 90, 89, 102, 105]. For example,
several researchers have used the number of triangles in an undirected network to characterize
the structure of that network [10, 21] or to explain aspects of dynamics on it [27, 105]. Others
have used the numbers of different structure motifs with three or four nodes to compare net-
works [11, 28, 41, 56, 83, 102] or to explain aspects of dynamics on them [54, 90, 89]. In some
of these studies, researchers have considered ``network motifs"" to be connected subgraphs
without the requirement of overrepresentation with respect to a null model [27, 56]. The
``network motifs"" in these studies are also structure motifs or occurrences of structure motifs.

Estrada and Rodr\'{\i}guez-Vel\'azquez [24] proposed a measure of centrality, which they called
``subgraph centrality,"" that exploits the relationship between structure motifs in a network
and process motifs on that network. The subgraph centrality of a node is a weighted sum
of counts of closed walks that start and end at that node. Noting that ``each closed walk is
associated with a connected subgraph"" [24], Estrada and Rodr\'{\i}guez-Vel\'azquez concluded that
one can use this weighted sum as a measure of the count of cyclic graphlets that include that
node. Their rationale for proposing subgraph centrality thus makes implicit use of the fact
that each process motif that consists of a single closed walk has a corresponding matching
structure motif that is a cycle.

In several theoretical studies of dynamical systems on networks, researchers have used
process motifs when interpreting the results of their derivations [7, 8, 38, 43, 53, 63, 71,
96]. In theoretical neuroscience, a common approach to connect network structure with a
system function is to linearize a nonlinear dynamical system about an equilibrium point and
consider the effect of small perturbations on the dynamics. The strength of the coupling
between a system's nodes affects how perturbations change the evolution of a system state.
In a weakly coupled system with a parameter \epsilon that tunes the coupling strength, one can
sometimes approximate the effect of a perturbation on a system state by expanding the time
evolution of the perturbed system as a sum of terms of increasing order in \epsilon and truncating the
resulting expression at some order of \epsilon . Researchers have used this approach to find process
motifs for ``neural complexity"" [7, 8, 95], information content [53], transfer entropy [63], cross-
correlations [71, 96], and other properties of stochastic dynamical systems on networks [38, 43].
In these studies, the order of \epsilon in the approximation indicates the length or duration of the
corresponding process motif.

Barnett, Buckley, and Bullock [7, 8] considered the mOUP on a network and derived an
approximation for neural complexity up to third order in \epsilon . They associated the terms of
their approximation with ``graph motifs"" with up to three edges [8]. These graph motifs are
process motifs of length L \leq 3. Lizier, Atay, and Jost [53] derived an approximation for theD
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information content of a multivariate Gaussian autoregressive process on a network to fourth
order in \epsilon and associated terms of the approximation with process motifs with up to four edges.
For the same dynamical system, Novelli et al. [63] recently derived process motifs for pairwise
transfer entropy to fourth order in \epsilon . Pernice et al. [71] derived an approximation for the mean
covariance of spiking rates in a system of coupled Hawkes processes [33] to arbitrary order in
\epsilon . Trousdale et al. [96] derived an approximation for individual cross-correlations of a system
of coupled integrate-and-fire neurons [14] to arbitrary order in \epsilon . They associated each order
of their approximation with a ``submotif"" that includes time-ordered edges. These submotifs
are unions of process motifs. Hu et al. [38] approximated a measure of ``global coherence""
for the mOUP on a network to arbitrary order in \epsilon . They associated each order of their
approximation with a normalized count (which they called a ``motif cumulant"") of an ``(n,m)
motif."" These (n,m) motifs are equivalent to the process motifs for the mean covariance of
spiking rates in a Hawkes process [71] and to the process motifs that we derive for steady-state
covariance in the mOUP in section 4. Jovanovi\'c and Rotter [43] derived approximations for
covariance and the third joint cumulant, which is a measure of dependence between three
variables, for a network of coupled Hawkes processes. They associated their approximation
of covariance with 2-edge process motifs and their approximation of the third joint cumulant
with process motifs with three or more edges.

Other types of dynamical systems on networks that are relevant to the perspective of the
present paper include the spread of opinions [50] and the spread of infectious diseases [70]. In
probabilistic compartment models on networks, which are the most common type of model for
studying infectious diseases on networks, the probability that a node is infected can depend
on the infection probabilities of other nodes [47]. For a subset of the nodes, it is common to
approximate joint moments of infection probabilities by products of moments (if there is only
a single node in the subset) or joint moments (if there are two or more nodes in the subset) of
the node(s) [22, 47]. When making such an approximation, one selects the joint moments of
node-infection probabilities on some motif---typically, connected pairs or connected triples of
nodes---to be relevant to a spreading process and other joint moments to be negligible [17, 37].
The motifs in these models can be process motifs or structure motifs. Researchers have used
DAGs to describe the spread of behavior, norms, and ideas [65] and the spread of infectious
diseases [34, 45] on networks. One can view subgraphs of these so-called ``dissemination trees""
[65] and ``epidemic trees"" [34, 45] as process motifs.

For many studies of the spread of infectious diseases, either the choice of compartment
model (e.g., a susceptible--infected--recovered model [60, 73]) or the choice of network structure
(e.g., whether or not it is locally tree-like [12, 48]) constrains the number of relevant process
motifs such that some structure motifs have only one relevant process motif that occurs on
them. Because of this one-to-one correspondence between process motifs and structure motifs,
the distinction between them is irrelevant in these models of disease spread, provided that
one considers only structure motifs with one corresponding process motif. In subsection 5.3,
we discuss when the distinction between process motifs and structure motifs is relevant and
when it is not.

3. Using process and structure motifs to study functions of dynamics on networks.
In this section, we motivate the use of process motifs for the study of dynamical systems onD
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networks. We formally define contributions of occurrences of process motifs and structure
motifs to real-valued functions of the state of a dynamical system on a network. We focus
on linear dynamical systems. In general, one cannot use the same approach to directly study
nonlinear dynamical systems, although one can apply our approach to linearizations of them.

3.1. Linking process motifs to properties of dynamics on networks. Consider a linear
dynamical system

dxt

dt
= F(A)xt ,(3.1)

where xt is a column vector that describes the current system state and F is a matrix-valued
function of the adjacency matrix A of a network. The system has the initial state x0 = xt=0.
Observables of the linear dynamical system in (3.1) are functions of xt and F, and they are
thus functions of A and x0. (For systems at steady state or a system with identical initial
values x01 = x02 = x03 = \cdot \cdot \cdot , one can often remove the dependence on x0 and describe
functions of the dynamical system as functions of only A.) One can thus view a function of
the linear dynamical system (3.1) as a superposition of walks or a superposition of process
motifs on a network.

This view motivates the approach that we take in the present paper. We study how a
function of a linear dynamical system emerges via a superposition of process motifs, which
are structured sets of walks that occur on an associated network. After identifying relevant
process motifs for a given property of a dynamical system on a network, one can establish links
between dynamics on networks and network structure by identifying the structure motifs on
which the relevant process motifs occur. This approach results in (1) a set of structure motifs
that contribute to the desired system function and (2) an identification of the mechanisms by
which these structure motifs contribute to this function. When it is possible to quantify the
contribution of process motifs to a function of interest, one can also quantify the contribution
of structure motifs. In section 4, we demonstrate our approach by applying it to covariance
and correlation in the mOUP at steady state. In the remainder of this section, we explain
how we formalize links between process motifs and structure motifs.

3.2. Contributions of occurrences of process motifs and structure motifs. We now
discuss how we characterize the importance of motifs for a system property Y via contributions
of their occurrences. We first discuss two conceptually different notions of the contribution of
a motif to a system property. We then explain how one can express Y as a weighted sum of
counts of process motifs and as a weighted sum of counts of structure motifs.

3.2.1. Contributions of motifs. Consider a network (V,E) and a small structure motif
s. In Figure 6, we show an example network (V,E) and use a length-2 path as an example of
a small structure motif. In this example, there are five occurrences of s in (V,E). Consider a
scalar property Y = f(A) of a linear dynamical system on (V,E), where A is the adjacency
matrix of (V,E), and suppose that we know that every length-2 path in (V,E) has a contribu-
tion c = 2 to Y . Should we say that the contribution of the structure motif s to Y is 2 because
that is the contribution of each occurrence of s, or should we say that the contribution of s is
10 because the sum of the contributions of all occurrences of s is equal to 10? To distinguish
between these two notions of motif contributions, we refer to the contribution of each occur-
rence of a process motif or structure motif as the motif's contribution per occurrence, which
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(a) (b)

occurrence 1

occurrence 2

occurrence 3

occurrence 4

occurrence 5

Figure 6. Occurrences of structure motifs. In (a), we show an example network. In (b), we show a
structure motif, which is a length-2 path. This structure motif has five occurrences on the example network.
We use colored rectangles to indicate the edge sets of the structure-motif occurrences.

we shorten to ``o-contribution."" We refer to the sum of the contributions of all occurrences of
a process motif or structure motif in a network as the motif's contribution per network, which
we shorten to ``n-contribution."" The values of o-contributions depend both on the dynamical
system and on the system property Y . The values of n-contributions depend not only on the
dynamical system and the system property Y , but also on the network (V,E). We denote the
o-contribution of a structure motif s by cs and the n-contribution of that structure motif in a
network (V,E) by Cs. The two types of contributions are related by the equation

Cs = nscs ,

where ns is the count of s in (V,E). Similarly, the o-contribution bp of a process motif p is
related to the n-contribution Bp of p on (V,E) by the equation

Bp = npbp ,(3.2)

where np is the count of p on (V,E).
In the present paper, we focus on o-contributions of process motifs and structure motifs.

Our results are thus independent of network structure. For convenience, we will refer to
o-contributions simply as ``contributions"" in the remainder of our paper.

3.2.2. Contributions of process motifs and structure motifs. Consider a scalar property
Y = f(A) of a linear dynamical system on a network with adjacency matrix A. Assume that
we have identified the relevant process motifs p1, p2, . . . , pk and the real-valued contributions
bp1 , bp2 , . . . , bpk to Y . In a network on which pi has the count npi , we can compute Y by
calculating

Y =

k\sum 
i=1

bpinpi ,(3.3)

which is a weighted sum of the counts of process motifs.
There are several ways that one can define the contribution of a structure motif to Y . For

example, one can define the contribution cs of a structure motif s to be the real-valued sumD
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cs :=
\sum 
p\in Ps

bp(3.4)

of all contributions bp over the set Ps of all process motifs that occur on s. This association is
intuitive and allows fast computation of cs. For a linear dynamical system, one can compute
cs directly from cs = f(A\prime ), where A\prime is the adjacency matrix of the structure motif s. We
refer to cs as the total contribution of a structure motif to Y .

There are some disadvantages of using cs to characterize the importance of structure motifs
for Y . As we discussed in subsection 2.3, any process motif p occurs on many different structure
motifs. (In fact, the set Sp of structure motifs on which p occurs is infinite.) Therefore, one
cannot express Y as the sum

\sum 
i csinsi of structure-motif counts in a network because this

sum tends to overcount the contributions of many process motifs. Another disadvantage of
using cs to measure the importance of a structure motif for a system property Y is that total
contributions are hard to interpret. If all bpi > 0, large structure motifs tend to contribute
more to Y than small structure motifs because there tend to be more process motifs on large
structure motifs than on small structure motifs. Moreover, the total contribution cs of a
structure motif s depends strongly on the total contributions c\prime s of subgraphs s\prime of s because
all process motifs that occur on any s\prime can also occur on s. (For example, we demonstrate in
subsection 4.3 that when Y is either the steady-state covariance or the steady-state correlation
between two nodes in the mOUP, the total contribution cs of a structure motif with m edges
has a very large positive correlation with the mean total contribution \langle c\prime s\rangle m - 1 of subgraphs of
s with m - 1 edges.) Consequently, a large total contribution cs does not necessarily indicate
that s is important for Y . It may instead indicate that s is just a very large structure motif
and/or that s has subgraphs that are important for Y .

To address the above two issues, we propose a different definition of the contribution of
structure motifs to Y . The contribution \^cs of a structure motif s is the sum of the contributions
bp of process motifs p that occur on s but not on any subgraph of s. We refer to \^cs as the
specific contribution of a structure motif. One can express Y as the sum

Y =
\sum 
i

\^csinsi(3.5)

of weighted counts nsi of structure motifs si. A contribution \^cs of a structure motif s is
not necessarily larger than the contribution \^cs\prime of a subgraph s\prime of s. As we demonstrate in
section 4, the specific contribution \^cs tends to be smaller than the specific contributions \^cs\prime .
A drawback of using specific contributions to characterize the importance of structure motifs
for Y is that specific contributions are much harder to compute than total contributions. One
can compute the specific contribution of a structure motif s recursively using the equation

\^cs = cs  - 
\sum 
s\prime \subset s

\^cs\prime ,(3.6)

where we use s\prime \subset s to denote that s\prime is a proper subgraph of s. Alternatively, one can employ
the mean total contributions \langle c\rangle m\prime (where \langle \cdot \rangle m\prime denotes the mean over all structure motifs
with m\prime edges) of subgraphs of s with m\prime edges to compute \^cs. That is,D
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\^cs =
m\sum 

m\prime =1

\left\{   
\left[  \biggl( m

m\prime 

\biggr) \sum 
\bfq \in \scrQ (m - m\prime )

( - 1)| \bfq | q\~!

\right]  \langle c\rangle m\prime 

\right\}   ,(3.7)

where m is the number of edges in s, the set \scrQ (m - m\prime ) is the set of integer compositions6

of m - m\prime , and the sequence q = (q1, q2, . . . , qk) is an integer composition of m - m\prime with
k elements. In (3.7), we denote the number of elements in a sequence q by | q| and the
multinomial coefficient of a sequence q of integers by q\~!. We derive (3.7) in Appendix A. For
structure motifs with m > 2 edges, it is computationally easier to calculate \^cs from (3.7) than
from (3.6).

4. Covariance and correlation for the multivariate Ornstein--Uhlenbeck process. In
this section, we demonstrate our process-based approach to studying motifs in networks. As
examples, we examine steady-state covariance and steady-state correlation in the mOUP.
We derive contributions of process-motif occurrences and the total and specific contributions
of structure-motif occurrences to steady-state covariance and steady-state correlation in the
mOUP. We then discuss the relationship between (1) specific contributions of structure mo-
tifs and (2) network mechanisms that contribute to steady-state covariance and steady-state
correlation in the mOUP.

4.1. The Ornstein--Uhlenbeck process. Uhlenbeck and Ornstein [100] proposed a sto-
chastic process to describe Brownian motion under the influence of friction. The mOUP is a
popular model for coupled noisy systems, including neuronal dynamics [7], stock prices [51],
and gene expression [79]. In these studies, the mOUP with n variables describes the dynamics
on a network with n nodes, where the state of each node represents a neuron, the value of a
stock, or a gene-expression level.

One can describe the mOUP using the stochastic differential equation

dxt+dt = \theta (\epsilon A - I)xt dt+ \varsigma dWt ,(4.1)

where the column vector xt \in R
N describes the state of the process. The process has an

adjacency matrix A, which can be directed and/or weighted, and a multivariate Wiener
process Wt. The reversion rate \theta > 0, the noise strength \varsigma 2, and the coupling parameter \epsilon > 0
are parameters of the mOUP.

We consider a signal to be a (temporary) deviation of a node's state from its mean. The
coupling parameter \epsilon sets the rate at which a signal's amplitude increases or decreases when
it is transmitted from one node to another. The parameter \theta is the rate at which a signal's
amplitude increases or decreases with time. It thus determines the expected speed at which a
node's state reverts to its mean. Because of this connection between \theta and the speed of signal
decay in the mOUP, many researchers refer to \theta as the reversion rate of the mOUP [64, 81, 98].

If all eigenvalues of \epsilon A  - I have negative real parts, the mOUP has a single stationary
distribution. We then say that the mOUP is a process with signal decay because, in this
process, a signal's amplitude decreases with time. A sufficient condition for signal decay is

6An ``integer composition"" of a nonnegative number m is a sequence (q1, q2, . . . , qk) of positive integers such
that

\sum k
k\prime =1 qk\prime = m [23].D
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2532 ALICE C. SCHWARZE AND MASON A. PORTER

\rho (\epsilon A) < 1, where \rho (\cdot ) is the spectral radius. For any network with finite edge weights, the
mOUP in (4.1) is a process with signal decay if we choose \epsilon to be sufficiently small.

The mOUP with signal decay is a Markov process. Its stationary distribution is a mul-
tivariate normal distribution \scrN (0,\Sigma ) that is centered at \langle x\rangle = 0 with covariance matrix
\Sigma := \langle xtx

T
t \rangle [7], where we use angular brackets without a subscript to denote taking an

expectation. The mOUP with signal decay has the steady-state covariance matrix

\Sigma =
\varsigma 2

2\theta 

\infty \sum 
L=0

\infty \sum 
\ell =0

2 - L

\biggl( 
L

\ell 

\biggr) 
(\epsilon A)\ell (\epsilon AT )L - \ell .(4.2)

Barnett, Buckley, and Bullock [8] derived (4.2) for the mOUP with \theta = \varsigma = 1. In Appendix
B, we show that (4.2) also holds for arbitrary choices of \theta > 0 and \varsigma > 0.

In the following subsections, we derive and compare process motifs and structure motifs
for the covariance, variance, and correlation in the mOUP at steady state. In the remainder
of this section, we refer to steady-state covariance, steady-state variance, and steady-state
correlation as covariance, variance, and correlation, respectively.

4.2. Process motifs for covariance and correlation at steady state. We now derive
process motifs and process-motif contributions of covariance and correlation in the mOUP.

4.2.1. Process motifs for steady-state covariance. We introduce the shorthand notation

bL,\ell :=
\varsigma 2\epsilon L

2L+1\theta 

\biggl( 
L

\ell 

\biggr) 
(4.3)

and

NL,\ell := A\ell (AT )(L - \ell )(4.4)

to write

\Sigma =
\infty \sum 

L=0

L\sum 
\ell =0

bL,\ell NL,\ell .(4.5)

The (i, j)th element of NL,\ell corresponds to a count np of process motifs p for the covariance
between nodes i and j. The matrix NL,\ell is not necessarily symmetric. However, the (i, j)th
element of NL,\ell is equal to the (i, j)th element of NL,L - \ell .

Equation (4.5) indicates that one can compute covariance in the mOUP as a weighted
sum of counts of process motifs. A process motif that contributes to the covariance between
nodes i and j is a walk graph with three nodes and two edges. Two of the walk-graph nodes
correspond to nodes i and j in the network. We refer to these walk-graph nodes as the focal
nodes of this process motif. All process motifs for covariance also include a third walk-graph
node, which we call the ``source node"" and which can correspond to any node in a network.
Each edge in this process motif corresponds to a walk from the source node to one of the
two focal nodes. We show a diagram of a process motif that contributes to covariance in
Figure 7(a). One can characterize a process motif of this form using the two parameters
L \in \{ 0, 1, 2, . . . \} and \ell \in \{ 0, . . . , L\} . The parameter L is the length of a process motif, and
the parameter \ell is the length of the walk from the source node to node i. The contribution ofD
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ji

L− ``

(a)

i

` L− `

(b)

Li,1 − `i,1

`i,1

Lj,1 − `j,1

`j,1

`j,2

Lj,2 − `j,2

ji

L0 − `0`0

(c)

Figure 7. Process motifs for (a) covariance, (b) variance, and (c) correlation in the mOUP at steady state.

each process motif to covariance is bL,\ell . It depends on the parameters L and \ell of the process
motif and on the parameters \epsilon , \varsigma , and \theta of the mOUP.

The process motifs for covariance are consistent with properties of covariation in a system
of coupled random variables. A covariance \sigma ij measures the joint ``variability"" of two random
variables xi and xj [75], where we take variability to signify a variable's deviation from its
mean. Joint variability of xi and xj can arise from several causes [74]:

1. Variability in xi induces variability in xj if there is a path from node i to node j.
2. Variability in xj induces variability in xi if there is a path from node j to node i.
3. Variability in a third variable xk induces variability in both xi and xj if there are paths

from k to i and from k to j.
We now compare the contributions of different process motifs to covariance. In Figure 8,

we show the contributions bL,\ell of process motifs to covariance. The length L increases along
the diagonal from the bottom left to the top right. We indicate the parameters with the
largest contributions for each value of L using bold labels and delineate them with yellow
line segments. For even L, the contributions are maximal when \ell = L/2. For odd L, the
contributions are maximal when \ell = (L \pm 1)/2. Comparing the contributions of process
motifs of different lengths, we find that short process motifs (see the bottom left of Figure 8)
tend to contribute more to covariance than long process motifs. These results are consistent
with the notion that covariance and correlation should decay with the distance that a signal
travels [9]. The result that a process motif with \ell = L/2 contributes more to covariance than
any other process motif with the same length L is consistent with the notion that a signal that
reaches two nodes i and j at the same time contributes more to the covariance or correlation
between i and j than signals that reach i and j at different times.

4.2.2. Process motifs for steady-state variance. A diagonal element of \Sigma indicates the
variance of a node in the mOUP. By merging the focal nodes in Figure 7(a), one obtains the
process motifs that contribute to the variance of a node i (see Figure 7(b)). Such a process
motif has two nodes and two edges. It has a source node and a single focal node i, and each
of its edges corresponds to a walk from the source node to node i.

We write

\Sigma =
\varsigma 2

2\theta 
I+\Sigma (1+) ,(4.6)
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0
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Figure 8. Contributions bL,\ell of process motifs to the steady-state covariance with parameters (L, \ell ) for the
mOUP with \theta = 1, \varsigma = 1, and \epsilon = 0.49. The parameter \ell specifies the length of one walk in the process motif.
The length \ell \prime := L  - \ell is the length of the other walk in the process motif (see Figure 7(a)). The length L
increases along the diagonal from the bottom left to the top right. We indicate the parameters that give the
largest contributions for each value of L using bold labels and delineate them with yellow line segments.

where

\Sigma (1+) :=
\infty \sum 

L=1

L\sum 
\ell =0

bL,\ell NL,\ell ,(4.7)

to separate the intrinsic variance contribution \varsigma 2

2\theta I (which is independent of a network's struc-

ture) from structure-dependent variance contributions \Sigma (1+) (which includes all terms of (4.5)
that are O(\epsilon k) with k \geq 1). We interpret the two terms in (4.6) as indicators of two mecha-
nisms by which variance arises in the mOUP:

1. Gaussian white noise in each node induces the 0th-order contribution to variance. This
effect contributes a value of \varsigma 2/(2\theta ) to the variance of the state variable xi at each
node i. This contribution is determined by the noise strength \varsigma and the reversion rate
\theta . It is independent of a network's structure.

2. The variance of a state variable xi exceeds its noise-induced base value of \varsigma 2/(2\theta ) when
it receives input from other nodes via in-edges or from itself via a self-edge. For a node
i, these network-dependent contributions are large when there are many occurrences
of variance-increasing process motifs in which node i is a focal node. This is the case
when node i is part of many cycles in a network or when many redundant paths or
trails in a network connect other nodes to node i. Intuitively, cycles can reinforce the
variance of the state of a node i. Redundant paths or trails that lead to node i can
amplify the input that i receives from other nodes.D
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4.2.3. Process motifs for steady-state correlation. The elements rij of the correlation
matrix R are given by

rij := \sigma ij/
\surd 
\sigma ii\sigma jj .(4.8)

To replace the square root in the denominator of (4.8), we use the Taylor-series expansion

1\surd 
x
=

\infty \sum 
k=0

( - 1)k

2 \cdot 4k
\biggl( 
2k

k

\biggr) 
x
 - 2k+1

2
0 (x - x0)

k ,(4.9)

which we obtain from expanding about the point x0 > 0. The radius of convergence of the
expansion (4.9) is x0. We set x0 = \varsigma 2/(2\theta ) and use the expansion (4.9) for 1/

\surd 
\sigma ii and 1/

\surd 
\sigma jj

in (4.8) to obtain

rij =
2\theta 

\varsigma 2
\sigma ij

\infty \sum 
k1=0

\infty \sum 
k2=0

\biggl( 
 - \theta 

2\varsigma 2

\biggr) k1+k2 \biggl( 2k1
k1

\biggr) \biggl( 
2k2
k2

\biggr) \biggl( 
\sigma ii  - 

\varsigma 2

2\theta 

\biggr) k1 \biggl( 
\sigma jj  - 

\varsigma 2

2\theta 

\biggr) k2

=
2\theta 

\varsigma 2
\sigma ij

\infty \sum 
k1=0

\infty \sum 
k2=0

\biggl( 
 - \theta 

2\varsigma 2

\biggr) k1+k2 \biggl( 2k1
k1

\biggr) \biggl( 
2k2
k2

\biggr) \Bigl( 
\sigma 
(1+)
ii

\Bigr) k1\Bigl( 
\sigma 
(1+)
jj

\Bigr) k2
,(4.10)

where \sigma 
(1+)
ii and \sigma 

(1+)
jj are elements of \Sigma (1+) (see (4.7)). Equation (4.10) is a valid expression

for rij whenever the sums in (4.10) converge. Whenever (4.10) converges, we say that the
mOUP has short-range signal decay. A sufficient condition for short-range signal decay is
\| \epsilon A\| 2 < 1/2, where \| \cdot \| 2 denotes the Hilbert--Schmidt norm. When A is the adjacency
matrix of a strongly connected network with nonnegative edge weights, another sufficient
condition for short-range signal decay is \rho (\epsilon A) < 1/2. We derive these sufficient conditions
for short-range signal decay in Appendix C.

From (4.7), we see that one can express \sigma 
(1+)
ii as a sum over the two indices L and

\ell . Consequently, one can express the kth power of \sigma 
(1+)
ii as a sum over the 2k indices

L1, \ell 1, L2, \ell 2, . . . , Lk, \ell k. We use the multisets

\phi i := \{ (Li,1, \ell i,1), (Li,2, \ell i,2), . . . , (Li,k1 , \ell i,k1)\} ,
\phi j := \{ (Lj,1, \ell j,1), (Lj,2, \ell j,2), . . . , (Li,k2 , \ell i,k2)\} 

of pairs of indices to write

rij =
2\theta 

\varsigma 2
\sigma ij

\sum 
\phi i,\phi j

\left\{   
\biggl( 
 - \theta 

2\varsigma 2

\biggr) | \phi i| +| \phi j | \biggl( 2| \phi i| 
| \phi i| 

\biggr) \biggl( 
2| \phi j | 
| \phi j | 

\biggr) 

\times 

\left[  | \phi i| \prod 
k\prime =1

bLi,k\prime ,\ell i,k\prime (NLi,k\prime ,\ell i,k\prime )ii

\right]  \left[  | \phi j | \prod 
k\prime =1

bLj,k\prime ,\ell j,k\prime (NLj,k\prime ,\ell j,k\prime )jj

\right]  \right\}   ,

where | \phi i| denotes the number of pairs in \phi i. We use
\sum 

\phi i,\phi j
to denote the double summation

over all possible multisets of pairs (L, \ell ) of nonnegative integers with \ell \leq L. We can thus
express a correlation as a weighted sum of counts of process motifs:D
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Figure 9. Contributions bL0,\ell 0,\phi i,\phi j of process motifs to steady-state correlation with parameters
(L0, \ell 0, \phi i, \phi j) for the mOUP with \theta = 1, \varsigma = 1, and \epsilon = 0.49. We show the contributions of correlation
process motifs that consist of a covariance process motif between node i and node j, a number ni of variance
process motifs at node i, and a number nj of variance process motifs at node j. All of the process motifs for
variance and covariance have parameter values of L = 2 and \ell = 1.

rij =
\sum 

L0,\ell 0,\phi i,\phi j

bL0,\ell 0,\phi i,\phi j
NL0,\ell 0,\phi i,\phi j

,

where

bL0,\ell 0,\phi i,\phi j
:=

2\theta 

\varsigma 2

\sum 
\phi i,\phi j

\biggl( 
 - \theta 

2\varsigma 2

\biggr) | \phi i| +| \phi j | \biggl( 2| \phi i| 
| \phi i| 

\biggr) \biggl( 
2| \phi j | 
| \phi j | 

\biggr) 
bL0,\ell 0

\prod 
(L,\ell )\in \phi i

bL,\ell 
\prod 

(L,\ell )\in \phi j

bL,\ell (4.11)

and

NL0,\ell 0,\phi i,\phi j
:= (NL0,\ell 0)ij

\prod 
(L,\ell )\in \phi i

(NL,\ell )ii

\prod 
(L,\ell )\in \phi j

(NL,\ell )jj .

The parameters L0 and \ell 0 and the parameter sets \phi i and \phi j characterize a process motif for
correlation. A process motif for correlation consists of a process motif for covariance with
focal nodes i and j, a number | \phi i| \geq 0 of process motifs for variance with positive length
and focal node i, and a number | \phi j | \geq 0 of process motifs for variance with positive length
and focal node j. We show a diagram of a process motif that contributes to correlation in
Figure 7(c). Both | \phi i| and | \phi j | can be equal to 0, so process motifs for covariance are also
process motifs for correlation.

A contribution bL0,\ell 0,\phi i,\phi j
has a real nonzero value. Although all process motifs for corre-

lation affect correlation, not all process motifs for correlation contribute positively to corre-
lation. The magnitude of bL0,\ell 0,\phi i,\phi j

is proportional to the contributions bL,\ell of the included
process motifs for variance and covariance. One can construct process motifs for correlationD
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with large contributions bL0,\ell 0,\phi i,\phi j
from process motifs for variance and covariance with large

contributions bL,\ell .
To illustrate the effect of the number of included variance process motifs on the contri-

bution of a process motif to correlation, we show contributions of different process motifs to
correlation in Figure 9. The sign of bL0,\ell 0,\phi i,\phi j

is positive when the number of included process
motifs for variance is even, and it is negative when the number is odd. The magnitude of
bL0,\ell 0,\phi i,\phi j

decreases as one adds more process motifs for variance at either of the two focal
nodes (i and j). For a given process-motif length, the process motifs that contribute most
to correlation are process motifs that do not include any process motifs for variance and are
thus identical to process motifs for covariance. The process motifs with the largest negative
contribution to correlation consist of a process motif for covariance and one process motif for
variance at one of the focal nodes.

These results match the intuition that (1) the correlation between two nodes i and j
should increase with increasing covariance between i and j and (2) the correlation between
them should decrease with increasing variance at either i or j. The checkerboard structure of
positive and negative contributions in Figure 9 arises because of the Taylor-series expansion
for 1/

\surd 
x in (4.9). The summands in (4.9) have alternating signs, and under the assumption

of short-range signal decay, the absolute values of the summands strictly decrease with k. In
our derivation of bL0,\ell 0,\phi i,\phi j

, we applied (4.9) twice (once for 1/
\surd 
\sigma ii and once for 1/

\surd 
\sigma jj).

This approach led to a sum over two indices, k1 and k2, where k1 corresponds to the number
of variance process motifs at node i and k2 corresponds to the number of variance process
motifs at node j. Consequently, the sign of each summand in (4.11)---and thus the sign of
a process-motif contribution---depends on the sum k1 + k2 (which is equal to | \phi i| + | \phi j | in
(4.11)); it alternates as one increases k1 while keeping k2 fixed (and vice versa). The absolute
values of the contributions decrease with k1+k2, because short-range signal decay guarantees
that the absolute values of the summands strictly decrease with increasing k1 for any fixed k2
and strictly decrease with increasing k2 for any fixed k1.

4.3. Contributions of structure motifs to covariance and correlation at steady state.
We now link the process motifs from subsection 4.2.1 to network structure. In subsection 3.2,
we defined the total contribution cs of a structure motif s as the sum of all contributions bp
of all process motifs p that occur on s (see (3.4)) and the specific contribution \^cs as the sum
of all contributions bp of process motifs p that occur on s but not on any subgraph of s (see
(3.6)). For graphlets of up to six edges, we compute the total contributions and the specific
contributions to covariance and correlation in the mOUP at steady state. We demonstrate
that one can explain most of the variation in the total contributions of structure motifs using
the total contributions of their subgraphs. We then use the specific contributions of structure
motifs to infer mechanisms by which network structure can contribute to covariance and
correlation in the mOUP, and we compare the efficiencies of these mechanisms.

4.3.1. Total contributions of structure motifs to steady-state covariance. In Figure 10,
we show the m-edge structure motifs with the three largest total contributions to covariance
for m \in \{ 1, 2, . . . , 6\} . (Readers can explore the total and specific contributions of additional
structure motifs using the Jupyter notebook in the supplementary materials [1].) There are
many aspects of the structure motifs for covariance and their total contributions that oneD
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Figure 10. Structure motifs that have the largest total contribution cs to the steady-state covariance between
nodes i and j in the mOUP (see (4.1)) with \theta = 1, \varsigma = 1, and \epsilon = 0.49. To ensure that all adjacency matrices
satisfy \| \bfA \| \leq 1, we normalize each adjacency matrix by multiplying it by 1/

\surd 
6. We round the displayed values

of cs to three decimal places. Each panel with a peach background shows an m-edge structure motif that is a
supergraph of the (m - 1)-edge structure motif with the largest total contribution.

can explore. We focus on two results: (1) one can explain almost the entire variation in cs
for structure motifs with m edges using the mean total contribution \langle cs\prime \rangle m - 1 of subgraphs
with m  - 1 edges, and (2) process motifs are helpful for explaining salient properties of the
structure motifs in Figure 10.

Total contributions of subgraphs explain a large portion of the variation in the total contribu-
tions of structure motifs. From Figure 10, we see that, at least up to m = 6, the three structure
motifs with the largest total contributions are almost always supergraphs of the (m - 1)-edge
structure motif with the largest total contribution. This observation suggests that the total
contributions of the subgraphs of a structure motif s have a strong influence on the total
contribution of s. To investigate the relationship between the total contributions of structure
motifs and the total contributions of their subgraphs, we compute the Pearson correlation
coefficient between cs of structure motifs with m edges and the mean total contribution of
their subgraphs with m - 1 edges. We show the correlation coefficients in Table 1. We observe
that one can explain almost all of the variation in cs using \langle cs\prime \rangle m - 1. All of the correlation
coefficients in Table 1 are very large, and they increase with the number m of edges and
decrease with the mOUP coupling parameter \epsilon .

To explain the large positive correlation between cs and \langle cs\prime \rangle m - 1, we recall our discussion
of the relationship between the total contributions of a structure motif and the total contribu-
tions of its subgraphs (see subsection 3.2). Many process motifs that contribute to the total
contribution cs of a structure motif s do not use all edges in s and are thus process motifsD
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Table 1
Pearson correlation coefficients between the total contributions cs of m-edge structure motifs to steady-state

covariance in the mOUP and the mean total contributions \langle cs\prime \rangle m - 1 of subgraphs with m - 1 edges for different
values of the mOUP coupling parameter \epsilon . For all of the coefficients that we show, the p-values are less than
10 - 17.

m
Covariance Correlation

\epsilon = 0.1 \epsilon = 0.49 \epsilon = 0.1 \epsilon = 0.49

2 0.9985 0.9464 0.9993 0.9806
3 0.9998 0.9932 0.9999 0.9966
4 0.9999 0.9981 > 0.9999 0.9990
5 > 0.9999 0.9993 > 0.9999 0.9996
6 > 0.9999 0.9996 > 0.9999 0.9998

that also occur on subgraphs of s. Only process motifs that use every edge in s cannot occur
on any of the proper subgraphs of s. For a structure motif with m edges, such a process motif
has to have a length of L \geq m. We observe slightly decreasing correlation coefficients with
increasing \epsilon because the contributions of long process motifs (e.g., process motifs with L \geq m)
increase faster with \epsilon than those of short process motifs.

Process motifs explain the properties of structure motifs with large total contributions. In 13
of the 16 structure motifs in Figure 10, the focal nodes are connected bidirectionally. Twelve
of the structure motifs in Figure 10 have self-edges. We first explain the high frequency of
structure motifs that have self-edges at focal nodes. Consider a structure motif s that does
not have a self-edge at either focal node. The inclusion of a self-edge at a focal node in s
yields a structure motif s\prime \prime that is a supergraph of s. Because s\prime \prime is a supergraph of s, every
process motif that occurs on s can also occur on s\prime \prime . Additionally, for every length-L process
motif that occurs on s, there exist at least two process motifs of length L+ k on s\prime \prime for each
k \in \{ 1, 2, 3, . . . \} . To illustrate the effect of including a self-edge in a structure motif, we show
a simple example of a structure motif s and a corresponding supergraph s\prime \prime with a self-edge in
Figure 11. In panel (a), we show the only occurrence of the only covariance process motif that

(i, j)

(i)

ji

(a)

(i, j)

(i, i)

ji

(b)

(i, i, j)

(i)

ji

(c)

(i, i, j)

(i, i)

ji

(d)

Figure 11. The effect of including a self-edge in a structure motif. In (a), we show a structure motif s
with one edge. The curved green edges indicate the only occurrence of the only process motif for covariance
that occurs on s. In (b)--(d), we show a supergraph of s with a self-edge at node i. In each panel, the labeled
green curved arrows indicate an occurrence of one of the many process motifs for covariance that occur on the
depicted graph but not on s. All of the process motifs that occur include one walk from i to i and one walk from
i to j. The process motifs differ in the number of times that their walks visit i and/or j.D
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(i, j)
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(i)

ji
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(i, j, i, j)

(i, j, i)

ji

(d)

Figure 12. The effect of including a bidirectional edge in a structure motif. In (a), we show a structure
motif s with one edge. The curved green edges indicate the only occurrence of the only process motif for
covariance that occurs on s. In (b)--(d), we show a supergraph of s with an edge (j, i). In each panel, the
labeled green curved arrows indicate an occurrence of one of the many process motifs for covariance that occur
on the depicted graph but not on s. The example process motifs in this figure include one walk from i to i and
one walk from i to j. The process motifs differ in the number of times that their walks visit i and/or j.

occurs on s. The process motif has length 1. In panels (b) and (c), we show the occurrences
of the two process motifs of length 2 that occur on s\prime \prime . In panel (d), we show an occurrence
of one of the length-3 process motifs that occur on s\prime \prime .

To explain the high frequency of structure motifs with bidirectionally adjacent focal nodes,
we start with a structure motif s with a unidirectional edge (i, j) between focal nodes i and j.
Adding the edge (j, i) to s yields a structure motif s\prime \prime that is a supergraph of s and includes
bidirectional coupling between its focal nodes. Because s\prime \prime is a supergraph of s, every process
motif that occurs on s can also occur on s\prime \prime . For every process motif of length L on s, there
also exist at least two process motifs of length L + 2k for k = 1, 2, 3, . . . . We illustrate the
effect of including a bidirectional edge in a structure motif in Figure 12. In panel (a), we again
show the structure motif from the example in Figure 11 and the occurrence of the length-1
process motif that is the only covariance process motif that occurs on s. In panels (b) and
(c), we show the occurrences of the two process motifs of length 3 that occur on s\prime \prime . In panel
(d), we show an occurrence of one of the length-5 process motifs that occur on s\prime \prime .

The high frequencies of self-edges and edges between focal nodes in the structure motifs
that contribute the most to covariance and correlation suggest that signal transmission via
short paths between focal nodes and signal amplification via short cycles are important for
mechanisms by which network structure can contribute to covariance in the mOUP.

4.3.2. Specific contributions of structure motifs to steady-state covariance. In sec-
tion 3, we proposed to separate the total contribution of a structure motif s into a large
portion that one can attribute to subgraphs of s and a small portion that one cannot attri-
bute to subgraphs of s. The small portion \^cs is the specific contribution of s. The specific
contribution of the structure motif with one edge indicates the covariance contribution of a
single edge. The specific contributions of structure motifs with two edges indicate the covari-
ance contribution of a pair of edges minus the individual specific contributions of each of the
two edges. Whenever the specific contribution of a structure motif is positive, the structure
motif indicates a mechanism or a combination of mechanisms by which network structure can
enhance covariance.D
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Figure 13. Structure motifs with one or two edges and their specific contributions \^cs to covariance in the
mOUP (see (4.1)) with \theta = 1, \varsigma = 1, and \epsilon = 0.49. To ensure that all adjacency matrices satisfy \| \bfA \| \leq 1,
we normalize each adjacency matrix by multiplying it by 1/

\surd 
6. We round the displayed values of \^cs to three

decimal places. Panels (a)--(g) have blue backgrounds and show structure motifs with a positive \^cs.

Structure motifs with \^cs > 0 indicate mechanisms for structure-based enhancement of steady-
state covariance. In Figure 13, we show structure motifs with one or two edges and their specific
contributions to covariance. Panels (a)--(g) have blue backgrounds and show structure motifs
with positive specific contributions. These structure motifs indicate mechanisms for enhancing
covariance in the mOUP. In panel (h), we show a two-component graphlet, which is not a
structure motif. We include this graphlet because it is helpful for discussing the mechanisms
by which network structure can contribute to covariance in the mOUP. The positive specific
contributions of the structure motifs in panels (a) and (e) indicate that signal transmission
via short paths from one focal node to the other can increase covariance. The positive specific
contributions of the structure motifs in panels (b) and (d) indicate that signal amplification via
a length-1 cycle can increase covariance when combined with a path for signal transmission
between focal nodes. The specific contribution of the small graph in panel (h) is 0; this
indicates that signal amplification at a focal node does not increase covariance if there is no
path between the focal nodes. In panel (f), the bidirectional edge between focal nodes enables
signal transmission from either focal node to the other. It also creates a 2-cycle at each focal
node. The positive specific contributions of the structure motifs in panels (c) and (g) indicate
that signal transmission from a nonfocal node can contribute to covariance. Comparing panels
(c) and (g) to panel (k), we see that a positive \^cs requires the existence of paths from the
nonfocal node to both focal nodes. The 0 contributions of the structure motifs in panels
(i), (j), and (l) indicate that paths from focal nodes to other nodes are not relevant to the
covariance between focal nodes.

From these observations, we conclude that two mechanisms for increasing covariance in the
mOUP are (1) signal transmission via one or more paths from one focal node to another and (2)
signal transmission via paths from a nonfocal node to both focal nodes. Other mechanisms
for increasing covariance in the mOUP are combinations of signal transmission via paths
between focal nodes and signal transmission from nonfocal nodes. Such mechanisms can also
be combinations of either or both mechanisms 1 and 2 with signal amplification via short
cycles at focal nodes or other nodes.D
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Specific contributions indicate the efficiencies of mechanisms. Thus far, we have used specific
contributions to distinguish structure motifs that contribute to covariance (i.e., structure
motifs with \^cs > 0) from structure motifs that do not (i.e., structure motifs with \^cs = 0). We
can use the value of specific contributions to define a measure of mechanism efficiency. For a
structure motif with m edges and specific contribution \^cs, we define the efficiency

\eta := \^cs/m .

From Figure 13, we see that specific contributions and thus \eta tend to decrease with the
number of edges in a structure motif. The mechanisms with large efficiencies tend to be asso-
ciated with small structure motifs. The structure motif with the largest specific contribution
to covariance (see Figure 13(a)) indicates direct signal transmission (i.e., signal transmission
via a length-1 path) as a mechanism for increasing covariance. The associated efficiency is
\eta \approx 0.1. All other mechanisms have much smaller efficiencies than direct signal transmission.
For example, signal transmission via a length-2 path (see Figure 13(e)) has an efficiency of
\eta \approx 0.005; mechanisms that use longer paths have even smaller efficiencies.

When the two focal nodes are connected by a single directed path, one can think of
the focal node with positive out-degree as the ``sender"" node and the node with positive
in-degree as the ``receiver"" node. The second-most efficient mechanism is a combination of
direct signal transmission and signal amplification via a length-1 cycle at the sender node
(see Figure 13(b)). This mechanism has an efficiency of \eta \approx 0.02. The efficiency of direct
signal transmission with signal amplification via a length-1 cycle at the receiver node (see
Figure 13(d)) has an efficiency of \eta \approx 0.005, which is almost four times smaller than the
efficiency of the mechanism in Figure 13(b). Transmission of signals from a third node to
both focal nodes via length-1 paths (see Figure 13(c)) has an efficiency of \eta \approx 0.01.

Matching motifs give a heuristic way to explain specific contributions. For mechanisms that
are associated with 1-edge and 2-edge structure motifs, one can explain the ranking of specific
contributions using matching process motifs. If a process motif p contributes to the specific
contribution \^cs of s, it uses each edge in s at least once; otherwise, it would contribute to
the specific contribution of a proper subgraph of s and not to the specific contribution of s.
The contributions of process motifs tend to decrease with their length. Therefore, the largest
contributions of process motifs to \^cs come from matching process motifs of s. One can use
the sum

\gamma s :=
\sum 
p\in P \ast 

S

bp

of contributions of matching process motifs as a heuristic for estimating \^cs. We show the Pear-
son correlation coefficients between \^cs and \gamma s for different structure-motif lengths in Table 2.
As a comparison, we also consider a heuristic \gamma \prime s = maxp\in P \ast 

S
bp that uses only the contribution

of a matching process motif that contributes the most to covariance. We observe that there
is a large positive correlation between \^cs and \gamma s for all considered structure-motif lengths.
The heuristic \gamma s is correlated most strongly with \^cs when \epsilon is small and m is large (i.e.,
m \in \{ 4, 5, 6\} ). The heuristic \gamma \prime s has a large positive correlation with \^cs for m = 2. However, for
m \geq 3, as we consider progressively larger structure motifs, the Pearson correlation coefficient
between \^cs and \gamma \prime s decreases. For m \in \{ 4, 5, 6\} , the Pearson correlation coefficient between \gamma \prime sD
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Table 2
Pearson correlation coefficients between each of the heuristics \gamma s and \gamma \prime 

s and the specific contribution \^cs of
m-edge structure motifs to steady-state covariance in the mOUP with coupling parameter \epsilon . For all of these
Pearson correlation coefficients, the p-values are less than 0.024.

m
\gamma s \gamma \prime 

s

\epsilon = 0.1 \epsilon = 0.49 \epsilon = 0.1 \epsilon = 0.49

2 0.672 0.791 0.825 0.875
3 0.891 0.923 0.925 0.892
4 0.975 0.860 0.907 0.754
5 0.993 0.892 0.854 0.730
6 0.994 0.828 0.811 0.612

and \^cs is smaller than the Pearson correlation coefficient between \gamma s and \^cs. This difference
between the two heuristics demonstrates that it is important to consider all matching process
motifs (instead of only one matching process motif) for structure motifs with more than two
edges.

4.3.3. Specific contributions of structure motifs to steady-state correlation. We demon-
strated in subsection 4.3.2 that the specific contributions of structure motifs convey covariance-
enhancing mechanisms more clearly than total contributions. In this subsection, we focus on
the specific contributions of structure motifs to correlation in the mOUP. In Figure 14, we
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Figure 14. Structure motifs that have the largest specific contributions \^cs to the steady-state correlation
between nodes i and j in the mOUP (see (4.1)) with \theta = 1, \varsigma = 1, and \epsilon = 0.49. To ensure that all adjacency
matrices satisfy \| \bfA \| \leq 1, we normalize each adjacency matrix by multiplying it by 1/

\surd 
6. We round the

displayed values of \^cs to five decimal places. Each panel with a peach background shows an m-edge structure
motif that is a supergraph of the (m - 1)-edge structure motif with the largest specific contribution \^cs.D
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ĉs = 0.000(h)

i

j
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Figure 15. Structure motifs with one or two edges and their specific contributions \^cs to the steady-state
correlation in the mOUP (see (4.1)) with \theta = 1, \varsigma = 1, and \epsilon = 0.49. To ensure that all adjacency matrices
satisfy \| \bfA \| \leq 1, we normalize each adjacency matrix by multiplying it by 1/

\surd 
6. We round the displayed values

of \^cs to three decimal places. Panels (a)--(e) show structure motifs with a positive \^cs and have blue backgrounds.
Panels (j)--(l) show structure motifs with a negative \^cs and have pink backgrounds.

show the m-edge structure motifs with the three largest specific contributions to correlation
for m \in \{ 1, 2, . . . , 6\} . Readers can explore the total and specific contributions of additional
structure motifs using the Jupyter notebook in the supplementary materials [1].

Network structure can increase or decrease steady-state correlation. In Figure 15, we show
structure motifs with one or two edges along with their specific contributions to correlation in
the mOUP. Negative specific contributions to correlation in the mOUP indicate that there are
mechanisms by which network structure can decrease the correlation between two nodes in the
mOUP. The structure motifs with negative \^cs for correlation include structure motifs with a
specific contribution of 0 to covariance. An example is the structure motif in Figure 15(j). Its
specific contribution to covariance is \^cs = 0, from which we concluded in subsection 4.3.2 that
signal transmission from a nonfocal node to only one focal node does not increase covariance
in the mOUP. The same structure motif has a negative specific contribution to correlation
in the mOUP. From this negative specific contribution, we conclude that signal transmission
from a nonfocal node to a single focal node can decrease correlation in the mOUP.

The decrease in correlation via this mechanism arises because of the normalizing factor
1/

\surd 
\sigma ii\sigma jj in the definition of the correlation coefficient rij (see (4.8)). Signal transmission

from nonfocal nodes to a single focal node increases the variance at that focal node without
increasing the covariance between the two focal nodes. The correlation between two nodes
i and j is inversely proportional both to the variance at node i and to the variance at node
j. Consequently, an increase of variance at one focal node without a compensating increase
of the covariance between the two focal nodes leads to a decrease of the correlation between
them. Intuitively, the states of two nodes i and j cannot be perfectly correlated if node i also
receives and responds to signals from nodes other than j. The more such signals that node i
receives, the weaker its correlation with j.

The structure motifs with negative \^cs for correlation also include structure motifs that
have a positive \^cs for covariance. An example is the structure motif in Figure 15(l). In
subsection 4.3.2, we concluded that direct signal transmission with signal amplification atD
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its receiver node is a mechanism by which network structure can increase covariance in the
mOUP. From the structure motif's negative specific contribution to correlation, we conclude
that (by the same mechanism) network structure can decrease correlation in the mOUP.

To give an intuitive explanation of the qualitative and quantitative differences in efficiency
of direct signal transmission with amplification at a structure motif's sender node and receiver
node, we contrast the effect of an amplifier at a sender and at a receiver in a system with
additive noise. On one hand, amplifying a signal at a sender node increases the amplitude of
the signal, improves the signal-to-noise ratio at a receiver node, and thus leads to an increase
of covariance and correlation between the sender node and the receiver node (see Figures 13(b)
and 15(c)). On the other hand, amplifying a signal at a receiver node increases the amplitude
of the signal and the noise at the receiver. Therefore, signal amplification at the receiver
does not change the signal-to-noise ratio at the receiver node and hence does not increase the
correlation between the sender node and the receiver node. It does lead to a small increase of
covariance (see Figure 13(d)) and a small decrease of correlation (see Figure 15(l)) between
the two nodes through increases in the amplitudes of the signal and the noise (and hence of
the variance) at the receiver node.

The influence of variance leads to different rankings of mechanisms for covariance and corre-
lation. For some structure motifs, the specific contributions to covariance and correlation are
almost identical. For example, the structure motif in Figure 15(a) has \^cs \approx 0.100 for covari-
ance and \^cs \approx 0.098 for correlation. Another example is the structure motif in Figure 15(b).
It has \^cs \approx 0.02 for covariance and \^cs \approx 0.019 for correlation. For other structure motifs,
the specific contributions to correlation are much smaller than their specific contributions to
covariance. For example, the structure motif in Figure 15(c) has \^cs \approx 0.039 for covariance
and \^cs \approx 0.01 for correlation. Some structure motifs have a nonnegative specific contribution
to covariance but a negative specific contribution to correlation. For example, we discussed
earlier in this subsection that the structure motif in Figure 15(j) has a specific contribution of
0 to covariance but a negative specific contribution to correlation. We also discussed that the
structure motif in Figure 15(l) has \^cs \approx 0.011 for covariance but \^cs \approx  - 0.011 for correlation.

These differences between the specific contributions to covariance and correlation are re-
lated to the process motifs for variance at focal nodes. Structure motifs on which few process
motifs for focal-node variance occur tend to have very similar specific contributions to co-
variance and correlation. Examples of such structure motifs are the ones in Figure 15(a, b).
For other structure motifs, the specific contributions to covariance and correlation are very
different from each other because many process motifs for variance at focal nodes occur on
them. The structure motif in Figure 15(c) is an example of such a structure motif.

Because of these differences, ranking structure motifs by their specific contributions to
covariance leads to a different order than ranking structure motifs by their specific contribu-
tions to correlation. Consequently, rankings that are based on the efficiencies of the associated
mechanisms are also different.

Increasing the in-degree of a receiver node reduces steady-state correlation in locally tree-like
networks. The structure motifs in Figure 15(e, g, h, j) include a directed edge between focal
nodes and an in-edge or out-edge at the sender node or the receiver node. We use these
structure motifs and their specific contributions to correlation to study the effect of increasing
the in-degree or out-degree of focal nodes on correlation in a locally tree-like network [58].D
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Because we are considering locally tree-like networks, we assume that neighbors of a node are
not neighbors of each other. We also assume that we can neglect structure motifs with more
than two edges because such structure motifs tend to have very small specific contributions
(see Figure 14). Under these assumptions, we make the following observations:

1. an increase of the in-degree of a sender node leads to an increase of the count of the
structure motif in Figure 15(e) but of no other structure motifs;

2. an increase of the out-degree of a sender node leads to an increase of the count of the
structure motif in Figure 15(g) but of no others;

3. an increase of the in-degree of a receiver node leads to an increase of the count of the
structure motif in Figure 15(h) but of no others; and

4. an increase of the out-degree of a receiver node leads to an increase of the count of
the structure motif in Figure 15(j) but of no others.

One can infer the effect of increasing the in-degree or increasing the out-degree of a sender
node or a receiver node from the specific contributions of these structure motifs. Increasing the
out-degree of a sender node (see Figure 15(g)) or a receiver node (see Figure 15(f)) does not
affect the correlation between the sender and the receiver. Increasing the in-degree of a sender
node (see Figure 15(e)) leads to an increase of the correlation (to \eta \approx 5 \cdot 10 - 4). Increasing
the in-degree of a receiver node (see Figure 15(j)) leads to a decrease of the correlation (to
\eta \approx  - 10 - 3).

When two focal nodes are connected bidirectionally, one cannot distinguish between a
sender node and a receiver node. Increasing the in-degree of either focal node increases the
counts of the structure motif in Figure 15(e) and the structure motif in Figure 15(j) by 1 each.
The net effect of increasing the in-degree of a focal node is given by the sum of the specific
contributions of the structure motifs in Figure 15(e, j). This sum is negative. Therefore,
increasing the in-degree of a node in a locally tree-like network reduces the correlation between
this node and nodes with which it is connected bidirectionally.

5. Conclusions and discussion. Discovering connections between dynamics on networks
and network structure is an ongoing endeavor in many disciplines. Many researchers find
it helpful to decompose networks into structural building blocks, which are typically called
``motifs."" In the present paper, we demonstrated that combining such a decomposition of a
network's structure into structure motifs with a decomposition of processes on a network into
process motifs can yield both mechanistic and quantitative insights into connections between
dynamics on networks and network structure. To construct a framework for the combined
decomposition of processes on networks and network structure, we introduced process motifs
as ``building blocks"" of processes and defined contributions of process motifs and total contri-
butions and specific contributions of structure motifs to observables of dynamical systems on
networks.

5.1. Mechanisms for enhancing steady-state covariance and steady-state correlation in
the Ornstein--Uhlenbeck process. To demonstrate our framework, we performed a combined
decomposition into process and structure motifs for the multivariate Ornstein--Uhlenbeck
process (mOUP) on a network. We identified the process motifs that contribute to variance,
covariance, and correlation in the mOUP at steady state. We then used the contributions of
the identified process motifs to steady-state variance, covariance, and correlation to explainD
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the total contributions and specific contributions of structure motifs to steady-state covariance
and correlation. The specific contributions of structure motifs indicate several mechanisms by
which network structure can enhance the covariance or correlation between two focal nodes in
the mOUP at steady state. Structure motifs can contribute positively to steady-state covari-
ance and correlation in three ways: (1) by enhancing signal transmission between focal nodes;
(2) by enhancing signal transmission from nonfocal nodes to focal nodes; and (3) through
combinations of enhancing signal transmission between focal nodes, signal transmission from
nonfocal nodes, and signal amplification at focal nodes or nonfocal nodes. The ranking of
structure motifs and associated mechanisms by specific contributions is different for covari-
ance and correlation, and it depends on the coupling parameter \epsilon of the mOUP.

Some of our results on process motifs and structure motifs for steady-state covariance
and correlation for the mOUP may match one's intuition for covariance and correlation. For
example, the popular phrase ``correlation does not imply causation"" is consistent with our
results that (1) process motifs for covariance and correlation between two nodes i and j do
not necessarily include a walk from i to j or from j to i and (2) structure motifs for steady-
state covariance and correlation do not necessarily include a path or trail from i to j or
from j to i. Our findings confirm known results about the mechanisms by which network
structure can affect covariance and correlation between variables, and they also offer new
quantitative insights into the efficiencies of these mechanisms and the relationship between
efficiency and mOUP parameters. We anticipate that at least some of our findings also hold
for other dynamical systems on networks. For example, the process motifs for covariance in
the mOUP at steady state are equivalent to process motifs for the mean covariance in a system
of coupled Hawkes processes [71] and the process motifs for coherence in a system of coupled
integrate-and-fire neurons [38].

5.2. Applicability to other dynamical systems. In the present paper, we studied covari-
ance and correlation in a simple stochastic dynamical system (specifically, the mOUP) at
steady state. We chose this example for illustrative purposes and to demonstrate that our
approach can confirm and extend intuition about the network mechanisms that contribute
to system function. It is also possible to apply our framework to other system functions, to
other linear dynamical systems, and away from a steady state. For dynamical systems that
are away from a steady state, process-motif decompositions of system functions can depend
on initial conditions.

We considered structure motifs in directed networks with self-edges. For some systems in
biology, chemistry, sociology, and other areas, it can be appropriate to consider undirected
networks or networks without self-edges. One can apply our framework to such networks
by restricting the motif comparison to structure motifs in such networks. Because of the
flexibility of our approach, we anticipate that the study of process motifs can yield insights
into many open problems in the study of dynamical systems on networks.

5.3. When does the distinction between process motifs and structure motifs matter?
The distinction between process motifs and structure motifs matters for many dynamical
systems, but it does not matter for all of them. Our core motivation for distinguishing between
process motifs and structure motifs is that a walk on a network and a path in a network are two
fundamentally different concepts. A walk can use an edge in a network several times, whereasD
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2548 ALICE C. SCHWARZE AND MASON A. PORTER

a path or trail can include each edge only once. When one defines a process on a network
such that it can use each node only once, the distinction between walks and paths becomes
unnecessary because every path corresponds to a single walk. Examples of such processes
include susceptible--infected (SI) models and susceptible--infected--recovered (SIR) models of
the spread of an infectious disease [47, 72]. Infected and recovered individuals in these models
cannot become infected a second time, so a disease can spread along each edge at most once.
One can construct other models that allow recurring infections (i.e., an individual can become
infected multiple times). Examples of such models are susceptible--infected--susceptible (SIS)
models and susceptible--infected--recovered--susceptible (SIRS) models. For such models, it
is important to distinguish between process motifs and structure motifs. However, one can
circumvent the need to make this distinction by introducing restrictive assumptions that are
popular in the modeling of infectious diseases [47]. For example, one can assume either that
(1) a network is a directed acyclic graph (DAG) or that (2) a network is directed and locally
tree-like and infection rates are low. On a DAG, there are no process motifs that use an edge
more than once. Under assumption 1, the distinction between process motifs and structure
motifs does not matter. In networks that are both directed and locally tree-like, there are
no process motifs of length L \leq 3 that use an edge more than once. A low infection rate
ensures that the contributions of long process motifs are very small. Under assumption 2,
the distinction between process motifs and structure motifs has only a small effect on the
specific contributions of structure motifs. We anticipate that distinguishing between process
motifs and structure motifs can aid researchers in the study of disease spread on networks
with models that allow recurring infections.

When a network is a DAG, walks on it cannot use an edge more than once, so the distinc-
tion between process motifs and structure motifs is not relevant for any dynamical system on
a DAG. There are numerous applications of dynamical systems on DAGs in machine learning
and neuroscience [86, 94]. They include feedforward artificial neural networks and models of
natural neural networks in the visual cortex of several species [46, 101]. Many researchers in
machine learning and neuroscience have highlighted fundamental differences in the dynamics
of nonrecurrent neural networks (i.e., neural networks that are DAGs) and recurrent neural
networks (i.e., those that are not DAGs) [55, 94]. We anticipate that our framework for de-
composing processes on networks into process motifs can help explain some of these differences
between nonrecurrent and recurrent neural networks.

Dynamical systems on temporal networks are another example for which one can some-
times ignore the distinction between process motifs and structure motifs. One can define many
temporal networks such that each edge is active only at a specified point in time or during a
specified time interval [35]. When each edge in a temporal network is active only at very few
times points or only for time intervals that are short in comparison to the temporal scales of
the processes on a network, few or no walks on the temporal network use an edge more than
once. On such temporal networks, it is possible that each structure motif has only a few asso-
ciated process motifs. (See [72] for a discussion of the relative temporal scales of dynamics on
networks and dynamics of networks.) The development of new notions of structure motifs in
temporal networks is an active area of research, and researchers have proposed several notions
of structure motifs for temporal networks [39, 49, 52, 69, 80, 99]. The distinction between
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process motifs and structure motifs may be helpful for assessing these proposals and for the
development of additional notions of motifs for temporal networks.

5.4. ``Unbiased"" mechanistic insights from process motifs and structure motifs. In
this paper, we presented an approach for identifying graphlets that are relevant to a function
of a system. Our approach offers several advantages over traditional approaches, in which
researchers use overrepresentation of graphlets as a surrogate to conclude that graphlets are
relevant to a system function. Those approaches depend strongly on the choice of a random-
graph null model [6, 78, 82], and they do not identify mechanisms by which overrepresented
graphlets affect a system function. Additionally, studies of dynamical systems on graphlets
in isolation require researchers to choose graphlets and candidate mechanisms a priori. The
reliance on these choices makes such studies prone to bias toward the graphlets and mecha-
nisms that researchers have chosen to study. For example, many studies have reported the
relevance of feedback loops and feedforward loops to various system functions [4]. However, it
is unclear if these two graphlets are generally more important for system functions than other
graphlets or if researchers have associated them with system functions more frequently than
other graphlets because they have studied them more often.

Our approach identifies all structure motifs with a positive (or a negative) contribution to
a given function of a dynamical system. The approach is unbiased in the sense that its results
do not depend on an a priori choice of a graphlet or a mechanism. Our results for steady-state
covariance and steady-state correlation in the mOUP demonstrate that there can be many
structure motifs that affect a system function. Had we considered only a single graphlet in
our study, it is likely that we would have concluded that that graphlet affects steady-state
covariance and steady-state correlation in the mOUP and would then have inferred that that
graphlet is important for these system functions. Our systematic study of all graphlets with
up to six edges enabled us to rank structure motifs based on their contributions and also made
it possible to distinguish between structure motifs that strongly affect steady-state covariance
and steady-state correlation in the mOUP and structure motifs that have smaller (or even
negligible) contributions to these system functions.

We also demonstrated how to perform a combined decomposition of dynamics on a net-
work and network structure into process motifs and structure motifs. One can use such a
decomposition to identify the structure motifs that contribute the most to a given system
function and to explain how these structure motifs contribute to the system function. We
demonstrated that it can be useful to consider dynamics on a network (instead of just a
network's structure) as a composite object that one can decompose into many small parts.
Our proposed framework thereby provides a pathway to develop insights into mechanisms by
which dynamics and network structure affect system functions.

Appendix A. Derivation of a nonrecursive formula for the specific contributions of
structure motifs. Consider a structure motif s with m edges and specific contribution \^cs.
Successive recursions of (3.6) lead to an expression that depends only on the total contributions
cs\prime of subgraphs s\prime of s. Subgraphs with the same number m\prime < m of edges contribute to \^cs
in the same way. One can thus writeD
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\^cs = \alpha 1\langle cs\prime \rangle 1 + \alpha 2\langle cs\prime \rangle 2 + \alpha 3\langle cs\prime \rangle 3 + \cdot \cdot \cdot + \alpha m - 1\langle cs\prime \rangle m - 1 + \alpha m\langle cs\prime \rangle m ,(A.1)

where \alpha m\prime are integer-valued coefficients with indices m\prime \in \{ 1, . . . ,m\} and \langle cs\prime \rangle m\prime is the mean
total contribution of the subgraphs of s with m\prime edges. The structure motif s has exactly
one subgraph (specifically, the graph itself) with m edges, so \langle cs\prime \rangle m = cs. From (3.6), we
see that a structure motif s with one edge (i.e., the ``0th"" recursion of (3.6)) has \alpha m = 1.
Further recursions of (3.6) do not change \alpha m, because subgraphs with m edges are not proper
subgraphs of s and thus do not appear in the sum over proper subgraphs s\prime \subset s in (3.6). The
first recursion of (3.6) yields

\^cs = cs  - 
\sum 
s\prime 1\subset s

\left(  cs\prime 1  - 
\sum 
s\prime 2\subset s\prime 1

\^cs\prime 2

\right)  .(A.2)

From (A.2), we see that \alpha m - 1 is equal to the negative of the number of subgraphs of s with
m  - 1 edges in the first recursion of (3.6). Further recursions of (3.6) do not change \alpha m - 1,
because subgraphs with m - 1 edges cannot be proper subgraphs of proper subgraphs s\prime 1 of s
and thus do not appear in the sum over proper subgraphs s\prime 2 \subset s\prime 1. It thus follows that

\alpha m - 1 =  - 
\biggl( 

m

m - 1

\biggr) 
.

Subgraphs with m  - 2 edges are proper subgraphs of s. We thus obtain \alpha m - 2 =  - 
\bigl( 

m
m - 2

\bigr) 
in

the first recursion of (3.6). Because subgraphs with m - 2 edges are also proper subgraphs of
proper subgraphs s\prime 1 of s, the second recursion of (3.6) leads to an additional term

\bigl( 
m

m - 1

\bigr) \bigl( 
m - 1
m - 2

\bigr) 
in \alpha m - 2. Further recursions of (3.6) do not change \alpha m - 2. It thus follows that

\alpha m - 2 =  - 
\biggl( 

m

m - 2

\biggr) 
+

\biggl( 
m

m - 1

\biggr) \biggl( 
m - 1

m - 2

\biggr) 
.

Similar considerations lead to

\alpha m - 3 =  - 
\biggl( 

m

m - 3

\biggr) 
+

\biggl( 
m

m - 1

\biggr) \biggl( 
m - 1

m - 3

\biggr) 
+

\biggl( 
m

m - 2

\biggr) \biggl( 
m - 2

m - 3

\biggr) 
+

\biggl( 
m

m - 1

\biggr) \biggl( 
m - 1

m - 2

\biggr) \biggl( 
m - 2

m - 3

\biggr) 
.

Each coefficient \alpha m\prime includes one or several products of binomial coefficients, and each of these
products has the form \biggl( 

m

m1

\biggr) \biggl( 
m1

m2

\biggr) 
. . .

\biggl( 
mk - 2

mk - 1

\biggr) \biggl( 
mk - 1

m\prime 

\biggr) 
for some k \leq m  - m\prime . This product of binomial coefficients is equal to the number of ways
that one can partition the edge set of s into k + 1 subsets with sizes

m - m1, m1  - m2, . . . , mk - 2  - mk - 1, mk - 1  - m\prime , m\prime .D
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The coefficient \alpha m\prime has one such term for each integer composition of m that includes m\prime . It
follows that

\alpha m\prime =
\sum 

\bfq \in \scrQ (m - m\prime )

( - 1)| \bfq | 
\biggl( 
m

m\prime 

\biggr) 
q\~! ,(A.3)

where \scrQ (m  - m\prime ) is the set of integer compositions q = (q1, q2, . . . , qk) of m  - m\prime and q\~! is
the multinomial coefficient for the sequence (q1, q2, . . . , qk) of k integers. We use | q| := k to
denote the number of integers in an integer composition q. Substituting the expression for
the coefficients \alpha m\prime from (A.3) into (A.1) yields (3.7).

Appendix B. Derivation of the covariance matrix (4.2). At time t+dt, the state vector
of the mOUP with adjacency matrix A, coupling parameter \epsilon , noise strength \varsigma 2, and reversion
rate \theta is

xt+dt = Kxt + \varsigma dWt ,(B.1)

where K = I+ \theta (\epsilon A - I)dt.
At steady state, the mOUP has the covariance matrix

\Sigma = \langle xt x
T
t \rangle = \langle xt+dt x

T
t+dt\rangle ,(B.2)

where \langle \cdot \rangle denotes taking an expectation. We use (B.1) and substitute xt+dt into (B.2) to
obtain

\Sigma = \langle (Kxt + \varsigma dWt)(Kxt + \varsigma dWt)
T \rangle = \langle Kxtx

T
t K

T + \varsigma 2I dt\rangle ,(B.3)

where the second equality follows from the fact that dWt is a mean-0, unit-variance stochastic
process that is independent of xt. Evaluating the ensemble average in (B.3) yields

\Sigma = K\Sigma KT + \varsigma 2I dt

= [I+ \theta (\epsilon A - I) dt]\Sigma [I+ \theta (\epsilon A - I) dt]T + \varsigma 2I dt

= \Sigma + \theta 

\biggl[ 
(\epsilon A - I)\Sigma +\Sigma (\epsilon A - I)T +

\varsigma 2

\theta 
I

\biggr] 
dt+O((dt)2) .

To first order in dt, we thus have

0 = (\epsilon A - I)\Sigma +\Sigma (\epsilon A - I)T +
\varsigma 2

\theta 
I .(B.4)

Equation (B.4) is a Lyapunov equation [18, 25]. For the mOUP with signal decay, the solution
of (B.4) is [25]

\Sigma =
\varsigma 2

\theta 

\int \infty 

0
e(\epsilon \bfA  - \bfI )te(\epsilon \bfA 

T - \bfI )t dt =
\varsigma 2

\theta 
\Sigma 0 ,(B.5)

where

\Sigma 0 :=

\int \infty 

0
e(\epsilon \bfA  - \bfI )te(\epsilon \bfA 

T - \bfI )t dt
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is the covariance matrix of the mOUP when \varsigma = \theta = 1. For \varsigma = \theta = 1, Barnett, Buckley, and
Bullock [7, 8] derived the covariance matrix as a sum of products of A and AT to yield the
equation7

\Sigma 0 =

\infty \sum 
L=0

2 - (L+1)
L\sum 

\ell =0

\biggl( 
L

\ell 

\biggr) 
(\epsilon A)\ell (\epsilon AT )L - \ell .(B.6)

Therefore,

\Sigma =
\varsigma 2

\theta 

\infty \sum 
L=0

2 - (L+1)
L\sum 

\ell =0

\biggl( 
L

\ell 

\biggr) 
(\epsilon A)\ell (\epsilon AT )L - \ell ,(B.7)

which is equivalent to (4.2).

Appendix C. Conditions for short-range signal decay. The sums in (4.10) converge if
the matrix \Sigma 0 = \theta 

\varsigma 2
\Sigma has eigenvalues \nu i \in (0, 1) for i = 1, . . . , n [32, p. 38]. The covariance

matrix \Sigma 0 is a steady-state covariance matrix of an mOUP and is thus symmetric and positive
definite. Therefore, a sufficient condition for short-range signal decay only needs to constrain
the largest eigenvalue of \Sigma 0.

First, we show that a sufficient condition for short-range signal decay is

\| \epsilon A\| 2 <
1

2
.(C.1)

Applying the Hilbert--Schmidt norm to both sides of (B.6) yields

\| \Sigma 0\| 2 =
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
L=0

2 - (L+1)
l\sum 

\ell =0

\biggl( 
L

\ell 

\biggr) 
(\epsilon AT )\ell (\epsilon A)L - \ell 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
\infty \sum 

L=0

2 - (L+1)
L\sum 

\ell =0

\biggl( 
L

\ell 

\biggr) 
\| \epsilon A\| L2

=
1

2

\infty \sum 
L=0

\| \epsilon A\| L2 ,

where we used the identity \| AT \| 2 = \| A\| 2 and subadditivity and submultiplicativity of the
Hilbert--Schmidt norm. When \| \epsilon A\| 2 < 1/2, it follows that \| \Sigma 0\| 2 < 1, so \nu i \in (0, 1) for the
positive-semidefinite matrix \Sigma 0. It follows that the sums in (4.10) converge.

For many applications in network analysis, the spectral radius \rho (\cdot ) (which is equal to the
largest absolute value of the eigenvalues of a matrix) is a commonly used matrix norm [42, 91].
We now show that one can relax the condition in (C.1) for short-range signal decay to

\rho (\epsilon A) <
1

2
(C.2)

if A is the adjacency matrix of a strongly connected graph with nonnegative edge weights.
The adjacency matrix of a strongly connected graph is irreducible [15]. For an irreducible

matrix with nonnegative entries, the Perron--Frobenius theorem guarantees the existence of a

7In Barnett, Buckley, and Bullock [7, 8], the order of \bfA and \bfA T is reversed because the authors used row
vectors (instead of column vectors) to describe the state \bfx t.D
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simple, real, positive eigenvalue \lambda \mathrm{m}\mathrm{a}\mathrm{x} = \rho (A) [15]. The transpose of A is also an adjacency
matrix of a strongly connected graph with nonnegative edge weights, so AT also has a simple,
positive, real leading eigenvalue. Ortega [68, p. 24] proved that there exists a submultiplicative
matrix norm \| M\| with \rho (M) = \| M\| for all complex square matrices M that have simple
max-modulus eigenvalues.8 The matrices A and AT have a simple max-modulus eigenvalue.
We thus write

\rho (\Sigma 0) \leq \| \Sigma 0\| 

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
L=0

2 - (L+1)
l\sum 

\ell =0

\biggl( 
L

\ell 

\biggr) 
(\epsilon AT )\ell (\epsilon A)L - \ell 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
and use the subadditivity and submulitplicativity of \| \cdot \| to obtain

\rho (\Sigma ) \leq 1

2

\infty \sum 
L=0

\| \epsilon A\| L =
1

2

\infty \sum 
L=0

(\rho (\epsilon A))L .(C.3)

When \rho (\epsilon A) < 1/2, it follows from (C.3) that \rho (\Sigma 0) < 1. It then follows that \nu i \in (0, 1), so
the sums in (4.10) converge.
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