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Abstract. We develop a method for analyzing spatial and spatiotemporal anomalies in geospatial data using
topological data analysis (TDA). To do this, we use persistent homology (PH), which allows one to
algorithmically detect geometric voids in a data set and quantify the persistence of such voids. We
construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-
to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies;
it also encodes information about the relationships between anomalies. We use vineyards, which
one can interpret as time-varying persistence diagrams (which are an approach for visualizing PH),
to track how the locations of the anomalies change with time. We conduct two case studies using
spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by
zip code at a single point in time. Second, we study a year-long data set of COVID-19 case rates in
neighborhoods of the city of Los Angeles.
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1. Introduction. Many systems are spatial in nature. When working with spatial data
sets, it is important to study the role of underlying spatial relationships [10]. To illustrate this
importance, consider the spatiotemporal dynamics of Coronavirus disease 2019 (COVID-19)
case rates, which is one of the key motivations for our work. The spatial adjacencies between
the neighborhoods of a city affect the dynamics of disease spread [36], and it is important
to account for them. Researchers have studied a wide variety of spatial data sets, such as
gross domestic product and life expectancy by country [2, 46] and voting in elections across
different regions of a state [19]. Such data sets often also include temporal information (e.g.,
daily COVID-19 case rates), and it is also important to take it into account.

We develop new methods for using topological data analysis (TDA) to analyze geospatial
and geospatiotemporal data sets in a way that directly incorporates spatial information. TDA
is a way to study the “shape” of a data set [6]. Using persistent homology (PH), which is
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an approach from algebraic topology, one can algorithmically find geometric voids of different
dimensions in a data set and quantify the “persistence” of these voids [35]. Zero-dimensional
(0D) voids are connected components and one-dimensional (1D) voids are holes. To quantify
the persistence of holes and other voids, one constructs a simplicial complex (which is a
combinatorial description of a topological space) and a filtration function (see section 2.1).
In our work, we treat geographical data as two-dimensional (2D) data and construct a 2D
filtered simplicial complex (FSC) to represent it. The computation of PH has yielded insights
into a wide variety of areas, such as dynamical systems [28, 53], collective behavior [48],
neuroscience [20, 40], materials science [5], and chemistry [29]. Spatial applications that have
been examined as 2D data sets using PH include sensor networks [14], percolation [42], and
city-street networks and other complex systems [18].

When we examine time-dependent data, we use vineyards, which were introduced in [12] as
a way to represent time-varying PH, to incorporate temporal information. One can visualize
a vineyard as a continuous stack of persistence diagrams (PDs), with one PD for each time
point. The homology classes trace out curves, which are called vines, in R3. At any single
point in time, a homology class in the PD at that time corresponds to a (birth simplex, death
simplex) pair. The birth simplex creates the homology class, and the death simplex destroys
the homology class (see section 2.1). In a vineyard, a vine corresponds to a sequence of (birth
simplex, death simplex) pairs. See section 2.2 for the definition of a vineyard.

1.1. Our contributions. We use TDA to analyze local extrema of real-valued geospatial
data.1 Our approach captures both local information (specifically, the geographical locations
and the values of the local extrema) and global information about the relationships between
the extrema. The global information includes the extent to which extrema are “spatially
separated” (see Figure 1).

To the best of our knowledge, existing methods of analyzing local extrema yield only
local information. One can check whether or not a geographical region is an extremum by
comparing its associated value to those of its neighboring regions. However, this approach
does not provide any global information about the extrema. For example, it cannot distinguish
between the two cases in Figure 1.

Examining vineyards allows us to measure the persistence of extrema with time, observe
how spatial separations between extrema change with time, and track how geographical lo-
cations of extrema change with time. We accomplish the last of these by using vineyards to
match the extrema at one time to the corresponding extrema at another time. (They may not
be at the same geographical locations.) We identify the geographical locations of extrema by
examining the sequence of (birth simplex, death simplex) pairs for each vine. To the best of
our knowledge, the present paper is the first paper that uses information about the sequence
of (birth simplex, death simplex) pairs for each vine, rather than using only the (birth, death)
filtration values for each vine. A naive approach, such as comparing each region to its neigh-
boring regions at each time step, does not come with a natural way to match the extrema
that one identifies at different times and does not provide information about changes in global
structure. With our approach, we are able to track how the global spatial structure of data
changes with time.

1See section 4 for our definitions of a “local maximum” and a “local minimum” of a real-valued function
on a discrete set of geographical regions.D
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1118 A. HICKOK, D. NEEDELL, AND M. A. PORTER

(a) (b)

Figure 1. (a) The graph of a function f : R2 → R that has two “well-separated” local maxima. (b) The
graph of a function g : R2 → R whose two local maxima have the same locations and values as f but are not
well-separated from each other.

Another contribution of our paper is a new method to construct an “efficient” simplicial
complex whose underlying space2 is homeomorphic to a geographical space (which is a set of
regions, as we will explain shortly).3 In our applications, we use geographical data in the form
of shapefiles. Each geographical region (e.g., a neighborhood or zip code) is represented
in a shapefile by a polygon (or by multiple polygons, if the region is disconnected) with
many vertices (about 100 to 1000 vertices, depending on the particular shapefile and the
particular region). These polygons approximate the real-life boundaries of the geographical
regions. A naive approach to building a simplicial complex is to simply triangulate each
of the polygons. However, this approach has two issues. The first issue is that there are
often small overlaps between the polygons or spurious gaps between the polygons because the
polygon boundaries do not exactly match the real-life geographical boundaries. The vertices
of a polygon often lie in the interior of another polygon. The second issue is that simply
triangulating these polygons, which each have a very large number of vertices, would create
orders-of-magnitude more simplices than are necessary to represent a geographical space. It
is important to attempt to minimize the number of simplices in a simplicial complex because
PH and vineyard computation times are very sensitive to the number of simplices.

Rather than naively triangulating the given polygons, we use the shapefile of a geograph-
ical space to infer adjacency information about the regions; we then use only this information
to build a simplicial complex for that geographical space. In the resulting simplicial complex,
each region is represented by a union of triangles. We use about 1 to 10 triangles per region,
depending on the number of neighbors of the region. By contrast, the naive approach above
requires about 100 to 1000 triangles per region. Two adjacent regions that have a connected

2The underlying space of a simplicial complex is the union of its simplices. We note that it is common in
studies of TDA for authors to conflate the combinatorial and topological structures of a simplicial complex.

3The simplicial complex is “efficient” in the sense that it minimizes the number of simplices.
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intersection share exactly one edge in our simplicial complex, except in rare special cases that
we will discuss in section 3. Our simplicial complex for a geographical space satisfies the fol-
lowing “topological correctness” property: the union of any subset of the space’s geographical
regions is homeomorphic to the underlying space of the simplicial subcomplex (see section 3
for the definition of a simplicial subcomplex) that is induced by the union of the correspond-
ing triangles. When the geographical regions satisfy the mild assumptions (A1)–(A4) that we
define in section 3, our construction uses the minimum number of simplices that is possible
for a simplicial complex with the topological-correctness property above. (See property (P)
in section 3 for a precise statement of this property.)

As case studies, we apply our approach to two data sets. The first data set is a geospatial
data set of per capita vaccination rates in New York City (NYC) by zip code [11]. The
homology classes correspond to zip codes in which the vaccination rates are either lower or
higher (depending on choices that one can make in our approach) than in the neighboring zip
codes. The estimates of these rates are at a single point in time (23 February 2021). The
second data set consists of 14-day mean per capita COVID-19 case rates in neighborhoods
in the city of Los Angeles (LA) in the time period 25 April 2020–25 April 2021. Modeling
the spatiotemporal spread of COVID-19 is a complex task [1, 51]. In this geospatiotemporal
data set, the homology classes of our approach correspond to COVID-19 anomalies, which
are regions whose case rates are higher than in the neighboring regions.4 It is important to
examine such anomalies, as COVID-19 spreads with significant spatial heterogeneity and thus
has heterogeneous effects on different geographical areas.5 Many factors (such as mobility,
population density, socioeconomic differences, and racial demographics) play a role in how
COVID-19 affects different regions in disparate ways [9, 21, 22, 26]. In our case study of
COVID-19 case rates in LA, we construct a vineyard that (1) conveys which anomalies are
most persistent in time and (2) reveals how the anomalies move geographically with time.

1.2. Related work. Our method addresses several limitations of previous efforts to com-
bine TDA with geospatial analysis. In [44], Stolz, Harrington, and Porter studied the percent-
age of United Kingdom voters by electoral district that voted to leave the European Union in
the “Brexit” referendum. The holes that they identified using PH corresponded to districts
that voted differently than the neighboring districts. However, their approach does not distin-
guish between homology classes that are merely noise and homology classes that correspond
to small geographical districts. In [19], Feng and Porter developed an approach to study PH
by constructing FSCs using the level-set method [33] of front propagation from scientific com-
putation.6 Using their level-set complexes, they examined the percentage of voters in each

4We examine local maxima in the case-rate data. This contrasts to COVID-19 “hotspots,” which the CDC
has defined using an absolute threshold for the number of cases and criteria that are related to the temporal
increase in the number of cases [34].

5Other scholars have studied contagions using TDA in ways that do not yield topological features with
geographical meaning. For example, recent work used TDA to study the spatiotemporal spread of COVID-
19 [39] and Zika [41]. These papers examined topological features in atmospheric data, which were then used
to forecast case rates. In [45], TDA was used to study the Watts threshold model of a social contagion on noisy
geometric networks.

6The name “level-set method” may cause confusion. Importantly, the level-set simplicial complex of [19] is
not the simplicial subcomplex that has simplices with some prescribed filtration value (i.e., a level set of the
filtration values of a simplicial complex).
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precinct of California counties that voted for a given candidate (e.g., Hillary Clinton) in the
2016 United States presidential election. The homology classes represent precincts that voted
more heavily for Clinton than the neighboring precincts. The level-set complexes in [19] have
two key limitations. The first is that they cannot handle time-dependent data, as they are
built to study either data at a single point in time or data that has been aggregated over some
time window to yield time-independent data. The second limitation is that these simplicial
complexes reduce real-valued data (e.g., the percentage of voters who voted for Clinton) to
binary data (e.g., whether or not the majority voted for Clinton). Consequently, in this ex-
ample, the level-set-based PH does not capture the extent to which a blue “political island”
voted more heavily for Clinton. By contrast, our approach is designed specifically to capture
such information. As a trade-off, we no longer capture the geographical sizes of the political
islands. For further discussion, see Feng, Hickok, and Porter [17], who applied the level-set
filtration to study the cumulative case count of COVID-19 infections in Los Angeles on one
specific day.

Our new approach to compute PH is also able to resolve some other technical issues in [19].
In particular, some of the homology classes in the level-set approach of [19] are geographical
artifacts that are indistinguishable from true features of a data set. By contrast, the finite
1D homology classes in our approach are either in one-to-one correspondence with the local
maxima of a real-valued geospatial function (i.e., a real-valued function on a set of regions)
or in one-to-one correspondence with its local minima, depending on the choices that one
makes. Additionally, unlike the level-set approach in [19], we are able to detect extrema that
are adjacent to the boundary of a geographical space.

Other methods to construct simplicial complexes from geospatial data, such as rasteriza-
tion of a shapefile or treating the regions of the data as a point cloud, require a trade-off
between the number of simplices and the accuracy of the representation of the geographical
regions. For example, the level-set-based PH method of [19] uses orders-of-magnitude more
simplices to achieve sufficient resolution of small geographical regions (e.g., densely populated
urban centers that are important to analyze). See section 7 for further discussion.

We use vineyards in the present paper, but there are also other ways to study the topology
of time-varying data. For example, zigzag PH [7] was used in [13] to analyze time-dependent
point clouds (such as swarms) and in [50] to study time-delay embeddings of dynamical sys-
tems. Crocker plots and crocker stacks (i.e., stacks of crocker plots for different values of
a smoothing parameter) illustrate how the Betti numbers of a time-dependent point cloud
change with time and with a scale parameter ϵ [52]. Additionally, Kim and Mémoli [25]
used multiparameter PH [8] to study time-dependent point clouds. In sections SM1.3 and
SM1.4 of the accompanying supplementary materials, we show how one can use multiparam-
eter PH [3, 8] and multiparameter zigzag PH [7] to study our spatiotemporal COVID-19 data
sets.

1.3. Organization. Our paper proceeds as follows. In section 2, we briefly review relevant
topological background. In section 3, we formulate how we construct simplicial complexes. In
section 4, we define several filtration functions and discuss how to interpret the resulting PDs
and vineyards. In section 5, we apply our method to the LA and NYC data sets. In section 6,
we discuss our methodological choices. In section 7, we summarize our work and discuss
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some of its implications. In Appendix A, we discuss technical details of the simplical-complex
construction. In the accompanying supplementary material file supplement.pdf [local/web
779KB], we discuss alternative topological approaches for studying PH in geospatiotemporal
data, provide further information about the LA results, compare our approach to an “all-
but-one” statistical test, and show some demographic data. Our code is available at https:
//bitbucket.org/ahickok/vineyard/src/main/.

2. Background.

2.1. Persistent homology. We give a brief introduction to PH. See [35] for a more thor-
ough discussion of it.

A k-simplex is k-dimensional polytope that is the convex hull of k+1 vertices. The convex
hull of a subset of these vertices is a face of the simplex. A simplicial complex K is a set of
simplices that satisfies two requirements: (1) if σ ∈ K is a k-simplex, then every face of σ is
in K; (2) if σ and τ are simplices in K, then any nonempty σ ∩ τ is a face of both σ and τ .

A filtered simplicial complex (FSC) is a nested sequence Kα0 ⊆ · · · ⊆ Kαn = K of simplicial
complexes for some sequence {α0, . . . , αn} of indices. See Figure 2 for an example of an FSC.
A filtration function (or simply a filtration) f : K → R is a function such that if the simplex
τ ∈ K is a face of σ ∈ K, then f(τ) ≤ f(σ). A pair (K, f) induces an FSC as follows. Let
Kα := {σ ∈ K | f(σ) ≤ α} be the α-sublevel simplicial complex, and let {α0, . . . , αn} be the
image of f . The sequence Kα0 ⊆ · · · ⊆ Kαn = K is a nested sequence of simplicial complexes.
In our paper, we often refer to the pair (K, f) as the FSC itself. We do this because it is the
most natural way to define the FSCs for our applications.

We compute the homology of each Kαi over a field F, which we set to Z/2Z in the
present paper. Let Hp(Kαi ,F) denote the p-dimensional homology of Kαi over F. Homology
classes represent connected components, holes, and higher-dimensional voids in a simplicial
complex; specifically, p-dimensional homology classes represent p-dimensional “holes.” The
inclusion relationship Kαi ↪−→ Kαi+1 between subcomplexes induces a map ιi : Hp(Kαi ,F) →
Hp(Kαi+1 ,F) from the homology of Kαi to the homology of Kαi+1 . The inclusion map ιi lets
us track an element of Hp(Kαi ,F) to an element of Hp(Kαi+1 ,F). The p-dimensional PH of
an FSC is the pair (

{Hp(Kαi ,F)}0≤i≤n, {ιi}0≤i<n

)
.(2.1)

We say that a homology class γ is born at filtration level αi if i is the smallest index for which
γ is an element of Hp(Kαi ,F). We say that the homology class γ dies at filtration level αj if
αj−1 is the last filtration level at which γ exists. That is, ιj−1 ◦ · · · ◦ ιi maps γ ∈ Hp(Kαi ,F)
to 0 in Hp(Kαj ,F) and for all k < j− 1, we have ιk ◦ · · · ◦ ιi(γ) ̸= 0. Not every homology class
dies; we refer to classes that do die as finite and classes that do not die as infinite.

The Fundamental Theorem of Persistent Homology yields a set of generators for the PH
of an FSC [15, 16]. Each generator is a homology class. A generator has a birth simplex σb
that creates the homology class and (if finite) a death simplex σd that destroys the homology
class. If one is computing homology in dimension p, then σb is a p-dimensional simplex and
σd is a (p+ 1)-dimensional simplex. The simplex pair (σb, σd) represents the homology class.
For example, in Figure 2, there is one 1D PH generator. Its birth simplex is the edge (0, 3)
because this is the edge that completes the loop that encircles the hole, and its death simplex
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(a) K0 (b) K1 (c) K2 (d) K3 (e) K4

Figure 2. An example of nested simplicial com-
plexes in an FSC. Figure 3. The PD of the FSC in Figure 2.

Figure 4. An example of a vineyard. Each curve is a vine in the vineyard. [This figure is a slightly modified
version of a figure that appeared originally in [27].]

is the triangle (0, 2, 3) because this is the triangle that fills in the hole. The birth filtration
level of the homology class is f(σb) and the death filtration level (if finite) is f(σd).

A persistence diagram (PD) is a way of representing PH as a multiset of points in the

extended plane R2
. Each off-diagonal point represents a generator of the PH; the point’s

coordinates are the homology class’s birth and death filtration levels. One includes the points
on the diagonal for technical reasons; one can think of them as homology classes that die
instantaneously upon birth. See Figure 3 for an example of a PD.

2.2. Vineyards. The examination of vineyards is one way to study time-varying PH [27].
A time-dependent filtration function on a simplicial complex K is a function f : [t0, T ]×K → R
such that f(t, ·) is a filtration for all t. We compute the PH of (K, f(t, ·)) for all times t. We

visualize the vineyard in R2 × [t0, T ] as a continuous stack of PDs (see Figure 4). The points
in the PDs trace out curves with time; these curves are the vines. Each vine corresponds to
a homology class; a vine is the graph of the birth and death filtration levels of a particular
homology class as a function of time. The homology class that is represented by a vine has
a time-dependent birth simplex σb(t) and (if finite) a time-dependent death simplex σd(t). At
time t, the homology class is created by the simplex σb(t) at filtration level f(t, σb(t)) and
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(a) (b)

Figure 5. (a) A set S of geographical regions, as given by a shapefile [23]. (b) The resulting simplicial
complex K.

(if finite) destroyed by the simplex σd(t) at filtration level f(t, σd(t)). The functions σb(t)
and σd(t) are piecewise constant. We measure the overall persistence of a vine by calculating∫ T
t0
[f(t, σd(t))− f(t, σb(t))] dt.
Cohen-Steiner, Edelsbrunner, and Morozov [12] developed an algorithm for computing

vineyards when they introduced them. One computes the initial PH at time t = t0, and
one then updates the pairings of birth and death simplices as the order of the simplices (as
induced by f(t, ·)) changes with time. Each change in the order of the simplices occurs one
transposition at a time. One can make these updates in O(m) time (where m is the number
of simplices) per transposition of simplices.

3. Constructing a simplicial complex. We now show how we construct a simplicial com-
plex K from geographical data (e.g., a shapefile that specifies approximate geographical
boundaries of a set of geographical regions). We partition a given geographical space into
regions. In section 5.1, the regions are zip codes in NYC; in section 5.2, the regions are
neighborhoods in the city of LA. Let S be the set of regions. We refer to the complement of⋃

R∈S R as the exterior region. We construct a 2D simplicial complex K with the following
property:

(P) There is an assignment of 2D simplices to regions such that the union of any subset of
regions is homeomorphic to the underlying space of the simplicial subcomplex 7 that is
induced by the union of the corresponding 2D simplices.

In Figure 5, we show an example of our construction, which we discuss in this section and
present in more detail in Appendix A. Under the mild assumptions (A1)–(A4) that we define
shortly, our simplicial complex has the minimum number of simplices that is possible for a
simplicial complex that satisfies property (P). Constructing an efficient simplicial complex is
important because the time that it takes for TDA computations depends sensitively on the
number of simplices in a simplicial complex.

In our case studies, the geographical data take the form of shapefiles. In a shapefile,
each region is represented by a polygon with holes8 (or by multiple polygons with holes, if the

7The simplicial subcomplex that is induced by a set E ⊆ K is the smallest simplicial complex K′ that
contains the set E of simplices. That is, if K′′ is a simplicial complex that contains E, then K′ ⊆ K′′. When
K is 1D, a simplicial subcomplex is equivalent to an induced subgraph.

8A polygon with holes is P = Q −
⋃h

i=1 int(Hi), where Q is a polygon that encloses polygons H1, . . . , Hh

(the holes) [37] and int(Hi) denotes the interior of Hi. It is possible to have h = 0 holes. (In that case, P = Q.)
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1124 A. HICKOK, D. NEEDELL, AND M. A. PORTER

region is disconnected) that closely approximates the actual geographical region. (A shape-
file stores the coordinates of the boundaries of the polygons.) For an example of shapefile
data, see Figure 5(a). As we discussed in section 1.1, the polygon boundaries are not al-
ways aligned perfectly, so their interiors sometimes overlap and gaps can occur between them.
Therefore, to construct a simplicial complex K, we must do more than merely triangulate
these polygons. Additionally, the polygons in our shapefiles have roughly between 100 and
1000 vertices, which is many more vertices per region than in the simplicial complex K that
we will construct shortly.

We make the following assumptions about geographical regions:
(A1) There are a finite number of regions, and each region has a finite number of connected

components.
(A2) Each component of a region is homeomorphic toD0−

⋃h
i=1 int(Di), whereD0 is a closed

disk that encloses some number (which can be 0) of other closed disks D1, . . . , Dh (i.e.,
the holes in the region). For all i ̸= j, the intersection Di ∩Dj has at most one point.
See, for example, the West Vernon region in Figure 6(b); it is homeomorphic toD0−D1

(an annulus) for two disks D0 and D1 that do not intersect. (In our case studies, it is
rare for any of the disks to intersect.)

(A3) The intersection between any two regions has a finite number of components, and the
interiors of the regions do not intersect.

(A4) The intersection between three or more regions is either a point or ∅.
Assumptions (A1)–(A4) are very reasonable for human-made geographical boundaries.

We do not even require the regions to be simply connected or the region intersections to be
connected. In Figure 5(a), we illustrate the most typical situation that we encounter. In this
example, LA neighborhood Granada Hills is homeomorphic to a disk and its boundary inter-
sects the boundaries of five neighboring regions (counting the exterior region). In Figures 6
and 7(a), we illustrate a few other situations that can arise in geospatial applications.

We now outline our procedure for building a simplicial complex. For each region R, we
construct a “reduced” polygon with holes PR that has orders-of-magnitude fewer vertices
than the polygons with holes in the associated shapefile. The number of holes in PR

is equal to the number of holes in the geographical region R. We glue the boundaries of
{PR | R ∈ S} together in a way that respects the geographical region boundaries. We then

(a) Valley Glen (b) West Vernon

Figure 6. Various neighborhoods of Los Angeles, as given by a shapefile [23]. (a) The four neighborhoods
Valley Glen, Valley Village, Sherman Oaks, and North Hollywood intersect in a point. (b) The neighborhood
West Vernon has a hole because of its neighbor Vermont Square.
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(a) (b)

Figure 7. (a) A geographical set S that consists of the neighborhood Koreatown and its neighbors, as given
by a shapefile [23]. Observe that the neighborhood Little Bangladesh has only two neighbors and that the
intersection between Koreatown and Wilshire Center has two components. (b) The result of gluing Koreatown’s
polygon to the polygons of its neighbors.

triangulate each of the polygons to obtain a 2D simplicial complex K. We assign a 2D simplex
σ ∈ K to the region R whose polygon PR originally contained σ. In Figure 5, we show
an example of the resulting K. Our code for our simplicial-complex algorithm is available
at https://bitbucket.org/ahickok/vineyard/src/main/.9 In the remainder of this section, we
discuss the details of this process.

3.1. Constructing a reduced polygon with holes for each region. Without loss of gen-
erality, we assume that each region is connected; if not, we treat each component of a region
as if it were its own region. For each region R, we construct a reduced polygon with holes
PR using adjacency information that we infer from a shapefile. Let D0, D1, . . . , Dh be the
disks in the statement of assumption (A2), and let Bi = ∂Di. Under the geographical as-
sumptions (A1)–(A4), the intersections of a region R with its neighbors are such that for each
boundary Bi, one can order the neighbors in clockwise (or counterclockwise) fashion, possibly
with repetition.10 Let Si denote this sequence of neighbors around Bi. We list intersections
with the exterior region in the same manner as for any other neighboring region. We also
record whether each intersection is 1D or 0D. For example, in Figure 6(a), the clockwise se-
quence of neighbors around the boundary of Valley Glen is {Van Nuys, North Hollywood,
Valley Village, Sherman Oaks}. The intersection with Valley Village is 0D and the other
intersections are 1D. For regions such as West Vernon in Figure 6(b), we obtain a sequence
Si for each boundary Bi. Each sequence is unique up to the choice of starting neighbor.

Given a sequence of neighbors for each boundary Bi (which, if necessary, we adjust as in
Appendix A.1), we construct a polygon with holes PR as follows. Let (P ′)R be a polygon that
has one edge for each N ∈ S0 for which the corresponding component of N ∩ B0 is 1D. Let

9This code has one limitation that the algorithm in the present paper does not. It requires that no interior
region (i.e., a region that is contained within the outer boundary of another region) intersects any other interior
region. This does not occur in our data, and we believe that it does not occur in most geographical spaces.

10Theoretically, several 0D intersections can be adjacent to each other, although this scenario does not occur
in our data sets. That is, in principle, there can exist a sequence {Ni, . . . , Ni+k} of neighbors such that Nj ∩R
is the same point p for all j. The order of this sequence is not determined uniquely by the intersections of the
neighbors with R. Instead, we order them in the order in which they appear clockwise (or counterclockwise)
around the point p. This sequence must be finite because there are a finite number of regions and (A2) implies
that Nj1 ̸= Nj2 if j1 ̸= j2.
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1126 A. HICKOK, D. NEEDELL, AND M. A. PORTER

{HR
i }hi=1 be a set of polygons that are contained in (P ′)R and satisfy the following properties:
1. HR

i has one edge for each N ∈ Si for which the corresponding component of N ∩ Bi

is 1D,
2. HR

i ∩HR
j ̸= ∅ if and only if Di ∩Dj ̸= ∅,

3. PR ∩HR
i ̸= ∅ if and only if D0 ∩Di ̸= ∅, and

4. if the intersection of two polygons in {PR, HR
1 , . . . ,H

R
h } is nonempty, then the inter-

section is a vertex.
The locations of the vertices do not matter. We define PR to be (P ′)R −

⋃h
i=1 int(H

R
i ),

which is homeomorphic to R by assumption (A2). Finally, we annotate each edge of PR with
the neighbor that corresponds to it. We also annotate each vertex with the sequence of its
adjacent regions, which we list in clockwise order starting with R.

3.2. Gluing together the polygons with holes. We glue the polygons with holes {PR |
R ∈ S} along their edges according to their edge and vertex annotations. More precisely, if
PR1 has n nonadjacent edges with the annotation R2 (which is the typical situation when
R1 ∩R2 has n components that are 1D), then PR2 has exactly n nonadjacent edges with the
annotation R1. For example, in Figure 7, R1 = Koreatown and the annotated polygon with
holes PR1 has two edges with the annotation R2 = Wilshire Center. Let (u, v), with u and
v in clockwise order, be the vertices of an edge in PR1 with annotation R2. Because the n
edges are nonadjacent, u and v must each have at least three neighbors (including R1 and R2).
For example, in Figure 7, again consider the two edges with the annotation Wilshire Center.
The two vertices u1 and v1 of one edge have the adjacency sequences {Koreatown, Hancock
Park, Wilshire Center} and {Koreatown, Wilshire Center, Little Bangladesh}, respectively.
The two vertices u2 and v2 of the other edge have the adjacency sequences {Koreatown, Little
Bangladesh, Wilshire Center} and {Koreatown, Wilshire Center, Pico-Union}, respectively.
For a given (u, v), we seek an edge (x, y) (with x and y in clockwise order) in PR2 with the
annotation R1 such that (1) u and y are annotated with the same sequences and (2) v and
x are annotated with the same sequences. We know that there must be at least one such
edge because (u, v) represents a component of R1 ∩ R2 and there is some edge in PR2 that
represents the same component (so its vertices have the same sequences of adjacent regions
as u and v). In Lemma A.2, we prove that there is a unique such edge. If there are n > 1
consecutive edges e0, . . . , en−1 on the boundary of KR1 with annotation R2, then there are n
consecutive edges e′0, . . . , e

′
n−1 on the boundary of KR2 with annotation R1. This situation

arises precisely because of the adjustments that we discuss in Appendix A.1. We glue ei to
e′n−i for all i. If R1 ∩ R2 is homeomorphic to S1, then the choice of e′0 as the first edge in
PR2 is not unique, but all choices result in topologically equivalent spaces. In Figure 7(b), we
show the result of the gluing process for Koreatown and its neighbors.

3.3. Triangulating the polygons with holes. We triangulate each polygon with holes
PR using the inductive algorithm in [37]. We show examples of triangulated polygons with
holes in Figure 8. The result of this triangulation process is a 2D simplicial complex K with
property (P). (The assignment in property (P) maps a 2D simplex in the polygon with holes
PR to the geographical region R.) The simplicial complex K is a minimal simplicial complex
with property (P) because (1) each polygon with holes PR has the minimum number of
vertices and holes and (2) the number of triangles in the triangulation of PR is determined by
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(a) (b) (c) (d)

Figure 8. Triangulation of a polygon with holes PR for a region R when (a) R has no holes, (b) R has a
single hole, (c) R has multiple holes, and (d) R has a hole that touches the exterior boundary of R.

its number of vertices and its number of holes by Euler’s theorem (see [37]). For an example,
see Figure 5(b).

4. Our filtration functions. We define various filtrations that one can use with the simpli-
cial complex K that we constructed in section 3, and we discuss how to interpret the resulting
PDs and vineyards. Let S be the set of geographical regions R that the simplicial complex
K represents, and let F : S → R be a real-valued function on S. For example, in section 5.1,
F (R) is the per capita full-vaccination rate (i.e., having received all required doses of some
vaccine) for COVID-19 in NYC zip code R. In sections 4.1 and 4.2, we define two filtration
functions that are induced by F . Given a time-dependent and real-valued function F (t, R), we
define time-dependent filtration functions in section 4.3. For example, in section 5.2, F (t, R)
is the 14-day mean per capita COVID-19 case rate in neighborhood R on day t. From a
time-dependent filtration function, we compute a vineyard.

4.1. The sublevel-set filtration. In this subsection, we define a sublevel-set filtration. In
our applications, we use the 1D PH of the sublevel-set filtration to analyze local maxima in
our data sets. We illustrate the idea of a sublevel-set filtration in Figure 9.

Definition 4.1 (sublevel-set filtration). Let K be the simplicial complex that we obtain from
our construction in section 3 for a set S of regions, and let g be the assignment of 2D simplices
to the regions. Let F : S → R. We define the sublevel-set filtration function f by considering
the sublevel sets of F . On the 2D simplices, we define the filtration function by

f(σ) = F (g(σ)) .

We extend the filtration function to the remaining (lower-dimensional) simplices as follows.
If σ is a vertex or edge on the boundary of K, we set

f(σ) = min
R

F (R) .

Otherwise, we set

f(σ) = min{f(σ̃) | σ̃ is a 2D simplex for which σ is a vertex or edge of σ̃}.(4.1)

At filtration level α, the simplicial complex Kα is the simplicial subcomplex of K that is
induced by the union of the set of 2D simplices σ such that F (g(σ)) ≤ α and the set of vertices
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. In panels (a)–(e), we show the α-sublevel sets for increasing α of a function f : R2 → R that
has two well-separated local maxima. In (a), for the smallest value of α, there is one hole that corresponds
to the global maximum. In (b), a second hole appears; it corresponds to the other local maximum. In (d),
the second hole is filled in. In (e), the first hole is filled in. In panels (f)–(j), we show the α-sublevel sets for
increasing α of a function g : R2 → R whose two local maxima have the same locations and values as f but are
not well-separated from each other. The second hole does not appear until the sublevel set in panel (h). In all
panels, the jagged edges are artifacts of the way that the Python package matplotlib plots surfaces.

and edges that are on the boundary of K. Henceforth, we say that the vertices and edges on
the boundary of K are “exterior-adjacent.” By construction, the underlying space of Kα is
homeomorphic to the union of all regions R such that F (R) ≤ α and the exterior boundary.
We set f(σ) = minR F (R) for exterior-adjacent vertices and edges σ for technical reasons that
we will explain in a few paragraphs. In section SM1.2 of the accompanying supplementary
materials, we explore an alternative definition in which we set the filtration values of exterior-
adjacent vertices and edges σ to minR{F (R) | R ⊂ C}, where C is the connected component
that contains σ.

The 1D PH of the sublevel-set filtration encodes information about the structure of the
local maxima of F . A region R of a geographical space is a local maximum if the value F (R)
is larger than the value F (N) for all neighboring regions N of R for which N ∩ R is 1D.
More generally, we consider a set E ⊆ S of regions (where |E| = 1 is possible) to be a local
maximum if

1. the interior of
⋃

R∈E E is connected,
2. the value of F is constant on E (we denote this value by F (E)), and
3. the value F (E) is larger than the value F (N) for all regions N ̸∈ E such that N ∩ R

is 1D for some R ∈ E.
If E is a local maximum, there is a 1D homology class whose death simplex is one of the

simplices in the preimage g−1(E), where g is the map from 2D simplices in K to geographical
regions in S. The class dies at filtration level α = F (E). For example, if F (R) is the COVID-
19 case rate in region R, then the 1D homology classes correspond to COVID-19 anomalies and
the death simplex of a 1D homology class indicates the epicenter of that anomaly. The larger
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the value F (E) in comparison to nearby regions (including regions that are not necessarily
immediate neighbors), the more persistent the homology class is. If the union of all regions
(excluding the exterior region) is not simply connected, then there is at least one 1D homology
class with an infinite death time. See Figure 11(b) for an example. The infinite 1D homology
classes correspond to the holes in the geographical space, rather than to local maxima. The
local maxima of F are in one-to-one correspondence with the set of 1D homology classes with
finite death times.11 There is a canonical mapping from finite 1D homology classes to regions.
A class that is represented by the simplex pair (σb, σd) is mapped to the region g(σd) that
includes σd. The region g(σd) is the location of the local maximum of F that corresponds to
the homology class,12 and the death simplex’s filtration value f(σd) is the value of the local
maximum. The death simplices of the finite 1D homology classes and their filtration values
give the local-maximum locations R and their function values F (R).

With the 1D PH, we can do more than simply identify local maxima and their locations;
the 1D PH also reveals information about relationships between the local maxima. If the
local maxima are well-separated from one another, then the corresponding homology classes
all have early birth times. For example, the NYC data set has several connected components.
One can think of the global maximum of each connected component as “totally separated”
from each other because they are on different connected components. The corresponding
1D homology classes are all born at the earliest possible filtration time, which is minR F (R)
(see Figure 12(a)). We showed an example of well-separated local maxima in Figure 1(a).
By contrast, the two local maxima in Figure 1(b) are not well-separated, so the homology
class that corresponds to the lower peak in Figure 1(b) is born at a larger filtration value
than the homology class in Figure 1(a). See Figure 9 for visualizations of the sublevel sets
of the functions in Figure 1. The birth times of the 1D homology classes reflect structural
information about the local maxima.

We set the filtration value of exterior-adjacent vertices and edges to the global minimum
minR F (R) so that 1D PH can detect local maxima on the boundary of a geographical space.
(We consider an alternative approach in the accompanying supplementary material file sup-
plement.pdf [local/web 779KB].) This is important for the LA data set of COVID-19 case
rates. As we can see in Figure 17, many of the most-persistent COVID-19 anomalies are on
the boundary of the geographical space; it is crucial that we are able to detect them. If we
had not defined the exterior-adjacent filtration values in this way, then the filtration value of
exterior-adjacent vertices and edges σ would be F (R), where R is the unique region that is
adjacent to σ. If R is a local maximum, its corresponding 1D homology class is born and dies
at filtration level α = F (R). In the PD, it then appears as a point on the diagonal. Therefore,
for 1D PH to detect local maxima on the boundary of a geographical space, we must adjust
the filtration values of exterior-adjacent vertices and edges.

11Recall that in our definition of a local maximum, we only compare the value in a region R (or the constant
value in a set E of regions) to the values in neighboring regions N that have 1D intersections with R (or with
a region in E). It is possible for two local maxima, R1 and R2, to have a 0D intersection. In that case, we
let N be the set of regions that are adjacent to R1 ∪ R2. It is then the case that N is homotopy-equivalent
to a figure-8, which has two 1D homology generators. One of the generators corresponds to R1 and the other
generator corresponds to R2.

12Let E ⊆ S be the local maximum that corresponds to the 1D homology class. If E = {R}, then g(σd) = R.
However, if E contains multiple regions, then g(σd) is only one of the regions in E.D
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The 0D homology classes correspond to local minima of F . However, unlike for the 1D
homology classes, there is not a natural mapping from 0D homology classes to the locations
of the minima. In the accompanying supplementary material file supplement.pdf [local/web
779KB], we discuss the interpretation and computation of 0D homology classes.

4.2. The superlevel-set filtration. An alternative to using the sublevel-set filtration from
section 4.1 is to use superlevel sets of F to construct a superlevel-set filtration. In our case
study of COVID-19 vaccination rates in NYC, we use a superlevel-set filtration to analyze
local minima of the vaccination rate. We define a local minimum analogously to the way
that we defined a local maximum in section 4.1. We illustrate the idea of the superlevel-set
filtration in Figure 10.

Definition 4.2 (superlevel-set filtration). Let F : S → R for a set S of regions. The
superlevel-set filtration function f is the sublevel-set filtration function that is induced by −F .

At filtration level −α, the simplicial complex K−α is the simplicial subcomplex of K that
is induced by the union of the set of exterior-adjacent simplices and the set of 2D simplices
σ for which F (g(σ)) ≥ α. By construction, the underlying space of K−α is homeomorphic to
the union of regions R for which F (R) ≥ α along with the exterior boundary. Local maxima
of F now correspond to 0D homology classes, and local minima of F now correspond to 1D
homology classes; this is the opposite situation from the sublevel-set filtration. Our discussion
of local maxima for the sublevel-set filtration in section 4.1 applies to local minima for the
superlevel-set filtration, and our discussion of local minima for the sublevel-set filtration in
section 4.1 applies to local maxima for the superlevel-set filtration. The only difference is that
the filtration values in the superlevel-set filtration are the additive inverses of the function
values of F . This implies, for example, that the death filtration value of a 1D homology class
that corresponds to a local minimum at region R is α = −F (R), rather than α = F (R).

4.3. A time-dependent filtration. Suppose that we have a time-dependent, real-valued
function F (t, R) whose domain is {t0, t1, . . . , tn} × S, where t0 ∈ R is the initial time and
tn ∈ R is the final time. For example, in section 5.2, F (t, R) is the 14-day mean per capita
COVID-19 case rate in Los Angeles in neighborhood R on day t. We seek to analyze the
structure of local extrema as they change with time.

Definition 4.3 (time-dependent sublevel-set filtration). Let F : {t0, t1, . . . , tn} × S → R be a
time-dependent function on a set S of regions, and let K be the simplicial complex for S from
the construction in section 3. At each time ti ∈ {t0, t1, . . . , tn}, we define the time-dependent

Figure 10. The α-superlevel sets, with α decreasing from left to right, for the graph of a function f : R2 → R
with two local minima.
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(a) NYC zip codes (b) LA neighborhoods

Figure 11. We show (a) the per capita COVID-19 full-vaccination rate in NYC by (modified) zip code on
23 February 2021 and (b) the 14-day mean per capita COVID-19 case rate in the city of LA by neighborhood on
30 June 2020. In both (a) and (b), the white regions are geographical regions that do not belong to the depicted
city.

filtration function f(ti, ·) to be the sublevel-set filtration that is induced by F (ti, ·). To extend
this filtration function to the entire interval [t0, tn], we linearly interpolate f(·, σ) on each
subinterval [ti, ti+1] for all simplices σ ∈ K.

In the present paper, we only use the time-dependent sublevel-set filtration, but one can
analogously define a time-dependent superlevel-set filtration. We have implemented both of
these filtrations in our code.

We use a time-dependent sublevel-set filtration to construct a vineyard. This allows us
to track how the extrema move in both space and time. As in section 4.1, each finite vine
corresponds to a local maximum whose location at time t is given by the region g(σd(t)) that
contains the vine’s time-dependent death simplex σd(t).

13 The length of a vine corresponds
to its persistence in time.

5. Case studies. We now apply our methods to two data sets, which we illustrate in
Figure 11.

5.1. COVID-19 vaccination rates in New York City. We examine vaccination rates in
(modified) zip codes of NYC14 and we demonstrate the two filtrations that we defined in
section 4. The geographical boundaries of the zip codes are specified by a shapefile [32].
From the shapefile, we construct a simplicial complex K in the manner that we described in
section 3. Our vaccination data set, which we obtained from the NYC Department of Health
and Mental Hygiene website [11], consists of the number of fully vaccinated people in each

13It is known that vineyards are not stable [52]. A small perturbation in filtration values can cause crossings
of vines that previously did not cross (i.e., an “avoided crossing”). This, in turn, causes simplex pairings to
change. Therefore, the geographical region g(σd(t)) that corresponds to a particular vine at time t is sensitive
to small perturbations in filtration values.

14The NYC Department of Health and Mental Hygiene uses modified zip code tabulation areas (MODZCTA)
for COVID-19 data [32]. In these modified zip codes, some zip codes with small populations are combined [31].
We henceforth refer to modified zip codes as simply “zip codes.”
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1132 A. HICKOK, D. NEEDELL, AND M. A. PORTER

(a) Sublevel-set filtration (b) Superlevel-set filtration

Figure 12. PDs for the 1D PH of the NYC simplicial complex with filtrations that are induced by the per
capita full-vaccination rate by zip code on 23 February 2021. We show only the finite homology classes. Each
point in a PD corresponds to a zip code, which we label according to its borough [30], that has (a) a higher
vaccination rate than its neighboring zip codes or (b) a lower vaccination rate than its neighboring zip codes.

zip code on 23 February 2021.15 For each zip code, we divide this number by its population
estimate in [11] to obtain a per capita vaccination rate. For zip code R, we define F (R) to be
the per capita vaccination rate in R on 23 February 2021.

We do not possess the daily vaccination-rate data that is necessary to compute a vineyard,
so instead we calculate the PH of K with the sublevel-set and superlevel-set filtrations from
sections 4.1 and 4.2. We show the resulting PDs for the 1D PH in Figure 12. As we described
in section 4.1, the points in the PD from the sublevel-set filtration correspond to zip codes
in which vaccination rates are higher than in the neighboring zip codes. The death filtration
level of a homology class is the vaccination rate in that zip code, and the birth filtration level
of a homology class reflects the extent of spatial isolation of that zip code from other local
maxima. An earlier birth filtration implies more spatial isolation. Similarly, the points in the
superlevel-set filtration PD correspond to zip codes in which the vaccination rates are lower
than in the neighboring areas. As we discussed in section 4.1, we obtain the zip code that is
associated with a homology class from its death simplex σd. We color the points in the PDs
by the boroughs of their corresponding zip codes.

In Figures 13 and 14, we highlight the locations of the maxima and minima, respectively.
In Figures 13(a) and 14(a), we color the extrema based on their vaccination rates. In Figure
14(a), we observe that the minima all have near-0 vaccination rates. In Figures 13(b) and
14(b), we color each zip code according to the persistence (i.e., the value death − birth) of
its corresponding homology class. These two figure panels incorporate global information
about the structure of the extrema, as we described in the paragraph above and in section
4. For example, in Figure 14(b), we observe that some of the minima (specifically, those
with the largest values of persistence) are significantly more spatially separated than others,

15At the time, the NYC Department of Health and Mental Hygiene defined “fully vaccinated” people to be
individuals who either had received both doses of the Pfizer or Moderna vaccine or had received one dose of the
Johnson & Johnson vaccine. (This differs from common parlance at that time, in which people were sometimes
considered to be “fully vaccinated” only after two weeks had passed since their final dose of a vaccine.)
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(a) (b)

Figure 13. Maps of the local maxima of the NYC vaccination-rate function. (a) Color corresponds to the
vaccination rate of a zip code. (b) Color corresponds to the persistence (i.e., death− birth) of the corresponding
homology class.

(a) (b)

Figure 14. Maps of the local minima of the NYC vaccination-rate function. (a) Color corresponds to the
vaccination rate of a zip code. (b) Color corresponds to the persistence (i.e., death− birth) of the corresponding
homology class.

even though all of the minima have similar vaccination rates. A larger persistence of a local
minimum indicates a greater difference between the vaccination rates of the minimum and
those of the neighboring zip codes. A zip code that is a local minimum with a large persistence
may have a greater inequity in vaccine access than its neighboring regions. Such insights may
be useful for sociologists and policy makers.

An issue arises from the fact that several of the NYC zip codes are islands and thus are
isolated. These islands are trivial extrema because they are not adjacent to any other zip codes.
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1134 A. HICKOK, D. NEEDELL, AND M. A. PORTER

One may wish to exclude these trivial extrema from a PD. In the accompanying supplementary
material file supplement.pdf [local/web 779KB], we propose alternative methods for handling
disconnected geographical spaces such as NYC.

The PDs in Figure 12 may be helpful for studies of inequities in vaccine access. For
example, one may seek to discern patterns in demographic data that correspond to the most-
persistent points in the PDs. For interested readers, we provide some demographic data
in section SM4 of the accompanying supplementary material file supplement.pdf [local/web
779KB].

5.2. COVID-19 case rates in the city of Los Angeles. We now examine time-dependent
COVID-19 case rates in neighborhoods of the city of LA.16 The geographical boundaries of
the neighborhoods are specified by a shapefile [23]. From the shapefile, we construct a
simplicial complex K in the manner that we described in section 3. We also know the number
of cases in each neighborhood on each day from 25 April 2020 to 25 April 2021. For each
neighborhood, we divide the case count by the neighborhood population to obtain per capita
case rates, and we calculate a running 14-day mean17 on each day to smooth the data. For
neighborhood R and time t ∈ {0, 1, . . . , 365}, we define F (t, R) to be the 14-day mean per
capita case rate in R on day t after 25 April 2020. We compute the vineyard for a simplicial
complex K using the time-dependent sublevel-set filtration that is induced by F (t, R). We
show the most important and interesting subsets of our vineyard in Figures 15 and 18. See
Figure SM2 of the accompanying supplementary materials for the full vineyard.

The vines in the vineyard correspond to COVID-19 anomalies, which we define to be neigh-
borhoods that have higher running 14-day mean COVID-19 case rates than the surrounding
neighborhoods for at least one day. Anomalies that are more spatially isolated yield vines
with earlier birth-filtration levels, and anomalies with high case rates yield vines with late
death-filtration levels. See section 4.1 for a detailed discussion. We color each vine according
to the geographical location(s) of its anomaly. As we discussed in section 4.3, we obtain the
anomaly location(s) from the time-dependent death simplex σd(t) of a vine. The function
σd(t) is a piecewise-constant function; as it changes, so does the location of the associated
anomaly. Therefore, the color of a vine can change with time. For example, consider Fig-
ure 15, where we show the five most-persistent vines.18 The global maximum of the data
set is initially in Little Armenia, but it moves to Vermont Square at about t = 220. In the
vineyard, we see this from the vine that is initially blue (for Little Armenia) from time t = 0
until about t = 220 and then orange (for Vermont Square) starting from about time t = 220
through time t = 365. There are also other vines whose locations change with time. Such
geographical location changes do not need to be adjacent, but they often are near each other.
In Figure 17, we highlight these anomalies on a map.

A vineyard encodes the temporal persistence of anomalies. The length of time that a vine
is not on the diagonal plane of a vineyard, which we henceforth call the “length” of a vine, is
the amount of time that an anomaly exists in the vineyard. At the beginning of the COVID-19

16We exclude Angeles National Forest because it has only 20 inhabitants.
17On day t, we take the mean of the case rates on days t, t− 1, . . . , t− 13. Some outlets (e.g., [43]) report

running 14-day means of COVID-19 case counts, and other outlets (e.g., [47]) report 14-day trends.
18In section 2.2, we defined the persistence of a vine to be

∫ T

t0
[f(t, σd(t)−f(t, σb(t))] dt, where t0 is the initial

time and T is the final time.D
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(a)

(b)

Figure 15. (a) The five most-persistent vines of the vineyard for the LA simplicial complex with a sublevel-
set filtration from the 14-day mean per capita case rate during the period 25 April 2020–25 April 2021. (See
Figure SM2 of the accompanying supplementary materials for the full vineyard.) Each vine corresponds to
a COVID-19 anomaly. We color each vine according to the geographical locations of its associated anomaly.
Because the geographical location of an anomaly can change with time, a single vine can have multiple colors.
(See Figure 16 for the legend.) (b) A different view of the same five vines.
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1136 A. HICKOK, D. NEEDELL, AND M. A. PORTER

Figure 16. The legend for Figure 15. Each of the depicted regions is a local maximum of the COVID-19
case-rate function for some subset of the time period 25 April 2020–25 April 2021.

Figure 17. A map of the most-persistent anomalies of the COVID-19 case-rate function in LA during the
time period 25 April 2020–25 April 2021. Each of the highlighted regions is a local maximum of the COVID-19
case-rate function for some subset of the time period.

pandemic, all neighborhoods had low per capita case rates. We expect an emerging anomaly
to have a low case rate for a long time and then for the case rate to grow rapidly starting at
some later time. An emerging anomaly in the “low-case-rate” phase yields a vine that is close
to the diagonal for a long time. By examining the lengths of vines, we hypothesize that one
can distinguish between concerning emerging anomalies (i.e., those that may become major
COVID-19 anomalies in the future) and anomalies of lesser concern, even when the anomalies
have similar case rates.

In Figure 18, we show case rates early in the time period that we track (and close to
the “beginning”19 of the COVID-19 pandemic) by computing the vineyard for the period 25
April 2020–25 May 2020. In the depicted vineyard, we exclude the 20 most-persistent vines
to more easily see the vines that are close to the diagonal plane. Many of these latter vines
are short, so their associated anomalies are short-lived. The longer vines are anomalies that
are longer-lived and thus of greater concern in the long run, even though they are close to the
diagonal during the period 25 April 2020–25 May 2020. For example, there is an anomaly at
Wilmington that we show with the light-blue vine. This vine is close to the diagonal plane, but
it has a large temporal persistence during the period 25 April 2020–25 May 2020. In Figure 15,

19The COVID-19 pandemic was declared a national emergency in the United States on 13 March 2020 [49],
and the city of LA closed its public schools and ordered the closure of restaurants, bars, and gyms on 16 March
2020 [24].
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(a)

(b)

Figure 18. (a) Vineyard for the LA simplicial complex with a sublevel-set filtration for the 14-day mean
per capita case rate during the period 25 April 2020–25 May 2020. We exclude the 20 most-persistent vines to
more easily see the vines that are near the diagonal plane. Each vine is associated with a COVID-19 anomaly,
and we color each vine according to the geographical location(s) of its anomaly. See Figure 19 for the legend.
(b) A different view of the same set of vines.
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1138 A. HICKOK, D. NEEDELL, AND M. A. PORTER

Figure 19. The legend for Figure 18. Each of the depicted regions is a local maximum of the COVID-19
case-rate function for some subset of the time period 25 April 2020–25 May 2020.

we see that Wilmington eventually becomes one of the most-persistent anomalies in LA.

6. Discussion. In our approach, we needed to make a variety of choices. There are other
ways to construct a simplicial complex to represent a geographical space. There are also other
choices of topological tools for analyzing time-varying data. We briefly discuss some of these
possibilities in the next several paragraphs.

If one only cares about local information (specifically, the locations and values of the
extrema) and not about global information (such as the spatial separation between extrema),
then an alternative method to construct a simplicial complex K is to construct the dual
graph of the set S of regions. That is, for each region R (and for each component of any
region R with multiple components), there is a vertex vR ∈ K, and if regions R1 and R2

are adjacent, then there is an edge between vR1 and vR2 . If we wish to study local maxima
of a function F : S → R, then we define the filtration of an edge e = (vR1 , vR2) to be
f(e) = max{F (R1), F (R2)} and we define the filtration of a vertex vR to be f(vR) = 0.
(There is an analogous definition for studying local minima.) In the 0D PH of the FSC (K, f),
the homology classes correspond to local maxima. If a homology class’s birth simplex is the
vertex vR, then R is the corresponding local maximum and F (R) is the death filtration level
of the homology class. All of the 0D homology classes are born at 0, so the birth filtration
level does not provide any additional information, as it did for our construction in section 3.
Consequently, we do not obtain any global information from the PH of (K, f).

Rasterization gives another method to construct a simplicial complex from shapefile
data. When one rasterizes a shapefile, one can transform the resulting image into a simplicial
complex by imposing the pixels of the image onto a triangulation of the plane. However, our
approach has several key advantages over rasterization. First, the number of simplices in the
simplicial complex that one obtains by rasterizing a shapefile is orders-of-magnitude larger
than the number of simplices in our construction. Computing the PH of a simplicial complex
with fewer simplices allows significantly faster computations. Second, the simplicial complex
that one obtains by rasterization has no guarantee of “topological correctness,” as property (P)
may not hold. The extent to which the resulting simplicial complex is topologically correct
depends on the resolution of the rasterization, and using a higher resolution requires more
simplices. Our construction of simplicial complexes also yields a natural way to map a 2D
simplex to the geographical region that contains it. We use this preservation of geographical
information to find the locations of the local extrema. Finally, our construction allows us to
detect anomalies on the boundary of a geographical space.

Our construction uses geographical adjacencies, but one may instead wish to employ
“effective” distances between regions. One can calculate effective distances using mobility and
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transportation data. Two regions that are closely connected via transportation are effectively
closer than they are based on direct geographical considerations; this affects phenomena such
as the dynamics of infectious diseases [4, 38].

We used only 1D PH to study extrema, but one can alternatively use 0D PH if one is not
interested in the geographical locations of the extrema; we discuss this in section SM1.1 of the
accompanying supplementary materials. In section SM1.2 of the accompanying supplementary
materials, we discuss alternative filtrations that one can apply to geographical spaces (such as
NYC) that are disconnected. We used a time-dependent function on a geographical space to
compute vineyards, but an alternative is to use an approach that is based on multiparameter
PH. In section SM1.3 of the accompanying supplementary materials, we discuss how to do this
when the time-dependent function F (·, R) is monotonic for all regions R. When F (·, R) is not
monotonic for all R, we discuss how one can use an approach that is based on multiparameter
zigzag PH. Both multiparameter PH and multiparameter zigzag PH are difficult to visualize,
and they both suffer from a lack of easily interpretable invariants. Consequently, we chose to
compute vineyards in our applications.

7. Conclusions. We developed methods to directly incorporate spatial structure into ap-
plications of topological data analysis (specifically, of persistent homology) to geospatiotem-
poral and geospatial data. We defined a way to construct a simplicial complex that efficiently
and accurately represents a geographical space. Given a function on a geographical space,
we defined filtration functions on a simplicial complex such that the homology classes are
in one-to-one correspondence with either local minima or local maxima. By constructing a
vineyard, one can track how the local extrema move and change with time.

We conducted case studies using COVID-19 vaccination and case-rate data. In one case
study, we examined geospatial vaccination-rate structure in New York City on one day. In our
other case study, in which we examined geospatiotemporal data, we constructed a vineyard
to examine COVID-19 case-rate anomalies in the city of Los Angeles over the course of one
year. From the vineyard, we identified the locations of these anomalies and measured the
severity of the associated disease outbreaks. The vineyard also captures information about
the relationships between anomalies, such as the extent to which they are separated from
each other. We calculated the temporal persistence of each anomaly from the length of its
corresponding vine.

There are several ways to build on our research. It is desirable to discover how to use a
vineyard to produce systematic forecasts of how a disease (or something else) will spread in
space and time. We hypothesized in section 5.2 that one can identify “emerging anomalies”
in the COVID-19 case-rate data as vines that are long but close to the diagonal plane. In
other applications, one may wish to forecast which locations of local extrema will have the
largest data values and/or the largest temporal persistences. One may also wish to forecast
how extrema will move in space. It will be valuable to investigate how to use the output of
our approach as an input to forecasting models.

Our approach is useful for a wide variety of applications, and it seems possible to generalize
it for many others. For example, given spatiotemporal voting data, one can identify regions
that vote differently than the neighboring regions. This would allow one to generalize the work
of [19] to track the intensity of voting differences and study spatial relationships between
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different political islands. Our methodology is not restricted to geographical data. It is
applicable whenever one has a surface that is partitioned into a finite number of regions and
a real-valued function (or a sequence of real-valued functions) on those regions. For example,
it may be possible to apply our approach to grayscale image data by partitioning an image
into regions in which pixel values are close to each other. It also seems possible to extend our
approach to higher dimensions; this would require constructing a higher-dimensional simplicial
complex when one has adjacency information for the higher-dimensional regions. For example,
in three dimensions, one can use such an extension of our approach to study atmospheric,
oceanic, and video dynamics.

Appendix A. Details of our simplicial-complex construction.

A.1. Boundary-sequence adjustment. Before constructing the polygons with holes PR

for each region R, we adjust the boundary sequences if necessary. The adjustment procedure
proceeds as follows. Let DR

0 , D
R
1 , . . . , D

R
hR

be the disks in the statement of assumption (A2),

let BR
i = ∂DR

i , and let SR
i denote the sequences of neighbors around BR

i . First, we adjust the
sequences so that, for each region R and each BR

i , the first element of SR
i has a 1D intersection

with R. We then adjust the sequences so that |SR
i | ≥ 3 for all R and i. When |SR

i | < 3, there
are two cases:

1. (Case 1) If |SR
i | = 1, let N be the unique element of SR

i . This situation occurs if R is
an island, and it can also occur if R lies inside N or if N lies inside R. We adjust SR

i

to be the sequence {N,N,N}. If N is not the exterior region, let j be the index such
that BN

j intersects R. Adjust SN
j to be the sequence {R,R,R} to compensate for the

adjustment that we made to SR
i .

2. (Case 2) If |SR
i | = 2, let N1 and N2 be the two elements of SR

i . If BR
i intersects R,

then R is adjacent to the exterior; without loss of generality, let N1 denote the exterior
region. For example, in Figure 7(a), SLittle Bangladesh

0 = {Koreatown,Wilshire Center}.
We adjust SR

i to be the sequence {N1, N1, N2}. If N1 is not the exterior region, which
occurs if R is not adjacent to the exterior, then we also adjust SN1

j to compensate,
where j is the index of the boundary component of N1 that intersects R. In this case,
we adjust SN1

j by repeating R an additional time.

A.2. Construction of K from the Set {PR | R ∈ S}. We present two lemmas that we
used in section 3 to construct K by gluing together the set {PR | R ∈ S} of polygons with
holes.

Lemma A.1. Let R1 and R2 be connected regions in a set S that satisfies assumptions
(A1)–(A4). Let D0, . . . , Dh be the disks in the statement of (A2) for R1. It is then the case
that exactly one of the following statements is true:

1. R2 ⊆ int(D0)
c and R2 ∩ int(Di) = ∅ for all i > 0; or

2. there is an i > 0 such that R2 is enclosed in Di and R2 ∩ int(Dj) = ∅ for all j ̸= i.

Proof. Because the interiors of R1 and R2 do not intersect, it must be true that int(R2) ⊆
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int(D0)
c ∪ (

⋃h
i=1 int(Di)). Therefore,

int(R2) =
(
int(D0)

c ∩ int(R2)
)
∪

 h⋃
i=1

int(Di) ∩ int(R2)

 .

The claim follows because int(R2) is connected and int(D0)
c, int(D1), . . . , int(Dh) are pairwise

disjoint.

Lemma A.2. Let PR be the annotated polygon with holes for a connected region R, let v
be a vertex in PR, and let {R,N1, . . . , Nn} be the sequence of region adjacencies for v. If
n ≥ 2 and N1, . . . , Nn are connected, then PR has at most one other vertex w with the same
set of region adjacencies. Additionally, if w exists, its sequence of region adjacencies must be
{R,Nn, . . . , N1}, which is the mirror of the orientation of neighbors around v.

Proof. Suppose that w ̸= v is a vertex in PR with the same set of region adjacencies as
v. Let v′ and w′ denote the points on the boundary of R that correspond, respectively, to v
and w. Let R0 be any connected region that is adjacent to both v′ and w′, let D0, D1, . . . , Dh

denote the disks in the statement of (A2) for R0, and let Bi = ∂Di. Suppose that v
′ is in Bi. If

i = 0, then there is a neighboring region N that is contained entirely in int(D0)
c (by Lemma

A.1) and adjacent to v′. If i > 0, then there is a neighboring region N that is contained
entirely in int(Di) (by Lemma A.1) and adjacent to v′. In both cases, w′ ∈ Bi because w′

is also adjacent to N . Let Bi1 , . . . , Bim be the disk boundaries that contain v′. As we just
showed, it must also be true that w′ ∈ Bi1 , . . . , Bim . If m > 1, then w′ ̸∈ Bi1 ∩ · · · ∩ Bim

because Di1 ∩ · · · ∩ Dim is a single point by assumption (A2); this is a contradiction. This
argument shows that if v and w have the same set of region adjacencies, then there is a unique
Bi that contains v

′, there is a unique Bj that contains w, and Bi = Bj .
Let B be the disk boundary of R that contains v and w. Either the interior of R is

contained in the region that is bounded by B or it is contained in the complement of the
region that is bounded by B. Without loss of generality, we suppose that the former is true.
Let π be the permutation of {1, . . . , n} such that the sequence of region adjacencies around
w is {R,Nπ(1), . . . , Nπ(n)}. Let i1, i2 ∈ {1, . . . , n}, with i1 < i2, be a pair of indices. By the
argument above (with R0 = Ni1), there is a unique disk boundary B1 for Ni1 that contains
v′ and w′. Similarly, there is a unique disk boundary B2 for Ni2 that contains v′ and w′. We
have that v′, w′ ∈ B1 ∩B2.

Because B1 is homeomorphic to S1, there exist paths γ1 and γ2 from v′ to w′ such that
γ1 ∪ γ2 = B1. Because the interior of Ni1 does not intersect R, it follows that γ1 and γ2 are
both in the complement of the region that is bounded by B′. There are two paths from v′ to
w′ on B′. Let τ be the unique choice of path such that R is not contained in the region that
is bounded by the closed curve τ ∪γ1. Either γ1 is in the region that is bounded by the closed
curve τ ∪ γ2 or γ2 is in the region that is bounded by the closed curve τ ∪ γ1. Without loss of
generality, we suppose that the latter is true.

Analogously to our argument above, there exist paths γ3 and γ4 from v′ to w′ such that
γ3∪γ4 = B2 and γ3 and γ4 are in the complement of the region that is bounded by B. Because
B2 is homeomorphic to S1, the paths γ3 and γ4 are either both contained in the region that
is bounded by γ1 ∪ τ or both contained in the complement of the region that is bounded by

D
ow

nl
oa

de
d 

08
/2

2/
22

 to
 1

69
.2

32
.1

49
.1

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1142 A. HICKOK, D. NEEDELL, AND M. A. PORTER

γ2 ∪ τ . Because i2 > i1, it must be the former case. Therefore, π(i2) < π(i1). It follows
that π is order-reversing. If there were another vertex x in B that is adjacent to the same
set of regions, then the orientation of those regions around x would be the mirror of both
the orientation of regions around v and the orientation of regions around w. This gives a
contradiction when n ≥ 2.

To illustrate Lemma A.2, let R be the region Koreatown in Figure 7(a). The two vertices
that are shared by Koreatown and Little Bangladesh have the same region adjacencies, but
they have mirrored orientations.
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SUPPLEMENTARY MATERIALS: Analysis of Spatial and Spatiotemporal
Anomalies Using Persistent Homology: Case Studies with COVID-19 Data∗
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SM1. Alternative topological approaches.

SM1.1. 0D persistent homology. We do not compute 0D PH in the present paper. How-
ever, it is appropriate to use 0D PH to study the structure of local extrema when one is not
interested in their geographical locations.

Let F be a real-valued function on a set S of geographical regions. In the main manuscript,
we described how one can analyze the local maxima (respectively, local minima) of F by
computing the 1D PH of the sublevel-set filtration (respectively, superlevel-set filtration). See
sections 4.1 and 4.2 of the main manuscript for more details. We now discuss how the 0D PH
of the sublevel-set filtration (respectively, superlevel-set filtration) yields information about
local minima (respectively, local maxima) of F .

The 0D PH of the sublevel-set filtration encodes information about the structure of local
minima of F in a way that is similar to how 1D PH encodes information about the structure
of local maxima. One can imagine taking α-sublevel sets of the function in Figure 9 of the
main manuscript (where we showed α-super level sets) to see why this is true. A region R is
a local minimum if the value F (R) is less than the value F (N) in all neighboring regions N
of R for which N ∩ R is 1D. If R is a local minimum, there is a 0D homology class whose
birth simplex is one of the vertices in one of the triangles in the preimage g−1(R). The
class is born at filtration level α = F (R). For the LA data set of COVID-19 case rates, 0D
homology classes correspond to regions that have a lower case rate than neighboring regions.
The smaller the value F (R) in comparison to the values of F in the neighboring regions, the
more persistent the homology class is. There is also one infinite 0D homology class for each
connected component. One can think of these classes as corresponding to a “local minimum”
in the exterior region. However, unlike for 1D homology classes, there is no canonical map from
0D homology classes to regions because the birth simplex of a 0D class is a vertex that belongs
to several regions. Analogously, the 0D PH of the superlevel-set filtration encodes information
about the structure of local maxima of F . However, as with a sublevel-set filtration, there
is no canonical map from 0D homology classes to regions. Therefore, one cannot easily use
the 0D PH of the sublevel-set filtration (respectively, superlevel-set filtration) to identify the
geographical locations of the local minima (respectively, local maxima), so we did not examine
0D PH in our case studies.
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SM1.2. Alternative filtrations for disconnected geographical spaces. In section 4.1 (re-
spectively, section 4.2) of the main manuscript, we defined a sublevel-set filtration (respec-
tively, superlevel-set filtration) in which we set the filtration values of all exterior-adjacent
vertices and edges to the global minimum (respectively, to the additive inverse of the global
maximum) of F . In applications in which the union of all regions is not connected, such
as for the NYC zip codes in section 5.1 of the main manuscript, an alternative definition is
to consider extrema on each connected component separately, rather than on the entire geo-
graphical space at once. This solves the problem that an isolated region (i.e., a geographical
island1) is trivially both a local maximum and a local minimum because it is not adjacent
to any other regions. In Definitions 4.1 and 4.2 of the main manuscript, they appear as 1D
homology classes that are born at the earliest filtration time; this may falsely emphasize the
persistence of these trivial extrema.

Definition SM1.1 (alternative sublevel-set filtration). Let K be the simplicial complex from
section 3 of the main manuscript for a set S of regions, and let g be the assignment of 2D
simplices to regions. Additionally, let F : S → R. If σ is a vertex or edge on the boundary
of K, let σ̃ be the 2D simplex with σ on the boundary of σ̃. On σ, we define the alternative
sublevel-set filtration function f to be

f(σ) = min
R

{F (R) | R ⊆ C} ,

where C is the connected component that contains the region g(σ̃). On all other simplices, the
filtration function f is equal to the sublevel-set filtration function.

Definition SM1.2 (alternative superlevel-set filtration). Let F : S → R for a set S of regions.
The alternative superlevel-set filtration function f is the alternative sublevel-set filtration func-
tion that is induced by −F .

Definitions SM1.1 and SM1.2 are appropriate options if one seeks to treat each connected
component independently. In these alternative definitions, each connected component uses
only information about other regions in the same component. One then compares region
values F (R) to global extremum values on their connected components. One consequence
of using these definitions is that one ignores isolated regions, which are trivial extrema. In
Definitions SM1.1 and SM1.2, these isolated extrema appear as points on the diagonal of a
PD. This is often an appropriate way to handle isolated regions. However, when an isolated
region is a global extremum of a data set, this may be undesirable. This situation never occurs
in our data.

NYC has 14 connected components; several of them are zip codes that correspond to
isolated islands. The alternative sublevel-set and superlevel-set filtrations effectively treat
each connected component of NYC separately. In Figure SM1, we show the PDs that we
compute using the alternative sublevel-set and superlevel-set filtrations that are induced by
the vaccination-rate function that we defined in section 5.1 of the main manuscript. In these
PDs, we compare a zip code’s per capita vaccination rate to the global minimum or maximum
rate on its connected component, rather than to the global minimum or maximum rate in
all of NYC. More precisely, the birth time of a connected component’s global extremum is

1These are literal islands, rather than “islands” from a PH computation.
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(a) Alternative sublevel-set filtration (b) Alternative superlevel-set filtration

Figure SM1. PDs for the 1D PH of the NYC simplicial complex with filtrations that are induced by the per
capita full-vaccination rate by zip code on 23 February 2021. We show only the finite homology classes. Each
point in a PD corresponds to a non-isolated zip code, which we label according to its borough [SM5], that has
(a) a higher vaccination rate than its neighboring zip codes or (b) a lower vaccination rate than its neighboring
zip codes.

either the lowest per capita vaccination rate of that component (for the alternative sublevel-set
filtration) or the additive inverse of the highest per capita vaccination rate of that component
(for the alternative superlevel-set filtration). Consequently, the trivial island extrema yield
homology classes on the diagonal of a PD.

The alternative sublevel-set filtration and the alternative superlevel-set filtration, along
with time-dependent versions of them, are implemented in our code at https://bitbucket.org/
ahickok/vineyard/src/main/.

SM1.3. Multiparameter persistent homology. One can use multiparameter persistent
homology (MPH) to study how the topology of a data set changes as one varies multiple
parameters. For extensive discussions of MPH, see [SM1,SM3].

One can use MPH to study local extrema of functions that are nondecreasing with time.
To apply MPH to our COVID-19 case-rate data, two feasible parameters are (1) time and (2)
the cumulative COVID-19 case rate. However, MPH is difficult to analyze. Although there
are invariants (e.g., the rank invariant), there is no complete discrete invariant [SM3]. By
contrast, one can use PDs for single-parameter PH.

Definition SM1.3. Let K be the simplicial complex from the construction in section 3 of the
main manuscript for a set S of regions. Let F : {t0, . . . , tn} × S → R be a function such that
F (t, R) ≥ F (s,R) for all t ≥ s. Define the function f(ti, σ) to be the sublevel-set filtration
that is induced by F (ti, ·). Let {α0, . . . , αℓ} be the image of F , where ℓ + 1 is the number of
elements in the image. We define the bifiltration

Ki,j :=


{σ ∈ K | f(ti, σ) ≤ αj} , i ∈ {0, . . . , n} , j ∈ {0, . . . , ℓ}
K , j > ℓ and i ≥ 0

Kn,j , i > n and j ≥ 0

∅ , i < 0 or j < 0 .

https://bitbucket.org/ahickok/vineyard/src/main/
https://bitbucket.org/ahickok/vineyard/src/main/
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One can use Definition SM1.3 to study cumulative COVID-19 case rates as a function of
time.

SM1.4. Multiparameter zigzag persistent homology. One can usemultiparameter zigzag
PH (MZPH) to study how the topology of a data set changes as one varies multiple parameters
nonmonotonically. See section 2.1 of [SM2] for a short discussion of MZPH.

To use MZPH to study our COVID-19 case-rate data, two feasible parameters are (1)
time and (2) the current COVID-19 case rate. A diagram of simplicial complexes, such as
the one in Equation SM1.1, induces a diagram of homology groups. This is a representation
of a quiver. However, there are no known well-behaved statistical summaries (in contrast to
single-parameter zigzag PH).

Definition SM1.4. Let K be the simplicial complex from the construction in section 3 of the
main manuscript for a set S of regions, and suppose that F : {t0, . . . , tn} × S → R. Define
half steps ti+1/2 := ti + (ti+1 − ti)/2 for i ∈ {0, . . . ,m − 1}, and let si := ti/2. Define the
function G : {s0, . . . , s2n} × S → R as follows:

G(si, R) =

{
F (si, R) , i is even

max{F (t(i−1)/2, R), F (t(i+1)/2, R)} , i is odd .

We define the function h(si, ·) to be the sublevel-set filtration that is induced by G(si, ·).
Let {α0, . . . , αℓ} be the image of G. We define

Ki,j :=


{σ ∈ K | h(si, σ) ≤ αj} , i ∈ {0, . . . , 2n} , j ∈ {0, . . . , ℓ}
K , j > ℓ and i ≥ 0

K2n,j , i > 2n and j ≥ 0

∅ , i < 0 or j < 0 .

This yields the following diagram:

(SM1.1)

Kα0,s3 Kα1,s3 Kα2,s3 Kα3,s3

Kα0,s2 Kα1,s2 Kα2,s2 Kα3,s2

Kα0,s1 Kα1,s1 Kα2,s1 Kα3,s1

Kα0,s0 Kα1,s0 Kα2,s0 Kα3,s0

.

The inclusion maps induce a corresponding diagram of homology groups.

One can use Definition SM1.4 to study non-cumulative COVID-19 case rates as a function
of time.
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SM2. The full LA vineyard. In Figure SM2, we show the full LA vineyard that we
discussed in section 5.2 of the main manuscript.

SM3. Results of an all-but-one statistical test. In the main manuscript, we examined
local extrema of real-valued geospatial data; we called these “anomalies.” For real-valued
geospatiotemporal data, one can alternatively examine a different notion of anomaly. In this
context, we say that a region is an anomaly if one is not able to infer its data successfully
from the data of the other regions. More precisely, let X be the matrix whose (i, j)th entry
is the value of a function in region j at time step i. In our case study of COVID-19 case
rates in LA, the regions are the neighborhoods of LA and the (i, j)th entry of X is the 14-day
mean per capita case rate in region j on the ith day after 25 April 2020. Let xj denote
the jth column of X, and let Xj denote the matrix that one obtains by deleting column
xj . The vector xj has the data for region j, and the matrix Xj has the data for all regions
except for region j. We define our prediction of region j to be the least-squares solution b∗ to
Xjb = xj , and we quantify the predictability of region j by calculating the relative residual
norm

∥∥Xjb∗ − xj
∥∥
2
/
∥∥xj

∥∥
2
. A smaller relative residual norm indicates greater predictability.

In Figure SM4, we show the result of this “all-but-one” statistical test for the LA COVID-
19 data set. In this figure, we plot the relative residual norm for each neighborhood. All
neighborhoods have near-0 relative residual norms, so the neighborhoods’ case rates are very
predictable when one knows the case rates of all other neighborhoods. The mean relative
residual norm is only 5.970 × 10−7, with a standard deviation of σ ≈ 7.558 × 10−7. The
neighborhoods that are least predictable (specifically, the ones whose relative residual norms
have a z-score that is larger than 3) are Brookside, Little Armenia, Little Tokyo, Sycamore
Square, and Toluca Terrace. We show their relative residual norms and z-scores in Table SM1.

The difference between what we learn from the all-but-one statistical test and what we
learn from our TDA approach is the following. Using our TDA approach, we identified local
extrema (i.e., regions whose associated values are either all larger than or all smaller than
those of all neighboring regions); this is a geographical notion of anomaly. By contrast, the
all-but-one statistical test does not inherently capture local extrema because the test does
not consider geographical adjacencies. Despite this conceptual difference, we observe some
overlap in the anomalies that the two approaches identify. For example, the neighborhoods
Little Tokyo and Little Armenia are identified as anomalies by both approaches. For further
examples, compare Figure SM4 with Figure 17 in the main manuscript.

SM4. Demographic data. We provide some demographic data for NYC and LA for read-
ers who are interested in comparing patterns in the PDs and demographic data, although an
investigation of such patterns is beyond the scope of the present paper. In Figure SM5, we
plot the median household income for each zip code2 [SM7]. The geographical boundaries of
the NYC and LA zip codes are specified by the shapefiles [SM6] and [SM4], respectively. It
is worthwhile to examine and compare other demographic data (such as racial, religious, and
political data) to the PDs.

2We do not possess median income data for LA zip codes 90073, 90089, 90095, 91330, 91522, and 91608.
These zip codes are in non-residential areas. For example, 90073 corresponds to the Veterans Administration.
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(a)

(b)

Figure SM2. (a) The vineyard for the LA simplicial complex that we construct using the sublevel-set
filtration from the 14-day mean per capita case rate during the period 25 April 2020–25 April 2021. Each vine
is associated with a COVID-19 anomaly. We color each vine according to the geographical location(s) of its
associated anomaly. (See Figure SM3 for the legend.) Because the geographical location of an anomaly can
change with time, a single vine can have multiple colors. (b) A different view of the same vineyard.
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Figure SM3. The legend for Figure SM2. Each of the depicted regions is a local maximum of the COVID-
19 case-rate function for some subset of the time period 25 April 2020–25 April 2021.

Table SM1
The relative residual norms and z-scores for the LA neighborhoods that are least predictable according to

our all-but-one test.

Neighborhood Relative Residual Norm z-score

Brookside 3.973×10−6 4.466

Little Armenia 3.220×10−6 3.471

Little Tokyo 3.944×10−6 4.429

Sycamore Square 3.944×10−6 4.429

Toluca Terrace 2.873×10−6 3.012

Figure SM4. The results of an all-but-one statistical test for the LA COVID-19 case-rate data. We plot
the relative residual norm for each neighborhood.
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(a) (b)

Figure SM5. (a) Median household income (in U.S. dollars) by zip code in NYC. (b) Median household
income by zip code in LA.
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