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Abstract—Network theory is a useful framework for studying
interconnected systems of interacting entities. Many networked
systems evolve continuously in time, but most existing methods
for the analysis of time-dependent networks rely on discrete or
discretized time. In this paper, we propose an approach for
studying networks that evolve in continuous time by
distinguishing between interactions, which we model as discrete
contacts, and ties, which encode the strengths of relationships
over time. To illustrate our tie-decay network formalism, we
adapt the well-known PageRank centrality score to our tie-decay
framework in a mathematically tractable and computationally
efficient way. We apply this framework to a synthetic example
and then use it to study a network of retweets during the 2012
National Health Service controversy in the United Kingdom. Our
work also provides guidance for similar generalizations of other
tools from network theory to continuous-time networks with tie
decay, including for applications to streaming data.

Index Terms—complex networks, network theory (graphs).

I. INTRODUCTION

NETWORKS provide a versatile framework to model and

analyze complex systems of interacting entities [59]. In

many complex systems, interaction patterns change in time

and the entities can also leave or enter the system at different

times. To accurately model and understand such systems, it is

essential to incorporate temporal information about their inter-

actions into network representations [5], [9], [13], [17], [38],

[73], [81]. See Refs. [32]–[34], [52] for overviews of the study

of time-dependent networks, which are often also called tem-

poral networks or dynamic networks.

A major challenge in the analysis of temporal networks is

that one often has to discretize time by aggregating connec-

tions into time windows. Given a discrete or discretized set of

interactions, one can then analyze communities, important

nodes, and other facets of temporal networks by examining a

multilayer-network representation of these interactions [1],

[32], [40], [75]. An important challenge that arises with

aggregation is that there may not be any obvious or even any

‘correct’ size of a time window (even when such aggregation

employs non-uniform time windows [12], [68], [69], [74]). A

window that is too small risks missing important network

structures (e.g., by construing a signal as noise), but using an

overly large window may obscure important temporal fea-

tures. (See [18] for one discussion.) Moreover, in many social

systems, interactions are bursty [4], [33], [41], which is a cru-

cial consideration when aggregating interactions [31] and can

be a major source of concern when using homogeneous time

windows [69]. Bursty interactions pose a challenge not only

when choosing the width of time windows, but also when

choosing where to place the boundaries of such windows.

Shifting time windows forward or backward may significantly

alter the statistics of a data set, even when one does not change

the width of the windows [41].

From a modeling perspective, aggregating interactions

often may not be an appropriate approach for studying sys-

tems with asynchronous activity or systems that evolve con-

tinuously in time. See [79] for an investigation of biological

contagions, [84] for a study of influential accounts in social

networks, [85] and [86] for a generalization of the formalism

of ‘activity-driven networks’ to continuous time, [57] for a

study of rankings in competitive sports, and [19] for a gen-

eral continuous-time framework for temporal networks. In

many cases, contacts in a temporal network can have a non-

instantaneous duration, and it can be important to take such

information into account [61], [71]. For example, the phone-

call data that were studied in [28] require contacts to exist

for the duration of a phone call. In other cases, interactions

can be instantaneous (e.g., a mention in a tweet, a text mes-

sage, and so on), and their importance decreases over

time [11], [46]. In many temporal networks (e.g., ones that

involve feeds on social media), there is also a decay in atten-

tion span in reactions to content [30], [49], [50].

In the present paper, we introduce a framework for model-

ing temporal networks in which the strength of a connection

(i.e., a tie) can evolve continuously in time. For example, per-

haps the strength of a tie decays exponentially after the most

recent interaction. (One can also use point-process models

such as Hawkes processes [46] to examine similar ideas from

a node-centric perspective.) Our mathematical formalism of

such ‘tie-decay networks’ allows us to examine them using

analytical calculations and to implement them efficiently in

real-world applications with streaming data. We showcase our

tie-decay formalism by computing continuous-time PageRank
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centrality scores for both a synthetic temporal network and a

temporal network that we construct from a large collection of

Twitter interactions over the course of several months.

Our paper proceeds as follows. In Section II, we formalize our

discussion of ties, interactions, and temporal networks. We also

introduce the notion of tie-decay networks, which is the focus of

our study. In Section III, we adapt PageRank centrality to tie-

decay networks. In Section IV, we construct a synthetic network

with known properties to illustrate some of the pitfalls of binning

interactions and how tie-decay networks can help avoid them. In

Section V, we discuss and compute tie-decay PageRank centrali-

ties to examine important Twitter accounts in a National Health

Service (NHS) retweet network. In Section VI, we conclude and

discuss the implications of our work. We give proofs of our main

theoretical results in Appendices A and B. We discuss additional

numerical computations in Appendices C, D, and E.

II. TIES, INTERACTIONS, AND TEMPORAL NETWORKS

Our objective is to construct continuous-time temporal net-

works that capture the evolution of relationships between entities

in a system. To do this, we make an important distinction between

‘interactions’ and ‘ties’. An interaction between two entities is an

event that takes place during a specific time interval or at a specific

point in time. Examples of interactions include face-to-face meet-

ings, text messages, and phone calls. A tie between two entities is

a relationship between them. A tie can have a weight to represent

its strength (such as the strength of a friendship or a collaboration).

Ties between entities strengthen with repeated interactions, but

they can also deteriorate in their absence [11], [55], [58]. There

are many empirically plausible, domain-specific deterioration (i.e.,

‘decay’) functions that one can use; examples include linear

decay, power-law decay, and exponential decay [11], [55], [58],

[83]. In the present paper, we use exponential decay, which is a

common choice in many modeling frameworks (e.g., for the inten-

sity decay function in a Hawkes process [46]). We restrict our-

selves to modeling instantaneous interactions, but it is possible to

generalize our tie-decay formalism to incorporate noninstantane-

ous interactions.

Consider a set of n interacting entities (i.e., nodes), and let

BðtÞ be the n� n time-dependent, real, nonnegative matrix

whose entries bijðtÞ encode the connection strengths between

entities i and j at time t. To construct a continuous-time tempo-

ral network of these ties, we make two modeling assumptions

about how ties evolve and how interactions strengthen them:

(1) In the absence of interactions, we assume that ties decay

exponentially, as proposed by Jin et al. [37]. In mathe-

matical terms, b0ij ¼ �abij (where the prime represents

differentiation with respect to time), so bijðtÞ ¼
bijð0Þe�at for some a > 0 and an initial condition bijð0Þ.

(2) If two entities interact at time t ¼ t, the strength of the

tie between them grows instantaneously by 1, and it

then decays as normal. This choice differs from [37],

who reset the strength to 1 after each interaction.

Taken together, these assumptions imply that the temporal
evolution of a tie satisfies the ordinary differential equation
(ODE)

b0ij ¼ �abij þ dðt� tÞe�aðt�tÞ : (1)

In equation (1), we represent an instantaneous interaction at t ¼ t

as an impulse using the Dirac d-function. If the tie has the resting

initial condition bijð0Þ ¼ 0, the solution to equation (1) is

bijðtÞ ¼ Hðt� tÞe�aðt�tÞ, where HðtÞ is the Heaviside step

function. This formulation is related to the one in Flores and

Romance [19], who integrated over functions that represent the

temporal evolution of interactions. A related notion of tie decay

appears in the work of Sharan and Neville [72], although they

considered homogeneous decay of all edges of a network in dis-

crete time, instead of examining the decay of individual edges in

continuous time. When there are multiple interactions between

entities, we represent them as streams of impulses in an n� n
matrix eAðtÞ with entries ~aijðtÞ. If entity i interacts with entity j

at times t
ð1Þ
ij ; t

ð2Þ
ij ; . . . , then ~aijðtÞ ¼

P
k dðt� t

ðkÞ
ij Þe�aðt�t

ðkÞ
ij

Þ
.

We rewrite equation (1) as

b0ij ¼ �abij þ ~aij ; (2)

which has the solution bijðtÞ ¼
P

k Hðt� t
ðkÞ
ij Þe�aðt�t

ðkÞ
ij

Þ
from

a resting1 initial condition.

In practice—and, specifically, in data-driven applications—

one can readily construct BðtÞ by discretizing time so that

there is at most one interaction during each time step of length

Dt (e.g., as in a Poisson process). This type of time discretiza-

tion is common in simulations of stochastic dynamical sys-

tems, such as when using Gillespie algorithms [16], [67], [80].

In our case, we let AðtÞ be the n� n matrix in which an entry

aijðtÞ ¼ 1 if entity i interacts with entity j at time t and

aijðtÞ ¼ 0 otherwise. At each time step, AðtÞ has at most one

nonzero entry in a directed network (and at most two of them

in an undirected network). Therefore,

Bðtþ DtÞ ¼ e�aDtBðtÞ þ Aðtþ DtÞ : (3)

Equivalently, if interactions between pairs of entities occur at

times tð‘Þ (it can be a different pair at different times) such

that 0 � tð0Þ < tð1Þ < � � � < tðT Þ, then at t � tðT Þ, we have

BðtÞ ¼
XT
k¼0

e�aðt�tðkÞÞAðtðkÞÞ : (4)

If there are no interactions at time t, then every entry of the

matrix AðtÞ is 0.
Our continuous-time approach avoids having to impose a

hard partition of the interactions into bins (i.e., windows).

However, one still needs to choose a value of the decay

parameter a. Another benefit of our approach is that it elimi-

nates the placement of the time windows as a potential source

of bias [41]. When choosing a value of a, it is perhaps intuitive

to think about the half-life h1=2 of a tie, as it gives the amount

of time that it takes for a tie to lose half of its strength in the

absence of new interactions. Given a > 0, the half-life of a

tie is h1=2 ¼ a�1 ln 2. Our choice of using a to downweight

1 It is not unlike a Norwegian blue parrot. (Norwegian blues stun easily.)

1760 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: UCLA Library. Downloaded on July 09,2021 at 03:55:11 UTC from IEEE Xplore.  Restrictions apply. 



old activity is consistent with the choice of Grindrod and

Higham [27], [28], who used an exponential decay factor to

reduce the importance of old interactions in the context of

dynamic communicability.

In Fig. 1, we illustrate the evolution of the strength of a tie in

our tie-decay formalism. If entities i and j have never inter-

acted up to and including time t0, then bijðt0Þ ¼ 0. Suppose

that they first interact at time tð1Þ > t0 (such that

aijðtð1ÞÞ ¼ 1). Their tie strength then increases by 1, so

bijðtð1ÞÞ ¼ 1. It subsequently decays exponentially until they

interact again, so bijðt > tð1ÞÞ ¼ e�aðt�tð1ÞÞ before their next

interaction. If entities i and j next interact at time tð2Þ > tð1Þ,
such that aijðtð2ÞÞ ¼ 1, their tie strength becomes bijðtð2ÞÞ ¼
e�aðtð2Þ�tð1ÞÞ þ 1. The tie strength between i and j continues to

evolve in this way as more interactions occur.

III. EIGENVECTOR-BASED CENTRALITY SCORES IN

TIE-DECAY NETWORKS

One common question that arises frequently when analyz-

ing networks in scientific and industrial applications is the fol-

lowing: What are the most important nodes? [29] To examine

this question, researchers have developed numerous centrality

scores to quantify the importance of nodes according to differ-

ent criteria [59].

An important family of centrality scores arises from spectral

properties of the adjacency matrix (or other matrices) of a net-

work [8], [53], [66], [75]. One attractive feature of computing

centrality scores using a spectral method is that one can exploit

the full structure of a network. By contrast, degree centrality is a

simple centrality score that relies only on a network’s local

structure. Eigenvector-based centrality scores have been insight-

ful in numerous applications, and one can use efficient numeri-

cal algorithms to compute eigenvectors and singular vectors of

matrices [25], [77]. Popular spectral centrality scores for

directed networks include PageRank [23], [63] (which exploits

the properties of a random walk on a network) and hub and

authority scores [42] (which exploit both random-walk proper-

ties and the asymmetry of connections in directed networks).

In temporal networks, centrality scores must incorporate not

only which nodes and edges are present in a network, but also

when they are present [39], [64]. This makes it challenging to

develop and analyze centrality measures in temporal networks.

Some approaches have exploited numerical methods for

dynamical systems to compute specific scores, such as a Katz

centrality for temporal networks [6], [28], and others have

employed aggregated or multilayer representations of temporal

networks to calculate spectral centrality scores [3], [75]. How-

ever, these approaches have either been limited to a specific

kind of centrality, or they have relied on the judicious aggrega-

tion of interactions into time bins. For example, an early

paper [9] on centralities in temporal networks used a time bin

of one day. Choosing an appropriate size for such a time bin is

far from straightforward and requires deep knowledge of the

system under study. Overly coarse bins obfuscate temporal fea-

tures, whereas bins that are too small may obscure network

structures, yielding scores that may result more from noise

than from signals.

Our tie-decay network formalism in equation (2) allows us

to employ efficient numerical techniques to compute a variety

of spectral centrality scores in our temporal networks. One

can tune the decay parameter a (which one can also generalize

to be node-specific, tie-specific, or time-dependent) to con-

sider different time scales. A key benefit of our approach is

that we can easily incorporate both new interactions and new

nodes as a network evolves. In the present paper, we showcase

an application using PageRank centrality, but it is also worth-

while to study other spectral centrality scores using our tie-

decay formalism.

A. Tie-Decay PageRank Centrality

PageRank centrality is a widely used (and historically impor-

tant) eigenvector-based centrality score for time-independent

networks [59], [63]. The PageRank score of a node in a network

corresponds to its stationary distribution in a random walk with

teleportation [23], [53]. In this type of random walk, a walker

departs from a node by following an outgoing edge with proba-

bility � 2 ð0; 1Þ (where, typically, one chooses the edge with a

probability that is proportional to its weight); it ‘teleports’ to

some other node in the network with probability 1� �. It is
common to choose the destination node uniformly at random,

but many other choices are possible [23], [44]. In the present

paper, we employ uniform teleportation with � ¼ 0:85 (which

is a common choice). Let B be the adjacency matrix of a

weighted network with n nodes, so bij encodes the weight of a
directed tie from node i to node j. The n� 1 vector pp of Page-

Rank scores, with pp > 0 and kppk1 ¼ 1, is the leading-eigen-

vector solution of the eigenvalue problem

GTpp ¼ pp ; (5)

where G is the n� n transition-rate matrix of a teleporting

random walk:

G ¼ � DyBþ cvT
� �þ ð1� �Þ1vT

¼ �P þ ð1� �Þ1vT ; (6)

where P ¼ DyBþ cvT ; the matrixD is the diagonal matrix of

weighted out-degrees, so dii ¼
P

k bik and dij ¼ 0 when i 6¼ j;
and Dy is its Moore–Penrose pseudo-inverse. The n� 1 vec-

tor c is an indicator of ‘dangling nodes’ (i.e., nodes with 0 out-

Fig. 1. A: Evolution of the strength of a tie with exponential decay [see
equation (2)]. B: The decay rate a determines how fast the tie decays.
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degree): ci ¼ 1� dyii
P

k bik, so ci ¼ 1 if the out-degree of i
is 0 and ci ¼ 0 otherwise. Additionally, 1 is the n� 1 vector

of 1s, and the n� 1 distribution vector v encodes the probabil-

ities of each node to receive a teleported walker. In the present

paper, we use vi ¼ 1=n for all i.
The perturbations to DyB from v and c ensure the ergodic-

ity of the teleporting random walk, so the Perron–Frobenius

theorem guarantees that GT has a unique right leading eigen-

vector pp whose entries are all strictly positive. To calculate pp,

one can perform a power iteration on GT [77], but in practice

we do not need to explicitly construct GT . The iteration

pp kþ1ð Þ ¼ �PTppðkÞ þ ð1� �Þv ; (7)

with ppð0Þ ¼ 0 or ppð0Þ ¼ v, converges to pp and preserves the

sparsity of P . Equation (7), which ensures that computations

are efficient, is equivalent to a power iteration [23].

To compute time-dependent PageRank scores from the tie-

strength matrix BðtÞ, we define the temporal transition matrix

P ðtÞ ¼ DyðtÞBðtÞ þ cðtÞvT ; (8)

where DðtÞ is the diagonal matrix of weighted out-degrees (i.e.,

the row sums of BðtÞ) at time t. The rank-1 correction cðtÞvT
depends on time, because the set of dangling nodes can change

in time (though v remains fixed).2 The iteration to obtain the

time-dependent vector of PageRank scores ppðtÞ is now given by

pp kþ1ð ÞðtÞ ¼ �PT ðtÞppðkÞðtÞ þ ð1� �Þv : (9)

To understand the temporal evolution of ppðtÞ, we begin by

establishing some properties of the temporal transition matrix

P ðtÞ in the following lemma.

Lemma 1: When there are no new interactions between

times t and tþ Dt, the entries of Aðtþ DtÞ are all 0 and P ðtþ
DtÞ ¼ P ðtÞ: If there is a single new interaction from node i to
node j, such that aijðtþ DtÞ ¼ 1, then P ðtþ DtÞ ¼
P ðtÞ þ DP , where

DP ¼ 1

1þ e�aDtdiiðtÞ eie
T
j

� 1

diiðtÞ 1þ e�aDtdiiðtÞð Þ eie
T
i BðtÞ � ciðtÞviei1T

(10)

and ei and ej, respectively, are the i-th and j-th canonical

vectors.

The first term in the right-hand side of equation (10) is a

matrix whose only nonzero entry is the ði; jÞ-th term, the sec-

ond term is a rescaling of the i-th row of BðtÞ, and the third

term is the perturbation due to teleportation. An important

implication of Lemma 1 is that the PageRank scores do not

change when there are no new interactions, so ppðtþ DtÞ ¼

ppðtÞ. If nodes or ties have different decay rates (so that now

we index a as ai or aij), then this no longer has to be the case.

When there are new interactions, the following result sets an

upper bound on how much the PageRank scores can change.

Theorem 1: Suppose that there is a single interaction

between times t and tþ Dt from node i to node j, such that

the change DP in the transition matrix satisfies equation (10).

It follows that

ppðtþ DtÞ � ppðtÞk k1
� 2�

1� �
min piðtÞ; 1

1þ e�aDtdiiðtÞ �
ciðtÞ
2

� �
:

(11)

We present two corollaries of Theorem 1.

Corollary 1: If i is a dangling node at time t, then

ppðtþ DtÞ � ppðtÞk k1�
2�

1� �
min piðtÞ; 1

2

� �
: (12)

Corollary 2: If node i has one or more outgoing edges at

time t, then

ppðtþ DtÞ � ppðtÞk k1
� 2�

1� �
min piðtÞ; 1

1þ e�aDtdiiðtÞ
� �

:
(13)

We prove Lemma 1 in Appendix A, and we prove Theorem

1 and Corollaries 1 and 2 in Appendix B.

B Temporal Iteration of PageRank Scores

To calculate the PageRank scores at time tþ Dt, we use the
iteration in equation (9) to update the PageRank vector using

ppðtÞ as the initial value. That is,

ppð0Þðtþ DtÞ ¼ ppðtÞ : (14)

The relative error of the computed PageRank vector at itera-

tion k is

e
ðkÞ
rel

��� ���
1
¼ ppðtþ DtÞ � ppðkÞðtþ DtÞ�� ��

1
: (15)

A result from [7] (see their Theorem 6.1) implies that

keðkÞrel k1 � �kkeð0Þrel k1 . The relation ppð0Þðtþ DtÞ ¼ ppðtÞ and

Theorem 1 then imply that

e
ðkÞ
rel

��� ���
1
� �k ppðtþ DtÞ � ppðtÞk k1

� 2�kþ1

1� �
min piðtÞ; 1

1þ e�aDtdiiðtÞ �
ciðtÞ
2

� �
:

(16)

Therefore, we can select an error tolerance � such that

keðk�Þrel k1 � � for some number k� of iterations. The value k� is

the maximum number of iterations that we need for the relative

error to be at most �. We compute k� by calculating

2 Strictly speaking, once a node leaves a dangling-node set, it never
returns. Although the tie strength decays exponentially, it never quite reaches
0. In practice, one can opt to remove ties with bij � 1 to preserve the sparsity
of BðtÞ. When one does this, nodes can return to the dangling-node set.
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k� ¼
lnð�Þ�lnð2Þþlnð1��Þ�ln min piðtÞ ; 1

1þe�aDtdiiðtÞ �
ciðtÞ
2

n o� �
lnð�Þ �1 :

(17)

In practice, we can instead track the residual after k itera-

tions [23]:

rðkÞðtþ DtÞ ¼ pp kþ1ð Þðtþ DtÞ � ppðkÞðtþ DtÞ
¼ ð1� �Þv� In � �PT ðtþ DtÞ� �

ppðkÞðtþ DtÞ :
(18)

We use this residual to bound the relative error,

ppðtþ DtÞ � ppðkÞðtþ DtÞ�� ��
1
¼ In � �PT ðtþ DtÞ� ��1

rðkÞðtþ DtÞ
��� ���

1

� 1

1� �
rðkÞðtþ DtÞ�� ��

1
; (19)

where In denotes the n� n identity matrix. We thereby moni-

tor the convergence of the iterative process.

In our experiments, we always obtain kppðkþ1Þðtþ DtÞ �
ppðkÞðtþ DtÞkl1 < 10�6 in two iterations or fewer (see

Section V-C). See [14] for an alternative approach for approx-

imating PageRank after adding a single edge to a network.

IV. A SYNTHETIC EXAMPLE

To illustrate some of the features of our tie-decay formal-

ism, we construct an example that illustrates the challenges of

binning interactions and how our approach can help overcome

them.

Consider a network with node set V ¼ f1; 2; 3; 4; 5g.
These nodes interact with each other cyclically in discrete

time, with only a single edge present during each time step.

At the initial time t0, we select a ‘target node’ and a ‘source

node’ and create a directed edge from the source to the tar-

get. At the next time (i.e., t ¼ t1), there is an edge from a dif-

ferent source node to the same target. This occurs with a

third source node and the same target at time t2 and with the

final remaining source node and this target at time t3. We

have now exhausted all possible source nodes for this target,

so at time t4, we select a new target node and repeat the

above process. Specifically, there is exactly one directed

edge at each discrete time, and we select each of the four

possible source nodes exactly once between times t4 and t7.
We repeat this cycle thrice more, and we finish with the final

source–target pair at time t19. The process begins again at

time t20 with the first target node, and it continues periodi-

cally. In Fig. 2, we show the interactions in this synthetic

temporal network for the first 24 time steps. We expect the

cyclical behavior of this network to be reflected in the tem-

poral centralities of its nodes.

One way to examine temporal centralities of the nodes in

our synthetic network is by aggregating the interactions into

sliding windows of duration w [65], [70]. To do this, we con-

struct time-independent networks with interactions in the time

window ðtk � w; tk	, and we then compute the PageRank

scores of the nodes for each of these networks. In Fig. 3 A, we

show the PageRank scores for these networks using windows

of different lengths. To use this sliding-window approach, we

need at least w time steps before we can construct the first

window; this is a potential issue for some studies. Addition-

ally, the PageRank scores are sensitive to the value of w. This
is another potential difficulty, especially because one does not

know appropriate window lengths in advance in many situa-

tions. An alternative to aggregating interactions into sliding

windows is to use adjacent windows of length w [10] With

this choice, we aggregate interactions exactly once every w
time steps. We show the resulting time series of PageRank

scores in Fig. 10 in Appendix C.

When a window includes individual interactions only

(w ¼ 1) or matches the length of one cycle (w ¼ 4), the Page-
Rank centrality scores capture the sequence of interactions

between the nodes. We show these two cases in the top row of

Fig. 2. Schematic illustration of the interactions in our five-node synthetic
network. (See the description in the main text.) We show target nodes as pink
diamonds and source nodes as blue disks. In this example, there is one target
at a time, and the different nodes take turns being the target. After all source
nodes interact with the current target, a new node becomes the target, and all
source nodes then interact with it. This cycle keeps repeating in this temporal
network, which is periodic with a period of 20 time steps.

Fig. 3. PageRank scores over time for each node in our five-node synthetic
network. (See the description in the main text.) A: Calculations of time-inde-
pendent PageRank scores using sliding windows ðtk � w; tk	 of different dura-
tion to aggregate interactions. B: Calculations of tie-decay PageRank scores
for different values of the tie half-life.

AHMAD et al.: TIE-DECAY NETWORKS IN CONTINUOUS TIME AND EIGENVECTOR-BASED CENTRALITIES 1763

Authorized licensed use limited to: UCLA Library. Downloaded on July 09,2021 at 03:55:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3 A. However, these choices of w are not without issues.

Using w ¼ 1 neglects important temporal features, and select-

ing w ¼ 4 (the cycle length) and placing it correctly requires

prior knowledge of the temporal network, which we possess

only because we invented the rules to create this network. The

extreme sensitivity of PageRank scores to the value of w also

causes other problems. For example, when w is a multiple of

the number of nodes and the period (e.g., w ¼ 20), this

approach fails to give any useful information at all, because

all differences in the interaction patterns are ‘masked’ entirely

by the window.

We now use our tie-decay formalism to obtain PageRank

time series for several tie half-lives (see Fig. 3 B). The cyclical

dynamics of the interactions manifest for all of these values of

the half-life h1=2. Different values of h1=2 entail different oscil-

lation magnitudes, but the time series have oscillations for all

of our choices of h1=2. Every four time steps, we observe an

increase in the PageRank score of the newly-selected target

node. Our tie-decay framework also does not have the masking

problem that we illustrated above.

We also examine the sensitivity with respect to the choice

of window length and half-life by computing the Pearson

correlation of the PageRank time series for different values

of w and t (for ordinary PageRank) and h1=2 (for tie-decay

PageRank). In Fig. 4A, we show the Pearson correlation

between the time series of the (ordinary) PageRank centrality

of node 1 for each w 2 f1; 2; . . . ; 100g. As the figure shows,

binning interactions over time produces a time series that is

very sensitive to the choice of w. The mean correlation

between time series is 0.414, and the standard deviation is

0.301. Some time series are even correlated negatively with

each other. The correlations also depend on the periodicity of

our temporal network. For example, choices of w for the two

time series that differ by exactly 20 have larger positive cor-

relations with each other than with other window lengths. By

comparison, the Pearson correlations between the PageRank

time series in the tie-decay networks for a variety of values

of the half-life h1=2 (see Fig. 4 B) paint a very different pic-

ture. We observe large positive correlations for many pairs

of values of t. The mean correlation between the time series

is 0.945, which is much larger than what we obtain for

our calculation with sliding windows; its standard devia-

tion is 0.109, which is much smaller than that for sliding

windows.

Our synthetic example of a temporal network highlights some

of the advantages of our continuous-time tie-decay network for-

malism for temporal networks. Results from frameworks that

require binning interactions can be extremely sensitive both to

the choice of window length and to the placement of windows.

By contrast, our tie-decay framework is more robust to parame-

ter choices. Varying h1=2 (or, equivalently, varying a) adjusts
the longevity of ties while maintaining similar PageRank cen-

trality trajectories, lending confidence to investigations even

when (as is usually the case) one does not possess precise

knowledge of the time scales of the interactions in a system.

V. THE NATIONAL HEALTH SERVICE (NHS)

RETWEET NETWORK

We now compute tie-decay PageRank scores to track the

evolution of node importances over time in a large data set of

time-annotated interactions on Twitter.

Twitter is a social-media platform that has become a

prominent channel for organizations, individuals, ‘bots’,

‘sockpuppets’, and other types of accounts to broadcast

events, share ideas, report events, and socialize by posting

messages (i.e., ‘tweets’) of at most 140 characters in

length [43].3 Data from Twitter has allowed researchers to

study patterns and trends in a plethora of large-scale politi-

cal and social phenomena, such as protests and civil

unrest, discussions of public health, and information propa-

gation [2], [3], [15], [21], [26], [56], [62], [76].

Twitter accounts (which can represent an individual, an orga-

nization, a bot, and so on) can interact in several ways, and there

are various ways to encode such interactions in the form of a net-

work. For example, accounts can subscribe to receive other

accounts’ tweets (a ‘follow’ connection), can mention each other

in a tweet (a ‘mention’ connection), can spread a tweet that was

posted originally by someone else (a ‘retweet’ connection) to

their followers, and so on. These interactions represent an explicit

declaration of interest from a source account about a target, and

one can thus encode them using directed networks [2]. Because

these interactions are time-resolved, it is sensible to analyze

Twitter networks as time-dependent networks [3].

We study a retweet network, which we construct from a data

set of tweets about the United Kingdom’s National Health Ser-

vice (NHS) that were posted after the controversial Health and

Social Care Act of 2012 [48]. Our data set covers over five

months of time and consists of tweets in English that include

the term ‘NHS’. Specifically, we consider retweets4 by the

10 000 most-active Twitter accounts (according to the number

of tweets in our data set) from 5March 2012 through 21 August

2012 (see Fig. 5). See Appendix D for a discussion of some

basic statistical properties of the NHS retweet network. All

data were collected by Sinnia,5 a data-analytics company, using

Fig. 4. A: Pearson correlation matrix of the PageRank time series of
node 1 in our synthetic network using sliding windows ðtk � w; tk	 for w 2
f1; . . . ; 100g. B: Pearson correlation matrix of the tie-decay PageRank
time series of node 1 for integer half-lives h1=2 2 f1; . . . ; 100g.

3 Twitter subsequently expanded the maximum tweet length to 280 charac-
ters, but the maximum was 140 characters at the time that our data set was
collected.

4 We consider only retweets, so if MAP tweets something and MBD
retweets it, then only the retweet can be part of our data set.

5 See http://www.sinnia.com/.
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Twitter Gnip PowerTrack API.6 From these data, we construct

a tie-decay temporal network in which the interactions are

retweets.7 Our code for constructing tie-decay networks is

available at https://bitbucket.org/walid0925/tiedecay/.

A. Tie-Decay PageRank Centrality in the NHS

Retweet Network

The temporal network of retweets from the NHS data has

the tie-strength matrix BðtÞ (see equation (3)) and starts from

the initial condition Bð0Þ ¼ 0. We construct three tie-decay

networks by using values of a that correspond to tie half-lives

of 1 hour, 1 day, and 1 week. We compute tie-decay PageRank

scores of all Twitter accounts for each of these networks.

In Fig. 6, we illustrate the effect of the value of a on Page-

Rank scores. We compute tie-decay PageRank scores for net-

works in which the tie half-life is 1 hour, 1 day, and 1 week. In

each panel of Fig. 6, we plot the Twitter account with the larg-

est PageRank score at every time point; the transitions between

white and gray shading indicate when there is a change in

which account has the top score. When the half-life is short

(i.e., a is large), interactions produce feeble ties that fade

quickly unless there are frequent and sustained interactions

between the accounts. Consequently, the tie-decay PageRank

scores of the Twitter accounts change wildly in time, and (as

illustrated in the top panel of Fig. 6) such a short half-life

implies that the Twitter account with the top tie-decay

PageRank score changes frequently. When the half-life is lon-

ger (e.g., 1 day), ties are better able to gain traction by strength-

ening from interactions that otherwise would be too far apart in

time. Consequently, there are fewer changes in which Twitter

account has the top PageRank score. The middle panel of Fig. 6

illustrates that we indeed observe fewer changes in the top-

ranked account when the half-life is 1 day. Finally, when the

half-life of a tie is 1 week, two specific accounts (@DREOIN-

CLARKE and @MARCUSCHOWN) dominate the ranking; they alter-

nate between the top and second spots.

In this case study, we reveal two accounts as dominant ones

as we tune the half-life of ties to larger values. The first of these,

Eoin Clarke (@DREOINCLARKE), is a Labour-party activist and

was an outspoken critic of the U.K. coalition government’s

stance in 2012 on the NHS. Marcus Chown (@MARCUSCHOWN)

is a science writer, journalist, and broadcaster who was also an

outspoken critic of the U.K. government’s NHS policy in 2012.

The dominance of these two accounts becomes apparent as we

increase the half-life of the ties. On 29 April, @DREOINCLARKE

posted a tweet that gathered significant attention. This tweet

yields a short-lived boost in his PageRank score when h1=2 is

1 hour and 1 day, and it yields a more sustained increase when

h1=2 is 1 week. On 4 June, @MARCUSCHOWN posted a tweet that

boosts his PageRank score. When h1=2 is 1 day, the number of

retweets of this tweet are enough to carry him to the top spot.

However, when h1=2 is 1 week, the retweets are not enough to

overtake@DREOINCLARKE, whose ties remain strong.

In Fig. 7, we show a complementary illustration of the

effect of half-life value on the time-resolved PageRank rank-

ings of Twitter accounts. We construct a time-independent

network in which we aggregate all of the interactions in our

data set—specifically, we consider BðtÞ for a ¼ 0 with the

time t set to be 21 August 2012—and we determine the top-5

Fig. 5. Number of daily retweets among the 10 000 most-active Twitter
accounts in the NHS data set.

Fig. 6. Top Twitter accounts, according to tie-decay PageRank, in the tem-
poral NHS retweet network with three values of tie half-life. Each color is
associated with a unique Twitter account, and the alternating gray and white
background color highlights intervals in which the same account has the top
tie-decay PageRank score. Transitions in color (from white to gray, and vice
versa) indicate when there is a change in which account has the top score. The
first dashed red vertical line indicates the time that @DREOINCLARKE posted
the tweet in the associated box; the second such line corresponds to a tweet by
@MARCUSCHOWN.

Fig. 7. The effect of the half-life value on the time-resolved PageRank rank-
ings of five prominent Twitter accounts in the NHS retweet network. We
show time series for three different values of the half-life. More-important
accounts are higher on the vertical axis.

6 See https://gnip.com/realtime/powertrack/.
7 In our computations, we set bij < 10�7 to 0 to preserve the sparsity of

BðtÞ. Consequently, nodes may rejoin the dangling-node set.

AHMAD et al.: TIE-DECAY NETWORKS IN CONTINUOUS TIME AND EIGENVECTOR-BASED CENTRALITIES 1765

Authorized licensed use limited to: UCLA Library. Downloaded on July 09,2021 at 03:55:11 UTC from IEEE Xplore.  Restrictions apply. 



accounts by calculating the standard time-independent version

of PageRank (with � ¼ 0:85) on this network. We then track

the time-dependent PageRank ranks (where rank 1 is the Twit-

ter account with the largest tie-decay PageRank score, and so

on) of these five accounts for different values of a (or, equiva-

lently, of h1=2). When h1=2 is 1 hour, these accounts often

overtake each other in the rankings and the changes in rank-

ings can be rather drastic, as some Twitter accounts drop or

rise by almost 250 spots. As we consider progressively longer

half-lives, we observe less volatility in the rankings.

The experiments in Figs. 6 and 7 demonstrate how one can

use a as a tuning parameter to encode the longevity of rela-

tionship values in a temporal network. They also demonstrate

the value of our tie-decay formalism for illustrating fluctua-

tions in network structures. When analyzing networks in dis-

crete time, there is a risk that aggregating interactions may

conceal important dynamics and nuances of network struc-

ture [18]. By contrast, our continuous-time network formalism

avoids arbitrary cutoff choices (and potential ensuing

biases [41]) when choosing the borders of time windows. It

also allows a smoother exploration of network structure at a

level of temporal granularity that is encoded in the value of a.

B. Aggregating Interactions Versus Examining

Tie-Decay Networks

Using tie-decay networks instead of aggregating interac-

tions via sliding windows can have a large impact on the quali-

tative results of an investigation. To illustrate this using the

NHS data, we compare the Pearson correlations between

PageRank vectors in the tie-decay networks to the Pearson

correlations between PageRank vectors in networks that we

construct using sliding windows. We sample K equally-

spaced time points between the first and last interactions in the

data.8 At each time point tk, we construct a time-independent

network with interactions in the time window ðtk � w; tk	 for
a given window length w, and we compute the PageRank vec-

tor for this network. In Fig. 8 A, we show the Pearson correla-

tion matrix between PageRank vectors using K ¼ 1000 and

w ¼ 1 day. The sampled time points are approximately four

hours apart, so consecutive time points have overlapping

windows. However, the Pearson correlations between the

PageRank vectors from the different time-independent net-

works are relatively small. This is usually the case even for

the PageRank vectors from time points that are near each

other. Such small temporal correlations are not surprising; pre-

vious research [9] has reported that the connections in net-

works that one constructs by aggregating interactions on

different days can vary drastically. When this occurs, the most

central nodes in networks from different days can also differ

drastically.

We also calculate the tie-decay PageRank vectors using the

same time points. In this case, we observe a pronounced block

structure in the correlation matrix (see Fig. 8 B). That is,

PageRank vectors from time points that are close to each other

have large correlations with each other because tie strengths

of past interactions persist in time. We can adjust the extent of

such persistence by varying the half-life. In Fig. 12 in

Appendix E, we show the distributions of pairwise correla-

tions between PageRank vectors using both sliding windows

and tie-decay networks.

C. Computational Efficiency

In applications (e.g., for streaming data), it is often desirable

to update the values of time-dependent centrality measures,

such as tie-decay PageRank scores, when there is a new inter-

action. We know from Theorem 1 that there is a bound on the

magnitude of the difference between the PageRank vectors at

times t and tþ Dt when there is a new interaction. Conse-

quently, we expect the iterative procedure for computing

PageRank at tþ Dt to converge faster when we use the

PageRank vector from t as our initial vector than if we start

the computation from scratch. To demonstrate this, we select

a period of time—between 8:00 am and 12:00 pm on 18

March 2012—with high activity in our NHS data and calculate

the tie-decay PageRank vector at time tþ Dt with two differ-

ent starting vectors: the uniform vector ppð0Þðtþ DtÞ ¼ 1
n1 and

the previous PageRank vector ppð0Þðtþ DtÞ ¼ ppðtÞ. In time-

independent networks, it has been observed that the uniform

vector has better convergence properties than any other start-

ing vector in the absence of prior knowledge about the final

Fig. 8. A: Pearson correlations between PageRank vectors in networks that
we construct using sliding windows of w ¼ 1 day. B: Pearson correlations
between PageRank vectors in tie-decay networks with h1=2 ¼ 1 day.

Fig. 9. A: Cumulative number of iterations to convergence (where we define
‘convergence’ as kppðkþ1Þðtþ DtÞ � ppðkÞðtþ DtÞkl1 < 10�6) for calculating
tie-decay PageRank on the NHS retweet network when the starting vector is the
uniform vector (solid blue curve) and the previous PageRank vector (dashed
green curve). For context, we also include the aggregate number of interactions
in the network (dash–dotted orange curve) and label it on the right vertical axis.
B: When analyzing the NHS retweet network, we observe that tie-decay Pag-
eRank requires at most 2 iterations to converge when we start from the previous
time step’s PageRank vector, whereas using the uniform vector necessitates
7 or more iterations. In this example, the half-life of a tie is 1 day.

8 The first interaction occurs at 20:41:46 on 5 March 2012, and the last
interaction occurs at 09:09:25 on 21 August 2012.
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PageRank vector [23]. In our tie-decay network formalism,

given the bound between the magnitudes of the PageRank vec-

tors at times t and tþ Dt, it is intuitive that using the vector

from the previous time has computational advantages over

other choices. We demonstrate this fact in Fig. 9.

VI. CONCLUSIONS AND DISCUSSION

We have introduced a continuous-time framework that

incorporates tie decay for studying temporal networks, and we

used our formalism—which we call ‘tie-decay networks’—to

generalize PageRank centrality to continuous time.

In our proposed tie-decay formalism, a tie between two

nodes strengthens through repeated interactions and it decays

in their absence. Such tie-decay networks allow one to tracta-

bly analyze time-dependent interactions without having to

aggregate interactions into time windows (i.e., bins), as is

typically done in existing frameworks for studying temporal

networks [32], [34]. We purposely avoided aggregating inter-

actions using time bins, whose sizes and placement are diffi-

cult to determine, by modeling the weakening of ties in time

as exponential decay with rate a (or, equivalently, with a half-

life of h1=2). In addition to representing the decay of human

relationships [11], as we have done in this paper, it is also pos-

sible to use our formalism more generally to model the

decreasing value of old information, decay in other types of

interactions, and so on.

We showcased our tie-decay formalism on both a synthetic

temporal network and a network of retweets on Twitter. Our

computations illustrated that adjusting the value of the half-

life h1=2 allows one to examine the temporal dynamics of

rankings at different time scales of interest. Our study of a

synthetic network illustrated that using tie-decay networks can

help mitigate serious issues, such as sensitivity to time scales

and the masking of interaction patterns, that can arise from

binning interactions. To provide a case study for the study of

tie-decay PageRank centralities in an empirical temporal net-

work, we investigated the temporal evolution of the ranks of

important accounts in a large collection of retweets about the

United Kingdom’s National Health Service. We also devel-

oped a numerical scheme and bounds on the change of tie-

decay PageRank scores upon the arrival of each new interac-

tion. Such bounds are important for studying data streams, in

which new data arrives at a potentially alarming rate. By tun-

ing the decay rate of interactions, we illustrated that tie-decay

PageRank scores can change much more drastically when the

half-life is short than when the half-life is long.

Our tie-decay formalism for continuous-time changes in

network architecture provides an important step for the study

of streaming network data and the development of tools to

analyze temporal networks in real time. Streaming data is

ubiquitous—it arises in social-media data, sensor streams,

communication networks, and more [20], [45]—and analyzing

tie-decay networks offers a promising approach for studying

it. In the present paper, we illustrated how to perform an

update of tie-decay PageRank from one time step to another,

and it will be important to develop such ideas further for other

types of computations (such as community detection and other

types of clustering). In the short term, it will be useful to

implement efficient schemes for numerical computations of

tie-decay generalizations of other centralities scores (such as

hubs and authorities) that are obtained from eigenvectors. For

instance, our framework permits a tie-decay generalization of

personalized PageRank [23], [36] (by making a different

choice of v in equation (9)), which one can use in turn to

develop new, principled methods for studying local commu-

nity structure in networks that evolve in continuous time. Our

tie-decay formalism is also very well-suited to incorporating

time-dependent strategies for teleportation in PageRank [24].

An extension of our tie-decay formalism to noninstantaneous

interactions (i.e., taking durations into account) is possible by

replacing the term with the Dirac d-function in equation (1)

with a function that is nonzero only when a tie exists. For

example, if an interaction lasts from tbegin until tend, then one

can use the function Hðt� tbeginÞ �Hðt� tendÞ, where H is

the Heaviside step function. One can also formulate interac-

tions with time durations using window functions [82] or test

functions [35].

A wealth of other avenues are also worth pursuing. For

example, it is desirable to systematically investigate heteroge-

neous decay rates (e.g., individual rates for nodes or ties), fit

the decay parameter to data, use decay functions other than

exponential ones [22], [84],9 develop clustering methods for

tie-decay networks, analyze localization phenomena (and their

impact on centralities and clustering) [51], [75], develop and

study random-network null models for tie-decay networks,

incorporate noninstantaneous interactions, investigate change-

point detection, and examine continuous-time networks with

multiplex interactions. It is also desirable to study a variety of

dynamical processes—such as contagions and opinion dynam-

ics—on tie-decay networks.

Many empirical networks and data sets from which one can

construct networks are time-dependent, and it is important to

be able to model such systems in continuous time. Tie-decay

networks offer a promising approach for further development

of continuous-time temporal networks.

APPENDIX

A. PROOF OF LEMMA 1

Proof: When there is a new interaction from node i to node
j, the rows of P ðtþ DtÞ that correspond to nodes k 6¼ i (i.e.,
the nodes from which the new connection does not originate)

are unchanged: pkhðtþ DtÞ ¼ pkhðtÞ for all h 2 f1; . . . ; ng.
To determine the change in the i-th row of P ðtþ DtÞ, we

first examine the i-th row of Bðtþ DtÞ by calculating

bihðtþ DtÞ ¼ e�aDtbihðtÞ ; h 6¼ j
e�aDtbijðtÞ þ 1 ; h ¼ j :

�
(20)

9 It may be particularly interesting to explore the effects of heavy tails in
decay rates. As explained in [54], one can express a power law as a mixture of
exponentials; this facilitates the incorporation of heavy tails into our tie-decay
formalism.
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We then consider the change to the rank-1 correction cðtÞvT
of equation (8). If i is not a dangling node at time t, then cðtþ
DtÞ ¼ cðtÞ. However, if i is a dangling node at time t, then
ciðtÞ ¼ 1 and ciðtþ DtÞ ¼ 0. Therefore,

ciðtþ DtÞ � ciðtÞ ¼ 0 ; ciðtÞ ¼ 0
�1 ; ciðtÞ ¼ 1 :

�
(21)

Observe that ciðtþ DtÞ necessarily equals 0 and that ciðtÞ 2
f0; 1g. Therefore,

ciðtþ DtÞ � ciðtÞ ¼ �ciðtÞ ; (22)

so the change to the correction term is

ciðtþ DtÞvi � ciðtÞvi ¼ �ciðtÞvi : (23)

The i-th row of P ðtþ DtÞ is

pihðtþ DtÞ ¼
e�aDtbihðtÞ

1þe�aDt
P

k
bikðtÞ

� ciðtÞvi ; h 6¼ j

e�aDtbijðtÞþ1

1þe�aDt
P

k
bikðtÞ

� ciðtÞvi ; h ¼ j :

8>><
>>:

(24)

For h 6¼ j, the difference between pihðtþ DtÞ and pihðtÞ is

pihðtþ DtÞ � pihðtÞ ¼ e�aDtbihðtÞ
1þ e�aDt

P
k bikðtÞ

� bihðtÞP
k bikðtÞ

� ciðtÞvi

¼ �bihðtÞP
k bikðtÞ 1þ e�aDt

P
k bikðtÞ

	 
� ciðtÞvi

¼ �bihðtÞ
diiðtÞ 1þ e�aDtdiiðtÞ½ 	 � ciðtÞvi :

(25)

When h ¼ j, we have

pijðtþ DtÞ � pijðtÞ ¼ 1þ e�aDtbijðtÞ
1þ e�aDt

P
k bikðtÞ

� bijðtÞP
k bikðtÞ

� ciðtÞvi

¼
P

k bikðtÞ � bijðtÞP
k bikðtÞ 1þ e�aDt

P
k bikðtÞ

	 
� ciðtÞvi

¼ diiðtÞ � bijðtÞ
diiðtÞ 1þ e�aDtdiiðtÞ½ 	 � ciðtÞvi

¼ 1

1þ e�aDtdiiðtÞ �
bijðtÞ

diiðtÞ 1þ e�aDtdiiðtÞ½ 	 � ciðtÞvi :

(26)

In matrix terms, the change from P ðtÞ to P ðtþ DtÞ is thus

DP ¼ 1

1þ e�aDtdiiðtÞ eie
T
j

� 1

diiðtÞ 1þ e�aDtdiiðtÞð Þ eie
T
i BðtÞ � ciðtÞviei1T ;

(27)

which concludes the proof. &

B. PROOF OF THEOREM 1

Proof: The change in PageRank scores with one new inter-

action is

ppðtþ DtÞ � ppðtÞ ¼ �ðP ðtÞT þ DPT Þ þ ð1� �Þv1T
h i

ppðtþ DtÞ

� �P ðtÞT þ ð1� �Þv1T
h i

ppðtÞ
¼ �P ðtÞT ðppðtþ DtÞ � ppðtÞÞ þ �DPTppðtþ DtÞ :

(28)

Rearranging terms gives

In � �P ðtÞT
� �

ppðtþ DtÞ � ppðtÞð Þ ¼ �DPTppðtþ DtÞ ; (29)

which implies that

ppðtþ DtÞ � ppðtÞ ¼ � In � �P ðtÞT
� ��1

DPTppðtþ DtÞ :
(30)

From a Neumann-series expansion [78], we see that kðIn �
�P ðtÞT Þ�1k1 is bounded above by 1=ð1� �Þ.
Taking norms on both sides of (30) yields

ppðtþ DtÞ � ppðtÞk k1�
�

1� �
DPT

�� ��
1
: (31)

Noting that kDPTk1 ¼ kDPk1, we use the definition of DP
from equation (10) to obtain

ppðtþ DtÞ � ppðtÞk k1
� �

ð1� �Þð1þ e�aDtdiiðtÞÞ eie
T
j � 1

diiðtÞ eie
T
i BðtÞ

����
����
1

� �ciðtÞvi
1� �

ei1
T

�� ��
1 : (32)

Recall that BðtÞ is the tie-strength matrix and that ei and ej,
respectively, are the i-th and j-th canonical vectors. Let Q ¼
eie

T
j � 1

diiðtÞ eie
T
i BðtÞ be the matrix with entries

qhk ¼
1� bhkðtÞ=diiðtÞ ; h ¼ i ; k ¼ j
�bhkðtÞ=diiðtÞ ; h ¼ i ; k 6¼ j
0 ; otherwise ;

8<
: (33)

so Q has nonzero entries only in row i. Noting that diiðtÞ ¼P
k bikðtÞ and using

Qk k1¼ max
1�h�n

Xn
k¼1

jqhkj ¼
Xn
k¼1

jqikj ; (34)

we see that

Qk k1� 2 : (35)

We also observe that ei1
T is the n� nmatrix whose entries

are equal to 1 in row i and are equal to 0 elsewhere. Therefore,
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ei1
T

�� ��
1¼ n : (36)

With nvi ¼ 1 (i.e., uniform teleportation), it follows from

equations (32), (35), and (36) that

ppðtþ DtÞ � ppðtÞk k1�
2�

ð1� �Þð1þ e�aDtdiiðtÞÞ �
�ciðtÞ
1� �

:

(37)

The change in the PageRank vector is also subject to the

bound [47], [60]

ppðtþ DtÞ � ppðtÞk k1 � 2�

1� �

X
s2SðtþDtÞ

psðtÞ ¼ 2�

1� �
piðtÞ ;

(38)

where Sðtþ DtÞ is the set of nodes (in this case, just node i) that
experience a change in transition probabilities (i.e., a change in

outgoing edges). Combining the bounds in (37) and (38) yields

ppðtþ DtÞ � ppðtÞk k1
� 2�

1� �
min piðtÞ; 1

1þ e�aDtdiiðtÞ �
ciðtÞ
2

� �
;

(39)

which completes our proof. &

Note that diiðtÞ > 0, ciðtÞ ¼ 0 and diiðtÞ ¼ 0, ciðtÞ ¼
1, which guarantees that the quantity on the right-hand

side of (39) is always positive. This gives the results in

Corollaries 1 and 2.

C. SYNTHETIC NETWORK: USING ADJACENT TIME WINDOWS

In our synthetic network from Section IV, suppose that we

aggregate the interactions into adjacent (and hence nonover-

lapping) windows of length w. We then calculate PageRank

time series for the resulting sequence of time-independent net-

works and show our results in Fig. 10.

D. NHS RETWEET NETWORK: NETWORK STATISTICS

The NHS network includes retweets between the 10 000

most-active accounts, where we quantify their activity as their

number of tweets in the data set. There are 181123 retweets

between the 10 000 most-active accounts between 5 March

2012 and 21 August 2012. We interpret each of these retweets

as one interaction. In total, 6866 of the 10 000 accounts

interact with each other via retweets at least once during this

time period. There are 6013 accounts that retweet others and

4957 accounts whose tweets are retweeted. In Fig. 11, we

show the the distribution of retweets among these accounts.

E. NHS RETWEET NETWORK: AGGREGATING INTERACTIONS

VERSUS USING TIE-DECAY NETWORKS

In Fig. 12, we show the distributions of the Pearson correla-

tions between PageRank scores using both tie-decay networks

and networks with sliding time windows.
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