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Abstract. It is important to choose the geographical distributions of public resources in a fair and
equitable manner. However, it is complicated to quantify the equity of such a distribution;
important factors include distances to resource sites, availability of transportation, and
ease of travel. We use persistent homology, which is a tool from topological data analysis,
to study the availability and coverage of polling sites. The information from persistent
homology allows us to infer holes in a distribution of polling sites. We analyze and compare
the coverage of polling sites in Los Angeles County and five cities (Atlanta, Chicago,
Jacksonville, New York City, and Salt Lake City), and we conclude that computation of
persistent homology appears to be a reasonable approach to analyzing resource coverage.
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I. Introduction. The geographical distribution of resources such as polling sites
(i.e., locations where people vote), hospitals, COVID-19 vaccination sites, Department
of Motor Vehicles (DMV) locations, and Planned Parenthood clinics is a major factor
in the equitability of access to those resources. Consequently, given the locations of
a set of resource sites, it is important to quantify their geographical coverage and to
identify underserved geographical regions (i.e., “holes in coverage”).
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A naive approach to quantifying resource coverage is to consider the geographical
distances from resource sites by simply calculating the percentage of people who reside
within some cutoff distance D of the nearest resource site. This naive approach is
common in policy. For example, in March 2021, United States President Joseph Biden
announced a goal to ensure that at least 90% of the adult U.S. population is within
5 miles (i.e., D = 5 miles) of a COVID-19 vaccination site [38]. As another example,
it is required by Indian law that 100% of voters live within 2 km of a polling site [35]
(i.e., D = 2 km). However, such an approach poses at least two issues:

(1) it requires choosing an arbitrary cutoff distance D; and

(2) using only geographical distance fails to account for many other factors, such

as population density and the availability (and facility) of public transporta-
tion, that affect the ease of access to a resource.
These issues severely limit the utility of this naive approach.

In the present paper, we use topological data analysis (TDA) to study holes in
resource coverage. One of the main tools in TDA is persistent homology (PH), which
uses ideas from algebraic topology to (1) identify clusters and holes in a data set and
(2) measure their persistences at different scales. We use PH to analyze data in the
form of a point cloud, which is a finite collection X = {x;}?; of points in a metric
space (M, d).! In this paper, X is a collection of resource sites, with specified latitudes
and longitudes, and M = R? with a non-Euclidean distance function d (see section 3).
Given a point cloud X and a scale parameter r > 0, one can consider the r-coverage
C, =}, B(x;,r). As the scale parameter r grows, holes arise and subsequently fill
in. PH tracks the formation and disappearance of these holes. When a point cloud is
a collection of resource sites, one can interpret holes that persist for a large range of
r as holes in coverage. Our TDA approach gives a way to measure and evaluate how
equitably a resource is distributed geographically.

Our approach using PH addresses both of the issues (see points (1) and (2)) of
the naive approach that we discussed above. First, PH eliminates the need to choose
an arbitrary cutoff distance because one can study holes in coverage at all scales.
Second, instead of employing geographical distance as our metric, we construct a
distance function d that is based on travel times. We also incorporate the waiting
time at each resource site by constructing a weighted Vietoris—Rips (VR) filtration
(see section 2). In a city with a high population density or a poor transportation
system, the time that is spent waiting at or traveling to a resource site can be a much
higher barrier to access than geographical distance [20,22]. We estimate waiting times
using Global Positioning System (GPS) ping data from mobile phones at the resource
sites, and we estimate travel times using street-network data, per capita car-ownership
data, and the Google Maps application programming interface (API) [21]. Using these
estimates, we construct a weighted VR filtration. We weight vertices by our estimates
of waiting times, and we define the distance between two vertices to be the estimated
round-trip travel time between them. Because the weighted VR filtration is stable,
small errors in our estimates cause only small errors in the resultant PH [2].

In this paper, we examine polling sites as a case study of using PH to study the
coverage of resource sites. We restrict our attention to six cities:?> Atlanta, Chicago,

1One can weaken the requirement that d is a metric. In this paper, we use a distance function d
that is not technically a metric because it does not satisfy the triangle inequality.

2 Although we frame our discussion in terms of cities, some organizations instead use counties
when considering the coverage of polling sites.
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Jacksonville (in Florida), Los Angeles,®> New York City (NYC), and Salt Lake City.
We use these cities in part because data about them (e.g., car-ownership data) is
widely available. Additionally, these cities differ considerably in their demographics
and infrastructures, and we can thus compare a variety of different types of cities.
Atlanta and New York City are both infamous for long waiting times at polling sites,
especially in non-White neighborhoods [19,26]. In 2020, some counties in the Atlanta
metropolitan area had a mean of 3,600 voters per polling site; the number of polling
sites had been cut statewide in Georgia by 10% since 2013 [19]. In New York City,
each polling site had a mean of 4,173 voters in 2018. As a comparison, in 2004, Los
Angeles County and Chicago had only an estimated 1,300 and 725 voters per polling
site, respectively [26]. However, Los Angeles is infamous for its traffic [36], which can
affect voters’ travel times to polling sites. Los Angeles and Chicago also differ in the
quality of their public transportation, which also affects travel times to polling sites.
In our investigation, we seek both to compare the coverage of polling sites in our six
focal cities and to identify underserved areas within each city.

I.1. Related Work. One can use tools from geography to study resource ac-
cessibility. Pearce, Witten, and Bartie [34] used a geographical-information-systems
(GIS) approach to examine the accessibility of community resources and how it affects
health. Hawthorne and Kwan [23] used a GIS approach and a notion of perceived
distance to measure healthcare inequality in low-income urban communities. Brabyn
and Barnett [6] illustrated that there are regional variations in geographical accessibil-
ity to general-practitioner doctors in New Zealand and that these regional variations
depend on how one measures accessibility.

Another motivation for our study of resource-site coverage is the related problem
of sensor coverage. Given a set S of sensors in a domain  C R2, one seeks to
determine whether every point in {2 is within sensing range of at least one sensor in
S. Typically, each sensor has a fixed, uniform sensing radius rs. In this case, the
problem is equivalent to determining whether or not the domain €2 is covered by balls
of radius rs around each s € S. In [12,13], de Silva and Ghrist gave homological criteria
for sensor coverage. Approaches to studying sensor coverage that use computational
geometry (specifically, approaches that involve the Voronoi diagram of S and the
Delauney triangulation of S) were discussed in [29, 30].

Our problem is also a coverage problem, but there are important differences. The
key conceptual difference is that we consider neighborhoods whose sizes depend on
a filtration parameter, rather than neighborhoods with a fixed size. Additionally,
we do not seek to determine whether or not balls of any particular radius cover a
domain; instead, our goal is to quantify the coverage at all choices of radius and to
determine how the holes in coverage evolve as we increase the filtration parameter.
Another difference between the present paper and sensor-coverage problems is that
our point cloud represents a set of resource sites (in particular, polling sites), rather
than a set of sensors. In a sensor network, pairwise communication between sensors
can play a role in whether or not the sensors are fully “connected” to each other (in
a graph-theoretic sense) and in determining whether or not a domain is covered [40].
By contrast, communication between resource sites does not play a role in access to
those resource sites.

Several studies include applications of PH to geospatial data [10]. Feng and

3For Los Angeles, we actually study Los Angeles County. We discuss the reasons for this choice
in section 3.5.
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Fig. | An example of a filtration. The simplicial complex KC; has the associated filtration-parameter
value i. [This figure appeared originally in [24].]

Porter [18] developed two methods to construct filtrations—one that uses adjacency
structures and one that uses the level-set method [32] of front propagation—and ap-
plied their approaches to examine geospatial distributions of voting results in the 2016
United States presidential election. They identified “political islands” (i.e., precincts
that voted more heavily for a candidate than their surrounding precincts). In [17],
Feng and Porter used their approaches to study spatial networks. Stolz, Harrington,
and Porter [37] used PH to examine the geospatial distribution of voting results in the
“Brexit” referendum. Hickok, Needell, and Porter [24] used PH to study geospatial
anomalies in COVID-19 case-rate data (see also [16]) and vaccination-rate data. Cor-
coran and Jones [10] used PH to perform (1) a point-pattern analysis of pubs across
different cities in the United Kingdom (UK) and (2) a spatiotemporal analysis of rain-
fall in the UK. Kauba and Weighill [27] used PH to examine demographic patterns in
the Black and Hispanic populations of 100 U.S. cities.

1.2. Paper Organization. Our paper proceeds as follows. We present back-
ground information about PH in section 2, describe our approach in section 3, present
and examine persistence diagrams in section 4, and conclude and discuss implications,
limitations, and potential future directions of our work in section 5. Our code is avail-
able at https://bitbucket.org/jerryluo8/coveragetda/src/main/.

2. Background. We briefly review relevant mathematical background from
TDA and PH. See [14,15,33] for more thorough discussions. To compute PH, we begin
by constructing a “filtered simplicial complex” (which we will call a “filtration”) from
a point cloud X. A simplicial complex is a combinatorial description of a topological
space. It is a collection of vertices, edges, triangles, and higher-dimensional simplices
with certain requirements on simplex boundaries and pairwise simplex intersections.
A filtration is a nested sequence Ko, C Ko, C -+ C Ky, of simplicial complexes,
where ap < a1 < -+ < . We show an example of a filtration in Figure 1.

Given a point cloud X = {z1,...,2,} in a metric space (M, d), there are several
ways to construct a filtration that approximates the shape of X. Two of the most com-
mon constructions are the Cech filtration and the Vietoris-Rips (VR) filtration [33].
For 7 > 0, the Cech complex C,(X,M,d) at filtration parameter r is the simplicial
complex that has a simplex with vertices [z, ..., ;] if the intersection (; B(z;;,7)

is nonempty, where B(xz,r) := {y € M | d(z,y) < r}. That is, C,(X, M,d) is the
nerve of the closed balls {B(z;,7)}z,ex. By the Nerve Theorem [5], C.(X,M,d)
is topologically equivalent (more precisely, it is homotopy-equivalent) to the union

U; B(xi,r) of balls (i.e., the “r-coverage” of X) in M whenever the balls B(x;,r)
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Fig. 2 Illustration of a Cech filtration for a point cloud X that we sample from an annulus. [We
generated this figure using [1].]

are convex.* This implies that Ui B(z;,7) and C,.(X, M, d) have the same homology
(i.e., the same set of holes). A Clech filtration is a nested sequence of Cech complexes
for increasing filtration parameter . In Figure 2, we show an example of a Cech
filtration.

In practice, it is uncommon to use Cech filtrations because they are difficult
to compute. A Vietoris—Rips (VR) complex VR,.(X, M,d) is an approximation of
a Cech complex that is faster to compute because it is only necessary to calculate
pairwise distances between points. The VR complex at filtration parameter r has a
simplex with vertices [x;,, ..., ;] if d(z;,25,) < 2r for all j and £. A VR filtration
is a nested sequence of VR complexes for increasing filtration parameter r. A VR
filtration “approximates” a Cech filtration in the sense that

(2.1) Cr(X,M,d) C VR, (X, M,d) C C s5,.(X,M,d)

for all 7. The complexes VR,.(X, M,d) and C, (X, M,d) have the same set of edges
for all .

Weighted versions of the Cech and VR filtrations were described in [2]. Given
a point cloud X = {z1,...,2,} in a metric space (M,d) and associated weights
{w1,...,wy}, the radius function at x; is

(2.2) ro. (t) = {OO’ b<wi

t —w;, otherwise.

The closed ball B(x;, r,,(t)) has no points until time ¢ = w;; at that time, the radius
starts growing linearly with ¢, which is the filtration parameter. The weighted Cech
complez CY8™°Y(X M, d, {w;}) at filtration parameter ¢ is the simplicial complex
that has a simplex with vertices [z, ..., ;] if the intersection (; B(z;;, Ta,, (t)) is
nonempty. That is, CV*8™°d(X M, d, {w;}) is the nerve of {B(z;, s, (t))}e,ex. Like
the unweighted Cech complex, the weighted Cech complex is homotopy-equivalent
to the union J; B(zi,rs,(t)) of balls by the Nerve Theorem whenever the balls
B(x;,ry,(t)) are convex for all ;. Much like an unweighted Cech complex, it takes

too much time to compute a weighted Cech complex in practice, so researchers usu-
ally instead compute a weighted VR complex VR (X M, d, {w;}). This is the

4This condition is satisfied for all » when (M, d) is Euclidean, but it is not always satisfied for
non-Euclidean metric spaces.
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simplicial complex whose vertices are {z; | w; < t} and whose simplices [z;,, ..., %]
satisfy d(z;,,xi,) + wi, +w;, < 2t. The sequence {VR}“#™* (X, M,d, {w;})}; for
increasing t¢ is the weighted VR filtration. Analogously to (2.1), the weighted VR
filtration “approximates” the weighted Cech filtration in the sense that

(2.3) Cr(X, M, d, {w;}) € VR.(X, M, d,{w;}) C C s, (X, M,d,{w;})

for all r.

Given a filtration Ky, C --- C K, , one can compute the homology of each
simplicial complex Kn,. A homology class represents a hole that exists in a filtration
for some range of filtration-parameter values «;. A 0-dimensional (0D) homology
class represents a connected component, and a 1-dimensional (1D) homology class
represents a hole that is bounded by a closed path. To see why 0D homology classes
are “holes,” we note that one can also view a 0D homology class as representing the
empty space between connected components. Therefore, in identifying “holes,” it is
important to consider both 0D and 1D homology classes.

As the filtration parameter «; grows, holes form and subsequently fill in. The
information that is given by the birth and death of the homology classes of a filtration
is called the persistent homology (PH) of the filtration. We say that a homology class is
born at « if ¢ is the minimum index such that the homology class appears in K,,. Its
birth simplex is the simplex that creates the homology class. For example, in Figure 1,
a 1D homology class is born at filtration-parameter value 2. Its birth simplex is the
edge with vertices 0 and 3. A homology class that is born at «; subsequently dies
at aj, with j > 4, if § is the minimum index such that the homology class becomes
trivial (i.e., the corresponding hole fills in) in K,;. We refer to a; as the homology
class’s birth value and to o; as its death value. Its death simplex is the simplex
that destroys the homology class. For example, the homology class that is born
at filtration-parameter value 2 in Figure 1 subsequently dies at filtration-parameter
value 4. Its death simplex is the triangle with vertices 0, 2, and 3. In our application
to polling sites, we interpret homology classes as holes in coverage and we interpret
the death simplices as the locations of the holes.

One can summarize PH in a persistence diagram (PD). A PD is a multiset of
points in the extended plane R>. For a homology class with birth value b and death
value d, the PD includes a point with coordinates (b, d). In Figure 3, we show the PD
for the PH of the filtration in Figure 1.

3. Our Construction of Weighted VR Complexes. For each city, we construct
a weighted VR filtration in which the point cloud X = {z;} is the set of polling
sites in R? and the weight w; of a point x; is an estimate of the waiting time at the
corresponding polling site. Instead of computing a weighted VR filtration with respect
to Euclidean distance, we define a distance function that estimates the mean amount
of time that it takes to travel to and from a polling site. With respect to this distance
function, the union (J, B(z;, 74, (t)) (see (2.2)) is the set of points y such that the
estimated time for an individual at y to vote (including waiting time and travel time®
in both directions) is at most . The weighted Cech complex C*#"*4 (X R2, d, {w;})
is an approximation of |J; B(z;,7s,(t)). When the balls B(x;,r,(t)) are convex,
the weighted Cech complex is homotopy-equivalent to |J; B(x;,74,(t)), so these two

5Incorporating information (such as waiting times) other than travel times is sensible both in
principle and in practice. In our computational experiments, using only travel times yields results
that differ drastically from those that we present in this paper.
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Fig. 3 The persistence diagram for the 0D and 1D PH of the filtration in Figure 1.

complexes have the same homology (i.e., the same set of holes). The weighted VR
complex VR X R2 d, {w;}) is an approximation of the weighted Cech complex.

We construct our distance function as follows. Let  and y be two polling sites.
We estimate the expected time for an individual to travel from x to y and back to be

d([E, y) = C(Z(l‘)) min{tcar (1‘, y)v tpub(a:? y)’ twalk(a:? y)}
+ [1 - C(Z(Z‘))] min{tpub (l‘, y) s bwalk (l‘, y)} ;

where Z(x) is the zip code that includes = (a polling site), C(Z(x)) is an estimate of
the fraction of voting-age people in Z(x) who can travel by car to a polling site, and
tear (2, Y), tpub(@,y), and twax(z,y) are estimates of the expected travel times from x
to y and back by car, public transportation, and walking, respectively. We calculate
C(Z(z)) by dividing an estimate of the number of personal vehicles in Z(x) by an
estimate of the voting-age population in Z(x); see section 3.3. We discuss how we
calculate tcar, tpub, and tywaik in section 3.1.

Our definition of ci(x, y) captures the cost (in time) to vote. In particular, a?/(x, Y)
is an estimate of the mean travel time for an individual who resides in zip code Z(z) to
travel from z to y and back. We assume that all individuals choose the fastest mode of
transportation that is available to them. Therefore, individuals who can travel by car
choose the fastest option between driving, taking public transportation, and walking.
Their travel time is min{tcar(2,y), tpun (€, ¥), twaik (¢, y) }. Likewise, we assume that
individuals who do not have access to a car choose the fastest option between taking
public transportation and walking. Their travel time is min{t,ub(z,y), twaic (%, y)}-
Our estimate of the fraction of a population with access to a car is C(Z(x)), so the
fraction without a car is 1 — C'(Z(x)). Therefore, d(x,y) is the (estimated) mean time
for an individual who resides in zip code Z(x) to travel from z to y and back.

The function d(z,y) is not symmetric (i.e., d(z,y) # d(y,z)) because C(Z(x)) #
C(Z(y)). However, we need a symmetric function to construct a weighted VR filtra-
tion. To construct a symmetric distance function that is based on cZ(xLy), we define
the distance between x and y to be a weighted average of d(x,y) and d(y, ), where
we determine the weights from the populations of the zip codes that include = and y.
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More precisely, we define the distance between = and y to be

where Py, and Py, are the populations of zip codes Z(z) and Z(y), respectively,
and P := Py, + Pz(y) is the sum of the populations of Z(z) and Z(y). With
respect to this distance function, the ball B(z,r) is the set of points y such that the
expected time for an individual to travel back and forth between x and y is at most
r, where the individual starts randomly at x or y with probabilities that are weighted
by the populations of their associated zip codes. Although our distance function is
not technically a metric (because it does not satisfy the triangle inequality), we can
still construct a weighted VR filtration using the definition in section 2.

3.1. Estimating Travel Times. To compute our distance function (see (3.1)), we
need to estimate the pairwise travel times by car, public transportation, and walking
between each pair of polling sites. We measure these times in minutes.

We estimate the time that it takes to walk between each pair of polling sites using
street networks, which are available through the OpenStreetMap tool [31], for each
of our cities. Using OpenStreetMap, we calculate a shortest path (by geographical
distance) between each pair of polling sites. In Figure 4, we show an example of a
shortest path between two polling sites in Atlanta.

Fig.4 A shortest path (by geographical distance) between two polling sites in zip code 30314 in
Atlanta.

Let L(z,y) denote the length (which we measure in meters) of a shortest path (by
geographical distance) between polling sites « and y. Our estimate of the walking time
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(in minutes) from z to y and back is twak(x,y) := 2L(x, y) /Uwalk, Where vy = 85.2
meters per minute is an estimate of the mean walking speed of an adult human [8].

To estimate the travel times by car and public transportation, we use the Google
Maps Distance Matrix API [21]. Because of budgetary constraints (and the cost of
five dollars per thousand API queries), we use this API to estimate only the travel
times between each polling site and its 25 geographically closest polling sites. We
refer to these sites as a polling site’s 25 nearest neighbors.

For each of the 25 nearest neighbors, we separately calculate both the time from
a polling site to each neighbor and the time to a polling site from each neighbor.
These two travel times are often different because of different traffic conditions or
other factors. We estimate the remaining pairwise travel times as follows. Let G be
the unweighted, undirected graph whose vertices are the polling sites and whose edges
connect each vertex to its 25 nearest neighbors.® Let G.,, and Gpub be the weighted,
directed graphs whose vertices and edges’ are those of G and whose weights are the
travel times (by car and public transportation, respectively) that we compute using
the Google Maps API. The weight of the directed edge from vertex = to vertex y is
the travel time from z to y. Therefore, the weight of the edge from = to y may differ
from the weight of the edge from y to x. For any two polling sites z and y, let the
travel times Zcar(7,y) and Zpun(z,y) be the length of a shortest weighted path from
x to y in the graphs Gca, and Gpup, respectively. The corresponding symmetrized
travel times tcar(x,y) and tpun(2z,y) are

tCar(x7 y) = fcar(x7 y) + Ecar (y7 x) 9
tpub (xa y) = gpub(-fa y) + 7?pub(:% J)) .

3.2. Estimating Waiting Times. Our weighted VR filtrations have weights at
each vertex (i.e., polling site) that are given by an estimate of the mean time that a
voter spends (i.e., the mean waiting time) at that polling site. In a nationwide study
of waiting times at polling sites during the 2016 U.S. presidential election [9], Chen
et al. used smartphone data of hundreds of thousands of voters to estimate waiting
times. They also examined potential relationships between waiting times and racial
demographics.

We construct our waiting-time estimates using the congressional district-level
estimates in [9, Table C.2]. For each polling site z, we calculate the mean of the
waiting-time estimates for each congressional district that overlaps with the zip code
Z(z) that contains x. This averaging procedure yields estimates of waiting times at
the zip-code level. (We transform our waiting-time data to the zip-code level because
the rest of our data is at the zip-code level.)

3.3. Estimates of Demographic Information. We obtain estimates of demo-
graphic data at the zip-code level from 2019 five-year American Community Survey
data [39]. We use voting-age population data from their Table ACSDT5Y2019.B29001
and vehicle-access data from their Table ACSDT5Y2019.B25046.

3.4. Polling-Site Zip Codes. Much of our data is at the zip-code level, and we
treat a polling site’s zip code as representative of its local area. Certain polling
sites (predominantly government buildings) have their own zip codes, despite their

6The relation of being one of a vertex’s 25 nearest neighbors is not symmetric. Therefore, the
degrees of some vertices are larger than 25.

"We view each undirected edge (z;, x;) of G as a bidirectional edge, and we include both of the
associated directed edges in the directed graphs Gcar and Gpub~
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populations of 0. We adjust the zip codes of such polling sites to match the zip codes
of the directly surrounding areas.

3.5. Special Treatments of Our Cities. The city of Atlanta does not include
the suburbs of the Atlanta metropolitan area, so we use the entire area that is served
by the Atlanta Regional Commission.

Chicago’s boundary is not convex (especially in the northwest), so we include all
areas of all zip codes, even when only a small portion of a zip code lies within the city
of Chicago.

Because of the oddly shaped city boundaries of Los Angeles, which surrounds
several exclaves, we use the entirety of Los Angeles County (except for its islands).

Because of the disconnected nature of New York City, we subdivide it into three
regions (Queens and Brooklyn, Manhattan and the Bronx, and Staten Island) and
treat each region separately. We then combine our results for the three regions into a
single presentation. For example, we combine the PDs into a single PD for all of New
York City.

See the file “readme.txt” in our repository https://bitbucket.org/jerryluo8/
coveragetda/src/main/ for more information.

4. Results. We compute the PH of the weighted VR filtrations of section 3 for
Atlanta, Chicago, Jacksonville, Los Angeles County, New York City, and Salt Lake
City. We show their PDs in Figure 5. We examine 0D and 1D homology classes. The
0D homology classes represent holes between different connected regions of coverage,
and the 1D homology classes represent holes in coverage that are bounded by closed
paths. A homology class that dies at filtration-parameter value t represents a hole
in coverage that persists until time ¢. An individual who lives in a hole in coverage
that dies at time ¢ needs ¢ minutes (including both waiting time at a polling site and
travel time back and forth to the site) to cast a vote.

In our analysis, we emphasize homology-class death values. We view homology-
class birth values as largely irrelevant to our application. A homology-class birth value
indicates the filtration-parameter value at which a coverage hole materializes. We use
birth values only in the following way. If the death value divided by the birth value
(i.e., the “death/birth ratio”) of a homology class is very small (i.e., it is close to 1),
then it is possible that this class is merely an artifact of using a VR approximation
of a Cech complex. We thus focus on homology classes whose death/birth ratios are
at least 1.05.2 Beyond this, we use only the homology-class death values and death
simplices.

Larger homology-class death values suggest that a city may have worse coverage,
and a wider distribution of death values suggests that there may be more variation
in polling-site accessibility within a city. In Figure 6, we show a box plot of the
distribution of homology-class death values for each city. In Table 1, we show the
medians and variances of the 0D and 1D homology-class death values for each city.

We compare the coverages of the cities by examining the death values in the PDs.
For example, in the PDs for Atlanta and Chicago in Figure 5, we see that Atlanta’s
homology classes tend to die later than Chicago’s homology classes. We also see this
in the box plots in Figure 6 and in Figure 7, in which we plot the distributions of death

8Interested readers can explore thresholds other than 1.05 using our data, which is available at
https://bitbucket.org/jerryluo8/coveragetda/src/main/. We describe the data in detail in the file
“readme.txt”.
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Fig. 5 The PDs for each city for the PH of our weighted VR complexes.
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Fig. 6 Boz plots of the death values of the 0D and 1D homology classes for each city. We only
consider homology classes whose death/birth ratio is at least 1.05. Salt Lake City has no
such 1D homology classes.

Table | The medians and variances of the homology-class death values for each city. (As we discuss
in the main text, we consider Los Angeles County rather than only the city of Los Angeles.)
We consider homology classes whose death/birth ratio is at least 1.05. Salt Lake City has
no such 1D homology classes.

City H.omolc.)gy Median Va.riance
dimension | (minutes) | (minutes)
Atlanta (1) ?3? 12048
Chicago (1) 22; ?}33
Jacksonville (Florida) ? g?g 53474
Los Angeles County (.i) ?2? Zig
New York City (.f ggé §8721
Salt Lake City (1) SNz/i 3N7/i

values for Atlanta and Chicago. Our PDs and visualizations of summary statistics
suggest that Chicago has better polling-site coverage than Atlanta.

We use the death simplices to locate and visualize holes in polling-site coverage.
We interpret the death simplex of a homology class as the “epicenter” of an associated
coverage hole because the death simplex represents the last part of the hole to be
covered. The death simplex of a 0D homology class is an edge between two polling
sites; there is a hole in coverage between those two sites. Similarly, the death simplex
of a 1D homology class is a triangle that is the convex hull of three polling sites;
there is a hole in coverage between those three sites. In Figures 8 and 9, we show the
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Fig. 7 Histograms of the death values of the 0D and 1D homology classes for Atlanta and Chicago.
We only consider homology classes whose death/birth ratio is at least 1.05.

death simplices with the largest death values® for the 0D and 1D homology classes,!?

respectively. For example, consider Figure 8(a,b) and Figure 9(a,b), in which we show
the 0D and 1D homology-class death simplices for Atlanta and Chicago. The areas of
lowest coverage (i.e., the areas that have the death simplices with the largest death
values) in Atlanta tend to be in the southwest, whereas the areas of lowest coverage in
Chicago tend to be in the northwest and southeast. There is one 1D homology class
in Atlanta that has a significantly larger death filtration value than the other classes
in Atlanta and any of the classes in Chicago. This homology class represents a hole
in coverage in southwest Atlanta (see Figure 9(a)).

5. Conclusions and Discussion.

5.1. Summary. We showed that persistent homology (PH), which is a type of
topological data analysis (TDA), is a helpful approach to studying accessibility and
equitability. It allows one to examine holes in resource coverage with respect to
an appropriate choice of “distance,” which one constructs to incorporate important
features of a problem of interest. The distance can be based on geography, time,
or something else. In the present paper, we used PH to study and quantify holes in
polling-site coverage in six U.S. cities (technically, five cities and Los Angeles County).
For each city, we constructed a filtration in which a homology class that dies at time
t represents a geographical region in which it takes ¢t minutes to cast a vote (including

9More precisely, for each city and each homology dimension (0 and 1), we show the death simplices
whose death values have a z-score of at least 1. We calculate the z-scores as follows. Let d be the
death value of a p-dimensional homology class (where p = 0 or p = 1) for city C. The z-score of d is
z=(d— pc,p)/oc,p, where uc p, and oc p are the mean and standard deviation of the distribution
of death values of the p-dimensional homology classes for city C.

0Tn Figure 9, in which we show the death simplices of the 1D homology classes, some of the
polling sites appear to be covered by death simplices whose vertices are other polling sites. At least
two factors may contribute to this. One factor is that our measure of distance is not a Euclidean
metric, even though we plot the death simplices in Figure 9 as Euclidean triangles. The Euclidean
triangles can sometimes cover polling sites that are not among its vertices, but geodesic triangles
may not cover those polling sites. Another possibility is that a polling site = has such a long waiting
time that it does not show up in the filtration until after the homology class whose death simplex
includes x has already died.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

60 70 80 50 100 110 120

Fig. 8 Death simplices with the largest death values for the 0D homology classes. The colors corre-
spond to the death values (in minutes). We only consider homology classes whose death/birth
ratio is at least 1.05.
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(a) Atlanta

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

80 90 100 110 120 130

Fig. 9 Death simplices with the largest death values for the 1D homology classes. The colors corre-
spond to the death values (in minutes). We only consider homology classes whose death/birth
ratio is at least 1.05.
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both travel time and waiting time). We interpreted the death simplex of a homology
class as the location of the corresponding hole in resource coverage. The information
in the PH allowed us both to compare the accessibility of voting across our chosen
cities and to determine the locations of the coverage holes within each city.

A key benefit of PH is that it enabled us to identify holes in polling-site coverage at
all time scales. It also allowed us to use a distance that we designed for the problem
at hand, rather than merely using geographical distance, which does not capture
important factors in resource accessibility [7]. We based our distance function on
estimates of travel time, which is more reasonable and accurate than geographical
distance for capturing resource accessibility [34].

5.2. Limitations. To conduct our study, we needed to estimate a variety of quan-
tities (see section 3), including travel times, waiting times, and demographic infor-
mation. We also made several simplifications due to computational and monetary
constraints. We now discuss some issues that are important to address before at-
tempting to incorporate our approach into policy-making.

One limitation of our study is our estimation of travel times. As we discussed
in section 3.1, we computed travel times using the Google Maps API. Because of
monetary constraints, we only computed a subset of the relevant travel times and
used a graph-based estimate to determine the others. Additionally, we computed
each travel time between polling sites only once. Computing more precise estimates
of travel times is important to better capture the accessibility of polling sites. One
way to do this is to compute travel times between the same two polling sites multiple
times across different days and times of day and take an average. Such additional
computations can also help yield estimates of best-case and worst-case scenarios.

Another limitation of our study is the granularity of our data. As we discussed
in section 3.2, our waiting-time data is at the scale of congressional districts. Because
there is heterogeneity in the waiting times at different polling sites in the same con-
gressional district, it is important to obtain finer-grained data for the waiting times
at polling sites. Having finer-grained waiting times (e.g., if possible, procuring an
estimated waiting time for each polling site) would improve our ability to capture
voting accessibility.

We also made several topological approximations. We worked with a weighted VR,
filtration, which approximates a weighted Cech filtration, which in turn approximates
the nested set {{J, B(xi,72,(t)) }+er of spaces, where {z;} is a set of polling sites and
T, (t) is the radius function that we defined in section 3. The nested set of spaces is
directly relevant to our application, as the holes in |J, B(z;, 74, (t)) are the true holes
in polling-site coverage. We made our approximations, which are standard in TDA
and are well-justified (see our discussion in section 2) [33], to reduce computational
cost. However, the convexity condition of the Nerve Theorem, which justifies the
approximation of |J; B(z;, 74, (t)) by a weighted Cech complex, is not guaranteed
to be satisfied for all times t. The Nerve Theorem implies that the weighted Cech
complex is homotopy-equivalent to |J; B(z;, 75, (t)) whenever the balls B(x;, 74, (t))
are convex. This condition always holds in Euclidean space, but it is not guaranteed to
hold in the space that we defined in section 3.!'! Homotopy-equivalence is important

11 Although our space is not Euclidean, it is still reasonable to assume that it is approximately
locally Euclidean. That is, for each polling site x, there is a constant a > 0 such that if y is sufficiently
close to z, then d(z,y) ~ a-dg(z,y), where d(z,y) is defined by (3.1) and dg(z,y) is the Euclidean
distance. This approximation holds because car-ownership rates and traffic conditions do not vary
much within a sufficiently small neighborhood. We verified empirically that our distance function
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because homotopy-equivalent spaces have the same homology and thus have the same
set of holes.

Finally, our approach only detects holes in the convex hull of a set of resource
sites. Although this may be inconsequential if resource sites are sufficiently spread
out geographically, it can be problematic if the resource sites are overly concentrated
near a few locations. One way to address this issue is to incorporate city boundaries
into the construction of the filtrations. This would help capture holes in coverage in
regions that lie outside the convex hull of the resource sites, and it would also help
identify the filtration-parameter value ¢ at which an entire city is covered by the balls
B(xia Ta; (t))

5.3. Future Work. As we discussed in section 5.2, we made several topolog-
ical approximations of our mathematical object of interest, which is the nested set
{U; B(x4,74,(t)) }+er of spaces. Instead of using a weighted VR filtration, one can con-
struct a more direct approximation of {{J; B(xi, 74, (t))}ier. One can first discretize
a city by imposing a grid on it. For each point on such a grid, one can then construct
the filtered cubical complex that is induced by the travel time to the nearest polling
site. However, this is much more computationally expensive than our approach, and
it would also entail many more travel-time queries (which cost money) than in the
present paper.12

It is also important to incorporate city boundaries into the construction of filtra-
tions. One way to do this is as follows. Let x1,...,x, denote the resource sites, and
let y1, ..., ym denote the points that one obtains by discretizing a city boundary. One
can extend our distance function (3.1) by defining!?

2 ~ .
(5.1) d(wi,y;) = F[PZ(a:,;)d(ffiayj) + Pzy)d(yj, zi)]

where P, Pz, and d are the same as in the distance function (3.1) and

(5.2)
d(yi,y5) = {

0, y; and y; are adjacent points of the discretized city boundary

oo, otherwise.

At each filtration-parameter value, the simplicial complex that one constructs using
the distance function (3.1) with the extensions (5.1) and (5.2) includes both the points
that one obtains by discretizing the boundary and the edges that connect adjacent
boundary points. The largest death value is then the filtration-parameter value ¢ that
corresponds to the time at which an entire city is covered by the balls { B(z;, ry,(t))}
(i.e., when there are no longer any holes in coverage).

In our paper, we used death simplices to locate holes in coverage, but other ap-
proaches are also possible. For example, by calculating minimal generators [28], one

is approximately locally Euclidean by showing that, for each polling site x, there is a strong linear
correlation between the pairwise distances d(z,y) and the pairwise Euclidean distances dg(z,y)
when y is sufficiently close to . Because our distance function is approximately locally Euclidean,
sufficiently small balls (with respect to our distance function) behave like Euclidean balls, so the
Nerve Theorem is applicable for sufficiently small filtration values.

20ur distance function (3.1) is symmetric, but recall that it is not a metric because it does
not satisfy the triangle inequality. Therefore, we cannot use techniques such as distance trans-
forms and level-set propagation to reduce the computational complexity of calculating the filtration
(U, Blai,7s, (£) beex-

13The factor of 2 arises from the fact that z; is a resource site but y; is not.
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can identify representative cycles that encircle holes. The topological pipeline “hy-
perTDA” was introduced recently [3] to analyze the structure of minimal generators
by constructing a hypergraph, calculating hypergraph centrality measures, and em-
ploying community detection. This approach may provide insights into the spatial
structure of minimal generators. Another potentially viable approach is to use deco-
rated merge trees (DMTSs) [11] to locate holes in coverage. DMTs allow one to match
holes with associated clusters of points.

Although we have explored a specific case study (namely, the accessibility of
polling sites), it is also relevant to conduct similar investigations for other resources,
such as public parks, hospitals, vaccine distribution centers, grocery stores, Planned
Parenthood clinics, and Department of Motor Vehicles (DMV) locations. One can
use similar data to construct a filtration, although it may be necessary to modify the
choices of distance and weighting. One can also use ideas from mobility theory [4]
to help construct suitable distances and weightings. For example, all DMV offices
offer largely the same services, so it seems reasonable to assume that people will go to
their nearest office. Therefore, in a study of DMV accessibility, it seems appropriate
to use travel time as a distance function, just as we did in our analysis of polling
sites. However, in other applications, it is not reasonable to use travel time alone
as a distance function. For example, different grocery stores'* may offer different
products at different prices, so travel time alone may not be appropriate as a choice
of distance function. Additionally, although waiting time is a significant factor for
investigating the coverage of polling sites, there are many applications for which it
does not make sense to incorporate waiting time. For example, the time that is spent
in a public park or recreation center is typically not a barrier to access. In applications
in which waiting times are not an accessibility factor, it seems more appropriate to use
a standard VR filtration than a weighted VR filtration. With salient modifications
(such as those that we described in this subsection and in section 5.2), we can apply
our approach to many other types of resource sites.
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