
PHYSICAL REVIEW RESEARCH 2, 023100 (2020)

A framework for the construction of generative models for mesoscale structure
in multilayer networks

Marya Bazzi,1,2,3,* Lucas G. S. Jeub,1,4,5,* Alex Arenas,6 Sam D. Howison,1 and Mason A. Porter 1,7,8

1Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
2The Alan Turing Institute, London NW1 2DB, United Kingdom

3Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
4Center for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University,

Bloomington, Indiana 47408, USA
5ISI Foundation, Turin, Italy

6Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
7CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, United Kingdom

8Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, USA

(Received 10 August 2019; accepted 11 December 2019; published 30 April 2020)

Multilayer networks allow one to represent diverse and coupled connectivity patterns—such as time-
dependence, multiple subsystems, or both—that arise in many applications and which are difficult or awkward
to incorporate into standard network representations. In the study of multilayer networks, it is important to
investigate mesoscale (i.e., intermediate-scale) structures, such as dense sets of nodes known as communities,
to discover network features that are not apparent at the microscale or the macroscale. The ill-defined nature
of mesoscale structure and its ubiquity in empirical networks make it crucial to develop generative models
that can produce the features that one encounters in empirical networks. Key purposes of such models include
generating synthetic networks with empirical properties of interest, benchmarking mesoscale-detection methods
and algorithms, and inferring structure in empirical multilayer networks. In this paper, we introduce a framework
for the construction of generative models for mesoscale structures in multilayer networks. Our framework
provides a standardized set of generative models, together with an associated set of principles from which
they are derived, for studies of mesoscale structures in multilayer networks. It unifies and generalizes many
existing models for mesoscale structures in fully ordered (e.g., temporal) and unordered (e.g., multiplex)
multilayer networks. One can also use it to construct generative models for mesoscale structures in partially
ordered multilayer networks (e.g., networks that are both temporal and multiplex). Our framework has the
ability to produce many features of empirical multilayer networks, and it explicitly incorporates a user-specified
dependency structure between layers. We discuss the parameters and properties of our framework, and we
illustrate examples of its use with benchmark models for community-detection methods and algorithms in
multilayer networks.
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I. INTRODUCTION

One can model many physical, technological, biological,
financial, and social systems as networks. The simplest type of
network is a graph [1], which consists of a set of nodes (which
represent entities) and a set of edges that encode interactions
between those nodes. One can consider either unweighted
graphs or weighted graphs, in which each edge has a weight
that quantifies the strength of its associated interaction. Edges
can also incorporate directions to represent asymmetric inter-
actions or signs to differentiate between positive and negative
interactions.

*These authors contributed equally to this work.
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However, this relatively simple structure cannot capture
many of the possible intricacies of connectivity patterns be-
tween entities. For example, in temporal networks [2,3], nodes
and/or edges change in time; and in multiplex networks [4],
multiple types of interactions can occur between the same
pairs of nodes. To better account for the complexity, diversity,
and dependencies in real-world interactions, one can represent
such connectivity patterns using “multilayer networks” (see
Sec. II A) [4–8]. We use the term single-layer network (which
is also called a “monolayer network” or a “graph”) for a
multilayer network with a single “layer” (i.e., an ordinary
network), and we use the term “network” to refer to both
single-layer and multilayer networks.

By using a single multilayer network instead of several
independent single-layer networks, one can account for the
fact that connectivity patterns in different layers often “de-
pend” on each other. [Throughout our paper, we use the term
dependent in a probabilistic sense: an object A depends on B
if and only if P (A|B) �= P (A).] For example, the connectivity
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patterns in somebody’s Facebook friendship network today
may depend both on the connectivity patterns in that person’s
Facebook friendship network last year (temporal) and on the
connectivity patterns in that person’s Twitter followership
network today (multiplex). Data sets that have multilayer
structures are increasingly available (e.g., see Table 2 of [4]).
A natural type of multilayer network consists of a sequence
of dependent single-layer networks, where layers may cor-
respond to different temporal snapshots, different types of
related interactions that occur during a given time interval,
and so on. Following existing terminology [8,9], we refer to an
instance of a node in one layer as a “state node” (see Sec. II A).

There is a diverse set of models for multilayer networks.
(We overview them in Sec. II C.) Many of these models take
a specific type of dependency (e.g., a temporal one) as their
starting point. In this paper, we introduce a framework for
the construction of generative models for multilayer networks
that incorporate a wide variety of structures and dependencies.
It is broad enough to unify many existing, more restrictive
interlayer specifications, but it is also easy to customize to
yield multilayer network models for many specific cases of
interest. Key purposes of such generative models include
(1) generating synthetic networks with empirical features
of interest, (2) benchmarking methods and algorithms for
detecting mesoscale structures, and (3) inferring structure in
empirical multilayer networks.

A. A unifying framework

A key feature of multilayer networks is their flexibility,
which allows one to incorporate many different types of data
as part of a single structure. In this spirit, our goal is to
provide a general, unifying framework that enables users to
construct generative models of multilayer networks with a
large variety of features of interest in empirical multilayer
networks by appropriately constraining the parameter space
of our framework. We accomplish this in two consecutive
steps. First, we partition the set of state nodes of a mul-
tilayer network. Second, we allocate edges, given a multi-
layer partition. We focus on modeling dependency at the
level of partitions (as was done in Ref. [10]), rather than
with respect to edges. Additionally, we treat the process
of generating a multilayer partition separately from that of
generating edges for a given multilayer partition. This mod-
ular approach yields random structures that can capture a
wide variety of interlayer-dependency structures, including
temporal and/or multiplex networks, appearance and/or dis-
appearance of entities, uniform or nonuniform dependencies
between state nodes from different layers, and others. For a
specified interlayer-dependency structure, one can then use
any (single-layer or multilayer) network model with a planted
partition (i.e., a planted-partition network model) to generate
a wide variety of network features, including weighted edges,
directed edges, and spatially embedded layers.

The flexibility of our framework to generate multilayer
networks with a specified dependency structure between
different layers makes it possible to (1) gain insight into
whether, when, and how to build interlayer dependencies
into methods for studying many different types of multilayer
networks and (2) generate tunable “benchmark models” that

allow a principled comparison for community-detection (and,
more generally, “meso-set-detection”) tools for multilayer
networks, including for complicated situations that arise in
many applications (such as networks that are both temporal
and multiplex) but thus far have seldom or never been studied.
In many benchmark models, one plants a partition of a
network into well-separated “meso-sets” (e.g., communities),
and one thereby imposes a so-called “ground truth” (should
one wish to use such a notion) [11] that a properly deployed
meso-set-detection method ought to be able to recover.
Benchmark networks with known structural properties can be
important for (1) analyzing and comparing the performance
of different meso-set-detection tools, (2) achieving a better
understanding of the inner workings of meso-set-detection
tools, and (3) determining which tool(s) may be most
appropriate in a given situation.

One can also use our framework to generate synthetic
networks with desired empirical properties, to generate null
networks, and to explore “detectability limits” of mesoscale
structures. (See, for example, the study of detectability thresh-
olds in Ref. [10] for a model that is a special case of our
framework.) With some further work, it is also possible to
use our framework to develop models for statistical inference.
In our concluding discussion (see Sec. VII), we suggest
directions for how to apply our framework to the task of
statistical inference. Our intention in designing such a flexible
framework is to ensure that the generative models that it
provides remain useful as researchers consider progressively
more general multilayer networks in the coming years.

B. Paper outline

Our paper proceeds as follows. In Sec. II, we give an intro-
duction to multilayer networks, overview mesoscale structure
in networks, and review related work on generative models
for mesoscale structure. In Sec. III, we formally introduce the
notation that we use throughout the paper. In Sec. IV, we ex-
plain how we generate a multilayer partition with a specified
dependency structure between layers. We also give examples
of how to constrain the parameter space of our framework to
generate several different types of multilayer networks and
discuss what we expect to be common use cases (including
temporal structure [10,12,13] and multiplex structure [9,13])
in detail. In Sec. V, we describe how we generate edges
that are consistent with the planted partition. In Sec. VI, we
illustrate the use of our framework as a way to construct
benchmark models for multilayer community detection. In
Sec. VII, we summarize our main results and briefly discuss
possible extensions of our work to enable statistical inference
on empirical multilayer networks with our framework.

Along with this paper, we include code [14] that users
can modify to readily incorporate different types of “null
distributions” (see Sec. IV A), “interlayer-dependency struc-
tures” (see Sec. IV B), and planted-partition network models
(see Sec. V). The model instantiations that one needs for
generating the figures in Sec. VI are available online.1

1See https://dx.doi.org/10.5281/zenodo.3304059.
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II. BACKGROUND AND RELATED WORK

A. Multilayer networks

The simplest type of network is a graph G = (V, E ), where
V = {1, . . . , n} is a set of nodes (which correspond to entities)
and E ⊆ V × V is a set of edges. Using a graph, one can
encode the presence or absence of connections (the edges)
between entities (the nodes). However, in many situations,
it is desirable to include more detailed information about
connections between entities. A common extension is to allow
each edge to have a weight, which one can use to represent
the strength of a connection. We assign a weight to each edge
using a weight function w : E → R.

One can also generalize the notion of a graph to encode
different aspects of connections between entities, such as
connections at different points in time or multiple types of
relationships. We adopt the framework of multilayer networks
[4,6–8,15] to encode such connections in a network. In a
multilayer network, a node can be present in a variety of
different states, where each state is also characterized by a
variety of different aspects. In this setting, edges connect state
nodes, each of which is the instantiation of a given node in
a particular state, to each other. The set of all state nodes of
a given entity corresponds to a single physical node (which
represents the entity). The set of all state nodes in a given state
and the edges between those state nodes constitute one layer
of a multilayer network. In the remainder of this paper, we use
the terms “physical node” and “node” interchangeably and the
terms “layer” and “state” interchangeably. One can think of
the aspects as features that one needs to specify to identify the
state of a node. In other words, a state is a collection of exactly
one element from each aspect. For convenience, we introduce
a mapping that assigns an integer label to each element of
an aspect. That is, we map the la elements of aspect a to
the elements of a set {1, . . . , la} of integers. Aspects can be
unordered (e.g., social-media platform) or ordered (e.g., time).
Most empirical investigations of multilayer networks focus on
a single aspect (e.g., temporal [16–18] or multiplex [19–21]).
However, many real-world situations include more than one
aspect (e.g., a multiplex network that changes over time). For
an ordered aspect, we require the mapping to respect the or-
dering of the aspect. For example, ti → i for time, where t1 �
· · · � tla is a set of discrete time points. A multilayer network
can include an arbitrary number of ordered aspects and an
arbitrary number of unordered aspects, and one can generalize
these ideas further (e.g., by introducing a time horizon) [4].

To illustrate the above ideas, consider a hypothetical social
network with connections on multiple social-media platforms
(Facebook, Twitter, and LinkedIn) between the same set of
people at different points in time. In this example network,
there are two aspects: social-media platform and time. [One
can consider “type of connection” (e.g., “friendship” and
“following”) as a third aspect, but we restrict our example to
two aspects for simplicity.] The first aspect is ordered, and its
number of elements is equal to the number of time points or
time intervals. (For simplicity, we often refer simply to “time
points” in our discussions.) The second aspect is unordered
and consists of three elements: Facebook (which we label
with the integer “1”), Twitter (which we label with “2”), and
LinkedIn (which we label with “3”). If we assume that the

FIG. 1. Toy example of a multilayer network with three physical
nodes and two aspects. We represent undirected intralayer edges us-
ing solid black lines, directed interlayer edges using dotted red lines
with an arrowhead, and undirected interlayer edges using dashed blue
arcs. The first aspect is ordered and corresponds to time. It has two
time points (which we label as “1” and “2”). That is, the set of labels
of the 1st aspect is L1 = {1, 2}. The second aspect is unordered and
represents a social-media platform. It has three elements: Facebook
(labeled “1”), Twitter (labeled “2”), and LinkedIn (labeled “3”).
That is, the set of labels of the 2nd aspect is L2 = {1, 2, 3}. In this
example, a state node takes the form (i, (α1, α2)), with physical node
i ∈ {1, 2, 3}, aspect α1 ∈ {1, 2}, and aspect α2 ∈ {1, 2, 3}. The total
number of layers is l = |L1| × |L2| = 6.

time resolution is daily and spans the year 2010, an example
of a state is the tuple (01-Jan-2010, Twitter), which is (1,2) in
our shorthand notation. We show a multilayer representation
of this example social network in Fig. 1.

Edges in a multilayer network can occur either between
nodes in the same state (i.e., intralayer edges) or between
nodes in different states (i.e., interlayer edges). An example
of an intralayer edge in Fig. 1 is (1, (1, 1)) ↔ (2, (1, 1)),
indicating that entity 1 is friends with entity 2 on Facebook
at time 1. All interlayer edges in Fig. 1 are diagonal (be-
cause they connect state nodes that correspond to the same
physical node). Interlayer edges between layers at different
times for a given social-media platform are ordinal (because
they connect state nodes with successive time labels2) and
directed. Interlayer edges between concurrent layers that cor-
respond to different social-media platforms are categorical
and undirected. (In this example, such edges occur between
state nodes from all pairs of concurrent layers, although
one can envision situations in which interlayer edges occur
only between state nodes from a subset of such layers.) An
example of an ordinal intralayer edge in Fig. 1 is (1, (1, 1)) →
(1, (2, 1)), indicating a connection from entity 1 in Facebook
at time 1 to entity 1 in Facebook at time 2. An example of a
categorical intralayer edge in Fig. 1 is (1, (1, 1)) ↔ (1, (1, 2)),
indicating a connection between node 1 in Facebook at time
1 and node 1 in Twitter at time 1. One can also imagine
other types of interlayer edges in an example like the one
in Fig. 1, as there may be edges between state nodes at

2It is also possible to have ordinal interlayer edges in aspects other
than time.
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successive times and different social-media platforms [e.g.,
(1, (1, 1)) → (1, (2, 2))].

B. Mesoscale structures in networks

Given a (single-layer or multilayer) network representation
of a system, it is often useful to apply a coarse-graining
technique to investigate features that lie between those at the
microscale (e.g., nodes, pairwise interactions between nodes,
or local properties of nodes) and those at the macroscale (e.g.,
total edge weight, degree distribution, or mean clustering
coefficient) [1]. One thereby studies mesoscale features, such
as community structure [22–25], core–periphery structure
[26,27], role structure [28], and others.

Our framework can produce multilayer networks with
any of the above mesoscale structures. Notwithstanding this
flexibility, an important situation is multilayer networks with
“community structure,” which is the most commonly studied
type of mesoscale structure [1]. Community detection is part
of the standard toolkit for studying single-layer networks
[22,23,29], and efforts at community detection in multilayer
networks have led to insights in applications such as brain
and behavioral networks in neuroscience [30], financial cor-
relation networks [16], committee and voting networks in
political science [31,32], networks of interactions between
bacterial species [21], disease-spreading networks [12], social
networks in Indian villages [33], and much more.

Loosely speaking, a community in a network is a set of
nodes that are “more densely” connected to each other than
they are to nodes in the rest of the network [22,23,29,34,35].
Typically, a “good community” should be a set of nodes
that are “surprisingly well connected” in some sense, but
what one means by “surprising” and “well connected” is
often application-dependent and subjective. In many cases,
a precise definition of “community” depends on the method
that one uses to detect communities. In particular, many
popular community-detection approaches in single-layer and
multilayer networks define communities as sets in a partition
of a network that optimizes an objective function such as mod-
ularity [1,23,36]; stability [37–39]; InfoMap and its variants
[9,40]; likelihood functions that are derived from stochastic
block models (SBMs), which are models for partitioning a
network into sets of nodes with statistically homogeneous
connectivity patterns [21,41–44]; and others [4,45,46]. In
this paper, we refer to a partition of the set of nodes of
a single-layer network as a single-layer partition and to a
partition of the set of state nodes of a multilayer network as
a multilayer partition. The two primary differences between
a community in a multilayer partition and a community in a
single-layer partition are that (1) the former can include state
nodes from different layers; and (2) “induced communities”
(see Sec. III) in one layer of a multilayer network may
depend on connectivity patterns in other layers. For many
notions of (single-layer or multilayer) community structure,
including the most prominent methods, one cannot exactly
solve a community-assignment problem in polynomial time
(unless P = NP) [29,47–49]; and popular scalable heuristics
currently have few or no theoretical guarantees on how closely
an identified partition resembles an optimal partition. These
issues apply more generally to the field of cluster analysis,

such as in graph partitioning [50], and many of the problems
that plague community detection also apply to detecting other
types of mesoscale structures.

Throughout our paper, to make it clear which results and
observations apply to network community structure in par-
ticular and which apply to network mesoscale structure more
generally, we use the term “community” when referring to a
set in a partition that corresponds to community structure and
the term “meso-set” (see Sec. III) when referring to a set in a
partition that corresponds to any type of mesoscale structure.
(In particular, a community is a type of meso-set.)

C. Generative models for mesoscale structure

The ubiquity and diversity of mesoscale structures in em-
pirical networks make it crucial to develop generative models
of mesoscale structure that can produce features that one en-
counters in empirical networks. Broadly speaking, the goal of
such generative models is to construct synthetic networks that
resemble real-world networks when one appropriately con-
strains and/or calibrates the parameters of a model using in-
formation about a scenario or application. Generative models
of mesoscale structure can serve a variety of purposes, such
as (1) generating benchmark network models for compar-
ing meso-set-detection methods and algorithms [10,51–55];
(2) undertaking statistical inference on empirical networks
[10,42,56]; (3) generating synthetic networks with a desired
set of properties [20,57]; (4) generating null models to take
into account available information about an empirical network
[58]; and (5) investigating “detectability limits” for mesoscale
structure, as one can plant partitions that, under suitable
conditions, cannot subsequently be detected algorithmically,
despite the fact that they exist by construction [10,59,60].

One of the main challenges in constructing a realistic gen-
erative model (even for single-layer networks) is the breadth
of possible empirical features in networks. The available
generative models for mesoscale structure in single-layer
networks usually focus on replicating a few empirical fea-
tures at a time (rather than all of them at once): heteroge-
neous degree distributions and community-size distributions
[42,52,61]; edge-weight distribution [51,56,62]; spatial em-
beddedness [12,63]; and so on. Multilayer networks inherit
all of the empirical features of single-layer networks, and they
also have a key additional one: dependencies between layers.
These interlayer dependencies can be ordered (as in most
models of temporal networks), unordered (as in multiplex
networks), or combinations of these. However, despite this
variety, existing generative models for mesoscale structure
in multilayer networks allow only a restrictive set of inter-
layer dependencies. They assume either a temporal structure
[10,12,53,64–66], a simplified multiplex structure with the
same planted partitions across all layers [20,43,67–69], or in-
dependent groups of layers such that layers in the same group
have identical planted partitions [9,21]. Using an alternative
approach, a very recent model generates multilayer partitions
that satisfy the constraint that nonempty “induced meso-sets”
(see Sec. III) in different layers are identical if and only if
they correspond to the same meso-set [70]. Recent work [13]
on the link between multilayer modularity maximization and
maximum-likelihood estimation of multilayer SBMs allows

023100-4



A FRAMEWORK FOR THE CONSTRUCTION OF GENERATIVE … PHYSICAL REVIEW RESEARCH 2, 023100 (2020)

either temporal or multiplex interlayer dependencies with
induced partitions that can vary across layers, but it makes
restrictive assumptions on interlayer dependencies (e.g., all
layers have the same set of nodes, interlayer dependencies are
“diagonal” and “layer-coupled,” and so on). Importantly, in
all aforementioned generative models of mesoscale structure
in multilayer networks, interlayer dependencies are either (1)
not explicitly specifiable or (2) special cases of the framework
that we discuss in this paper.

III. NOTATION

We now present a comprehensive set of notation for mul-
tilayer networks. Different subsets of notation are useful for
different situations.

We consider a multilayer network M = (VM, EM ,V,L)
with n = |V| nodes (i.e., physical nodes) and l = |L| layers
(i.e., states). We use d to denote the number of aspects and
La = {1, . . . , la} to denote the labels of aspect a (where a ∈
{1, . . . , d}). We use O to denote the set of ordered aspects
and U to denote the set of unordered aspects. For each ordered
aspect a ∈ O, we assume that the labels La reflect the ordering
of the aspect. That is, for all α, β ∈ La, we require that α < β

if and only if α precedes β. We say that a multilayer network
is fully ordered if U = ∅, unordered if O = ∅, and partially
ordered otherwise. The set L = L1 × · · · × Ld of states is the
Cartesian product of the aspects, where a state α ∈ L is an
integer-valued vector of length d and each of its d entries
specifies an element of the corresponding aspect. Note that
l = |L| = ∏d

a=1 la.
We use (i,α) ∈ VM ⊆ V × L to denote the state node (i.e.,

“node-layer tuple” [4]) of physical node i ∈ V in state α ∈ L.
We include a state node in VM if and only if the corresponding
node exists in that state. The edges EM ⊆ VM × VM in a
multilayer network connect state nodes to each other. We use
((i,α), ( j,β)) to denote a directed edge from (i,α) to ( j,β).
For two state nodes, (i,α) and ( j,β), that are connected to
each other via a directed edge ((i,α), ( j,β)) ∈ EM , we say
that (i,α) is an in-neighbor of ( j,β) and that ( j,β) is an
out-neighbor of (i,α). We categorize the edges into intralayer
edges EL, which have the form ((i,α), ( j,α)) and link entities
i and j in the same state α, and interlayer (i.e., coupling) edges
EC , which have the form ((i,α), ( j,β)) for α �= β. We thereby
decompose the edge set as EM = EL ∪ EC .

We define a weighted multilayer network by introducing
a weight function w : EM → R (which is analogous to the
weight function for weighted single-layer networks), which
encodes the edge weights within and between layers. For an
unweighted multilayer network, w(e) = 1 for all e ∈ EM . We
encode the connectivity pattern of a multilayer network using
an adjacency tensor A, which is analogous to an adjacency
matrix for a single-layer network, with entries

Aj,β
i,α =

{
w(((i,α), ( j,β))) , ((i,α), ( j,β)) ∈ EM

0 , otherwise .
(1)

Note that GM = (VM , EM ) is a graph on the state nodes of
the multilayer network M. We refer to GM as the flattened
network of M. The adjacency matrix of a flattened network
is the “supra-adjacency matrix” [4,15,71,72] of its associated

multilayer network. One obtains a supra-adjacency matrix by
flattening3 an adjacency tensor [see Eq. (1)] of a multilayer
network. The multilayer network and the corresponding flat-
tened network encode the same information [4,73], provided
one keeps track of the correspondence between the nodes in
the flattened network and the physical nodes and layers of the
multilayer network. In a similar vein, aspects provide a conve-
nient way to keep track of the correspondence between state
nodes and, for example, temporal and multiplex relationships.

We denote a multilayer partition with nset sets by S =
{S1, . . . ,Snset }, where

⋃nset
s=1 Ss = VM and Ss ∩ Sr = ∅ for

s �= r. We represent a partition S using a partition tensor
S with entries Si,α, where Si,α = s if and only if the state
node (i,α) is in the set Ss. We refer to a partition of a
temporal network (a common type of multilayer network)
as a temporal partition and a partition of a multiplex net-
work (another common type of multilayer network) as a
multiplex partition. A multilayer partition induces a partition
S|α = {S1|α, . . . ,Snset |α} in each layer, where Ss|α = {i ∈ V :
(i,α) ∈ Ss}. We refer to a set Ss of a partition S as a meso-set,
to S|α as the induced partition of S in layer α, and to Ss|α
as the induced meso-set of Ss in layer α. A community is a
set Ss in a partition that corresponds to community structure.
We call s ∈ {1, . . . , nset} the label of meso-set Ss. One can
examine overlapping meso-sets by identifying multiple state
nodes from a single layer with the same physical node.

IV. GENERATING MULTILAYER PARTITIONS

The systematic analysis of dependencies between layers is
a key motivation for analyzing a single multilayer network,
instead of examining several single-layer networks indepen-
dently. The goal of our partition-generation process is to
model interlayer dependency in a way that can incorporate
diverse types of dependencies. We now motivate our partition-
modeling approach; we describe it in detail in Secs. IV A–
IV D.

The complexity of dependencies between layers can make
it difficult to explicitly specify a joint probability distribution
for meso-set assignments, especially for unordered or partially
ordered multilayer networks. To address this issue, we require
only the specification of conditional probabilities for a state
node’s meso-set assignment, given the assignments of all
other state nodes. The idea of conditional models is old and
follows naturally from Markov-chain theory [74,75]. Specify-
ing conditional models (which capture different dependency
features separately) rather than joint models (which try to
capture many dependency features at once) is convenient
for numerous situations. For example, conditionally specified
distributions have been applied to areas such as spatial data
modeling [76], imputation of missing data [75], secure disclo-
sure of information [77], dependency networks for combining
databases from different sources [78], and Gibbs sampling
[79,80].

3Flattening (i.e., “matricizing”) [4,73] a tensor T entails writing its
entries in matrix form. Starting from a tensor T with elements T β

α ,
one obtains a matrix T̃ with entries T̃α̃,β̃ , where there are bijective
mappings between the indices.
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A problem with conditional models is that their condi-
tional probability distributions are not necessarily compat-
ible, in the sense that there may not exist a joint distri-
bution that realizes all conditional distributions [78,80–83].
Although several methods have been developed for checking
the compatibility of discrete conditional distributions, these
either make restrictive assumptions on the conditional distri-
butions or have scalability constraints that significantly limit
practical use [75,84]. Nevertheless, the employment of con-
ditional models (even if potentially incompatible) is common
[85], and they have been useful in many applications, provided
that one cautiously handles any potential incompatibilities
[75]. For our use case, potential incompatibilities arise in
unordered or partially ordered multilayer networks. An issue
that can result from incompatibility is nonuniqueness of a joint
distribution. We carefully design our partition-generation pro-
cess such that it is well-defined irrespective of whether condi-
tional distributions are compatible. In particular, we show that
convergence is guaranteed and we address nonuniqueness by
appropriately sampling initial conditions (see Appendix B).
We also suggest empirical checks to ensure that a generated
partition reflects planted interlayer dependencies.

In our framework, we define conditional probabilities in
two parts: we separately specify (1) independent layer-specific
random components and (2) interlayer dependencies. For a
choice of interlayer dependencies, there are several features
that one may want to allow in a multilayer partition. These
include variation in the numbers and sizes of meso-sets across
layers (e.g., meso-sets can gain state nodes, lose state nodes,
appear, and disappear) and the possibility for these meso-set
variations to incorporate features of the application at hand.
(For example, in a temporal network, one may not want a
meso-set to reappear after it disappears.) We ensure that such
features are possible for any choice of interlayer dependency
via independent layer-specific null distributions that specify
the set of possible meso-set assignments for each layer and
determine the expected sizes and expected number of meso-
sets in the absence of interlayer dependencies.

Interlayer dependencies should reflect the type of multi-
layer network that one is investigating. For example, in a tem-
poral network, dependencies tend to be stronger between con-
tiguous layers and weaker for pairs of layers that are farther
apart. It is common to assume that interlayer dependencies
are uniform across state nodes for a given pair of layers (i.e.,
interlayer dependencies are “layer-coupled” [4]) and occur
only between state nodes that correspond to the same phys-
ical node (i.e., interlayer dependencies are “diagonal” [4])
[12,16,21,32,60,71,72,86]. However, these assumptions are
too restrictive in many cases (e.g., situations in which depen-
dencies depend on the state nodes or in which dependencies
exist between state nodes that do not correspond to the same
physical node) [9,45,69,87–89]. To ensure that one can relax
these assumptions, we allow dependencies to be specified at
the level of state nodes (or at the level of layers, when a user
assumes that dependencies are layer-coupled). We encode
these interlayer dependencies in a user-specified interlayer-
dependency tensor that determines the extent to which a state
node’s meso-set assignment in one layer “depends directly”
on the assignments of state nodes in other layers (see Secs.
IV B and IV C). Our independence assumption on the null dis-

tributions allows us to encode all of the interlayer dependen-
cies in a single object (namely, an interlayer-dependency ten-
sor). The entries of an interlayer-dependency tensor specify an
“interlayer-dependency network” and correspond to the causal
links for the flow of information (in the information-theoretic
sense) between different layers of a multilayer network.
Therefore, they should reflect any constraints that one wishes
to impose on the direct flow of information between layers.
Longer paths in an interlayer-dependency network yield indi-
rect dependencies between structures in different layers.

After specifying the interlayer-dependency structure, we
define the conditional meso-set assignment probabilities such
that we either sample a state node’s meso-set assignment from
the corresponding null distribution or obtain it by copying
the assignment of another state node (based on the interlayer-
dependency tensor). Using these conditional probabilities, we
define an iterative update process on the meso-set assignments
of state nodes to generate multilayer partitions with depen-
dencies between induced partitions in different layers. When
updating the meso-set assignments of state nodes, we respect
the ordering (e.g., temporal ordering) of an ordered aspect.
For a fully ordered multilayer network, our update process
reduces to sequentially sampling an induced partition for each
layer based on the induced partitions in previous layers. For
an unordered multilayer network, our update process defines
a Markov chain on the space of multilayer partitions. We
sample partitions from a stationary distribution of this Markov
chain. This sampling strategy is known as (pseudo-)Gibbs
sampling [78–80,85]. (We use the word “pseudo” because
the conditional probabilities that we use to define the Markov
chain are not necessarily compatible.) For a partially ordered
multilayer network, our update process combines these two
sampling strategies.

In Sec. IV A, we describe possible choices for the inde-
pendent, layer-specific null distributions. In Sec. IV B, we
explain our framework for generating a multilayer partition
with general interlayer dependencies. In Sec. IV C, we focus
on the specific situation in which interlayer dependencies
are layer-coupled and diagonal, and we also assume that a
physical node is present in all layers (i.e., the network is “fully
interconnected” [4]). In Sec. IV D, we illustrate the proper-
ties of example temporal and multiplex partitions that are
generated by models that we construct from our framework.
Additionally, we take advantage of the tractability of our
generative model for the special case of temporal partitions
to highlight some of this special case’s properties analytically.

A. Null distribution

We denote the null distribution of layer α by Pα
0 and the

set of all null distributions by P0 = {Pα
0 : α ∈ L}. A simple

choice for the null distributions is a categorical distribution,
where for each layer α and each meso-set label s, we fix
the probability pα

s that an arbitrary state node in layer α is
assigned to a meso-set s in the absence of interlayer depen-
dencies. That is,

Pα
0 [s] =

{
pα

s , s ∈ {1, . . . , nset}
0 , otherwise ,

(2)

where nset is the total number of meso-sets in the multilayer
partition and

∑nset
s=1 pα

s = 1 for all α ∈ L. The set {1, . . . , nset}
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is the set of meso-set labels, and the support of a null dis-
tribution is the set of labels that have nonzero probability. In
the absence of interlayer dependencies, a categorical null dis-
tribution corresponds to specifying independent multinomial
distributions of the sizes of induced meso-sets for each layer
and fixing the expected size npα

s of each induced meso-set.
(Recall that n is the number of physical nodes.) Therefore,
by choosing the probabilities pα

s , one has some control over
the expected number and sizes of meso-sets in a sampled
multilayer partition. A natural choice for pα is to sample it
from a Dirichlet distribution, which is the conjugate prior
of a categorical distribution [90,91]. One can think of the
Dirichlet distribution, which is the multivariate form of the
beta distribution, as a probability distribution over the space
of all possible categorical distributions with a given number
of categories. Any other (probabilistic or deterministic) choice
for pα is also possible. We give further detail about the Dirich-
let distribution in Appendix A, where we discuss how one can
vary its parameters to control the expected number and sizes
of meso-sets in the absence of interlayer dependencies. This
can allow a user to generate, for example, a null distribution
with equally-sized meso-sets or a null distribution with a
few large meso-sets and many small meso-sets. Furthermore,
irrespective of the particular choice of categorical distribution,
it may be desirable to have meso-sets that are in the support of
the null distribution in some, but not all, layers. In Appendix
A, we give examples of how one can sample the support of
the null distributions before sampling the probability vectors
to incorporate this property when modeling the birth and/or
death of meso-sets in temporal networks and the presence
and/or absence of meso-sets in multiplex networks.

In general, the choice of the null distributions can have a
large effect on the set of sampled multilayer partitions and
ought to be guided by one’s use case. For our numerical
examples in Sec. VI, we fix a value of nset ∈ {1, . . . , nl},
where n is the number of physical nodes in each layer and l
the number of layers (see Sec. III); and we use a symmetric
Dirichlet distribution of order nset with concentration
parameter θ = 1 (see Appendix A) to sample probability
vectors pα of length nset. This produces multilayer partitions
in which the expected meso-set labels are the same across
layers (and are given by {1, . . . , nset}) in the absence of
interlayer dependencies and for which the expected induced
meso-set sizes (which are equal to npα

s in the absence of
interlayer dependencies) differ across layers.

B. General interlayer dependencies

We denote the user-specified interlayer-dependency tensor
by P, where P j,β

i,α is the probability that state node ( j,β) copies
its meso-set assignment from state node (i,α) for any two
state nodes (i,α), ( j,β) ∈ VM . Note that P is fixed throughout
the copying process. The probability that state node ( j,β)
copies its meso-set assignment from an arbitrary state node
when state node ( j,β)’s meso-set assignment is updated is

p̂ j,β =
∑

(i,α)∈VM

P j,β
i,α , (3)

where we require that p̂ j,β � 1 for all state nodes ( j,β) ∈ VM .
We also require that all intralayer probabilities are 0; that

is, P j,α
i,α = 0 for all i, j ∈ V and α ∈ L. We say that a state

node ( j,β) depends directly on a state node (i,α) if and
only if P j,β

i,α is nonzero. By extension, we say that a layer β
depends directly on a layer α if there exists at least one state
node in layer β that depends directly on a state node in layer
α. An interlayer-dependency tensor induces an associated
interlayer-dependency network, whose edges are all interlayer
and directed; these edges point in the direction of information
flow between layers. The in-neighbors (see Sec. III) of a state
node ( j,β) in this network consist of the state nodes from
which ( j,β) can copy a meso-set assignment with nonzero
probability. The support of the null distribution Pβ

0 corre-
sponds to the set of possible meso-set assignments of a state
node ( j,β) when the state node does not copy its assignment
from one of its in-neighbors in the interlayer-dependency
network.

For a given set P0 of null distributions and a given
interlayer-dependency tensor P, a multilayer partition that
results from our sampling process depends on four choices:
(1) the way in which we update a state-node assignment at
a given step; (2) the order in which we update state-node
assignments; (3) the initial multilayer partition; and (4) the
criteria for convergence of the iterative update process. We
discuss points (1), (2), and (3) in the remainder of this section.
We describe the sampling process in more detail and discuss
convergence in Appendix B.

1. Update equation

A single meso-set-assignment update depends only on the
choice of state node to update and on the current multilayer
partition. Let τ be an arbitrary update step of the assignment
copying process. Suppose that we are updating the meso-set
assignment of state node ( j,β) at step τ and that the current
multilayer partition is S (τ ) [with associated partition tensor
S(τ )]. We update the meso-set assignment of state node ( j,β)
either by copying the meso-set assignment in S (τ ) from one
of its in-neighbors in the interlayer-dependency network or by
obtaining a new, random meso-set assignment from the null
distribution Pβ

0 for layer β. In particular, with probability p̂ j,β,
a state node ( j,β) copies its meso-set assignment from one
of its in-neighbors in the interlayer-dependency network; and
with probability 1 − p̂ j,β, it obtains its meso-set assignment
from the null distribution Pβ

0 . This yields the following update
equation at step τ of our copying process:

P [S j,β(τ + 1) = s|S(τ )]

=
∑

(i,α)∈VM

P j,β
i,α δ(Si,α(τ ), s)

+ (1 − p̂ j,β )Pβ
0 [S j,β = s] . (4)

The update equation (4) is at the heart of our framework.
It is clear from Eq. (4) that the set P0 of null distributions
is responsible for the specification of meso-set assignments
in the absence of interlayer dependencies [i.e., if P j,β

i,α = 0
for all (i,α), ( j,β)]. In general, p̂ j,β determines the rela-
tive importances of the interlayer dependencies and the null
distribution on the meso-set assignment of state node ( j,β).
Specifically, when p̂ j,β = 0, the meso-set assignment of ( j,β)
depends only on the null distribution; and when p̂ j,β = 1, the
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meso-set assignment of ( j,β) depends only on the meso-set
assignments of its in-neighbors in the associated interlayer-
dependency network.

2. Update order

The order in which we update meso-set assignments of
state nodes via Eq. (4) can influence a generated multilayer
partition. As we mentioned in Sec. II A, an aspect of a
multilayer network can be either ordered or unordered, and the
update order is particularly important when generating a mul-
tilayer partition with at least one ordered aspect. In particular,
the structure of an interlayer-dependency tensor should reflect
the causality that arises from the order of an aspect’s elements.
For an ordered aspect, structure in a given layer should depend
directly only on structure in previous layers. Formally, for
each ordered aspect a ∈ O of a multilayer network, we require
that

P j,β
i,α > 0 ⇒ αa � βa , (5)

where αa denotes the element of state α that corresponds
to aspect a and where (as we stated in Sec. III) we require
that the labels of an aspect’s elements reflect the order of
those elements.4 For example, if we think of the interlayer
edges in Fig. 1 as interlayer edges of an interlayer-dependency
network, then Eq. (5) states that all edges with nonzero edge
weights must respect the arrow of time. That is, it is impossi-
ble to have edges of the form (( j, (2, α2)), (i, (1, α2))), with
nodes i, j ∈ {1, 2, 3} and aspect α2 ∈ {1, 2, 3}.

The update order for state nodes also needs to reflect the
causality from the ordered aspects. In particular, if a ∈ O is an
ordered aspect and we update a state node in a layer β, then the
final meso-set assignments of state nodes in any layer α with
αa < βa must already be fixed. For example, in Fig. 1, an edge
direction respects the arrow of time; and it is also necessary
that the assignments of all state nodes in the first time layer are
fixed before one updates the assignments of state nodes in the
second time layer. To satisfy this requirement for the assign-
ments, we divide the layers into classes of “order-equivalent”
layers, such that two layers α and β are order equivalent if
and only if αa = βa for all a ∈ O. We also say that layer α

precedes layer β if and only if αa < βa for all a ∈ O. (For
example, the three layers in Fig. 1 that correspond to the
first time point are order equivalent and precede the three
layers that correspond to the second time point.) Based on this
equivalence relation, we obtain an ordered set of equivalence
classes by inheriting the ordering from the ordered aspects.
As a consequence of Eq. (5), the meso-set assignments of
state nodes in a given layer depend only on the assignments
of state nodes in order-equivalent layers or preceding layers.
Therefore, by sorting the classes of order-equivalent layers
based on “lexicographic” ordering [92], we ensure that our
partition-generation process reflects notions of causality that
arise in multilayer networks with at least one ordered aspect.

4For a fully ordered multilayer network (i.e., when U = ∅), condi-
tion (5) is equivalent to the existence of an upper-triangular matrix
representation of its flattened interlayer-dependency tensor. [See
Fig. 2(a) for an example.] For a partially ordered multilayer network,
the same equivalence holds if we “aggregate” [15] its interlayer-
dependency tensor over its unordered aspects.

3. Sampling process

The general idea of our sampling process is to simultane-
ously sample the meso-set assignments of state nodes within
each class of order-equivalent layers and to sequentially sam-
ple the meso-set assignments of state nodes in non-order-
equivalent layers, conditional on the fixed assignments of state
nodes in preceding layers.

More specifically, our sampling algorithm proceeds as
follows. First, we sample an initial multilayer partition from
the null distribution [i.e., Si,α(0) ∼ Pα

0 ]. Second, we sample
a partition for the first class of order-equivalent layers using
(pseudo-)Gibbs sampling. In particular, we iteratively sample
a layer uniformly at random from the first class of order-
equivalent layers and update the meso-set assignments of
all state nodes in that layer5 based on Eq. (4). This defines
a Markov chain on a subspace of multilayer partitions. We
repeat the update process for sufficiently many iterations such
that we approximately sample the meso-set assignments of
the first class of order-equivalent layers from a stationary
distribution of this Markov chain. Third, we sample state-node
assignments for subsequent classes of order-equivalent layers
in the same way, based on fixed state-node assignments from
preceding layers. In particular, at each update step τ in Eq. (4),
a state node can either copy a fixed meso-set assignment from
an in-neighbor in a preceding layer, copy a current meso-set
assignment from an in-neighbor in an order-equivalent layer,
or obtain a meso-set assignment from the null distribution.

For a fully ordered multilayer network (i.e., a multilayer
network with U = ∅), each class of order-equivalent layers
consists of a single layer. Consequently, one needs only a
single update for each state node for the sampling process
to converge. (Subsequent updates would constitute indepen-
dent samples from the same distribution.) For an unordered
multilayer network, our sampling algorithm reduces to
(pseudo-)Gibbs sampling, because all layers are order equiv-
alent and there is thus only one class of order-equivalent
layers. For a partially ordered multilayer network, there are
multiple nonsingleton classes of order-equivalent layers. We
use (pseudo-)Gibbs sampling for each class, conditional on
the meso-set assignments of state nodes in preceding layers.

In Appendix B, we explain our sampling process in more
detail. We describe our (pseudo-)Gibbs sampling procedure
for each class of order-equivalent layers; and we show pseu-
docode that one can use to sample partitions in unordered,
partially ordered, and fully ordered multilayer networks in
Algorithm 1. We also discuss the convergence properties of
our sampling procedure for unordered and partially ordered
multilayer networks. As part of this discussion, we examine
the effect of the potential incompatibility of the distributions
that are defined by Eq. (4).

C. Layer-coupled and diagonal interlayer dependencies

As we mentioned at the beginning of Sec. IV, a
particularly useful restriction of an interlayer-dependency

5The order in which we update state nodes in the same layer has no
effect on the sampling process because their conditional distributions
are independent. One can even update them in parallel.
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FIG. 2. Layer-coupled interlayer-dependency tensors (which, in
this case, are matrices) for different types of multilayer networks
with a single aspect. (a) In a typical temporal network, an induced
partition in a layer depends directly only on the induced partition
in the previous layer. Therefore, the only nonzero elements of its
associated layer-coupled interlayer-dependency tensor occur in the
first superdiagonal. (b) In a typical multiplex network, an induced
partition in a layer depends directly on the induced partitions in
all other layers. We show a layer-coupled example. The copying
probability in Eq. (6) is p̂β = pβ for layer β in the temporal layer-
coupled interlayer-dependency matrix in (a) and p̂ = (l − 1)p for
the multiplex layer-coupled interlayer-dependency matrix in (b). We
suppress the subscript β in (b), as the copying probability is the same
for all layers.

tensor that still allows us to study many situations of
interest is to assume that it is layer-coupled and diagonal.
For simplicity, we also assume that we have a fully in-
terconnected multilayer network. Under these assumptions,
we can express the interlayer-dependency tensor P using a
layer-coupled interlayer-dependency tensor P̃ with elements
P j,β

i,α = δ(i, j)P̃β
α . The probability that state node ( j,β) copies

its meso-set assignment from an arbitrary state node when
( j,β)’s meso-set assignment is updated is

p̂β =
∑
α∈L

P̃β
α . (6)

As before, we require that p̂β � 1 and P̃α
α = 0 for all α ∈ L.

The update equation [see Eq. (4)] then simplifies to

P [Sj,β(τ + 1) = s|S(τ )]

=
∑
α∈L

P̃β
α δ(S j,α(τ ), s)

+ (1 − p̂β )Pβ
0 [S j,β = s] , (7)

which depends on the interlayer-dependency tensor P̃ (which
is now independent of state nodes) and the null distributions
P0. Each term P̃β

α quantifies the extent to which an induced
partition in layer β depends directly on an induced partition
in layer α. By considering different P̃, one can generate
multilayer networks that correspond to several important sce-
narios, including temporal networks, multiplex networks, and
multilayer networks with more than one aspect (e.g., with
combinations of temporal and multiplex features). That is, the
above restriction reduces the dimensionality of the interlayer-
dependency tensor significantly, while still allowing one to
analyze several very important situations.

FIG. 3. Block-matrix representation of a layer-coupled
interlayer-dependency tensor for a multilayer network that is both
temporal and multiplex. This example has more than one aspect,
and it combines the features of the examples in Fig. 2. It has two
classes of order-equivalent layers (where each class corresponds
to one time point), as indicated by the presence of two diagonal
blocks. An induced partition in a layer depends directly on the
induced partitions in its order-equivalent layers and on the induced
partition in the corresponding layer in the preceding class of
order-equivalent layers. If we think of the interlayer edges in Fig. 1
as edges in an interlayer-dependency network, then the tensor P̃
(with blocks of size 3 × 3) is the corresponding layer-coupled
interlayer-dependency tensor.

In Fig. 2, we show layer-coupled interlayer-dependency
tensors for two types of single-aspect multilayer networks: a
temporal network and a multiplex network. As we mentioned
in Sec. IV, it is useful to think of interlayer dependencies as
causal links for the flow of information between layers. In
a temporal network, it is typical to assume that an induced
partition in a layer depends directly only on induced partitions
in the previous layer. There are thus l − 1 copying proba-
bilities (one for each pair of contiguous layers), which we
are free to choose. Common examples include choosing the
same probability for each pair of contiguous layers [10,12]
or making some of the probabilities significantly smaller than
the others to introduce change points [43,93]. In a multiplex
network, an induced partition in any layer can depend directly
on induced partitions in all other layers. This yields l (l − 1)
copying probabilities to choose. In Fig. 2(b), we illustrate the
simplest case, in which each layer depends equally on every
other layer. The layer-coupled interlayer-dependency tensors
in Fig. 2 are matrices, so we sometimes refer to them and other
examples of layer-coupled interlayer-dependency tensors
with a single aspect as layer-coupled interlayer-dependency
matrices.

We can also generate multilayer networks with more than
one aspect and can thereby combine temporal and multiplex
features. In Fig. 3, we illustrate how to construct a layer-

023100-9



BAZZI, JEUB, ARENAS, HOWISON, AND PORTER PHYSICAL REVIEW RESEARCH 2, 023100 (2020)

FIG. 4. Example temporal partitions for (n, l ) = (150, 100).
(Recall that n is the number of physical nodes and that l is the
number of layers.) We use the interlayer-dependency tensor from
Fig. 2(a) with uniform probabilities pβ = p for all β ∈ {2, . . . , l}
and a Dirichlet null distribution with q = 1, θ = 1, and nset = 5
(see Appendix A). For (a) p = 0, (b) p = 0.5, (c) p = 0.85, (d)
p = 0.95, (e) p = 0.99, and (f) p = 1, we show color-coded meso-set
assignments ( , top) for a single example output partition and
NMI values [94] (0 1, bottom) between induced partitions in
different layers averaged over a sample of 10 output partitions. The
parameter values match those in the numerical examples in Sec. VI
(with the exception of p = 0, which we include for completeness).
We choose a node ordering for each visualization that (whenever
possible) emphasizes “persistent” mesoscale structure [16]. We show
only the first 15 layers of each multilayer partition, because (as
one can see in the NMI heat maps) similarities between induced
partitions for p < 1 decay steeply with the number of layers when
there are dependencies only between contiguous layers.

coupled interlayer-dependency tensor to generate such a mul-
tilayer network on a simple example with two aspects, one of
which is multiplex and the other of which is temporal.

D. Temporal and multiplex partitions

In Figs. 4 and 5, we show example multilayer partitions
that we obtain with the interlayer-dependency tensors from
Fig. 2. The examples in Fig. 4 are temporal, and the examples
in Fig. 5 are multiplex. For simplicity, we assume in Fig. 4
that dependencies between contiguous layers are uniform (i.e.,
pβ = p ∈ [0, 1] for all β ∈ {2, . . . , l}). To illustrate the effect
of the interlayer dependencies, we also show a heat map of the
normalized mutual information (NMI) [94] between induced

FIG. 5. Example multiplex partitions for (n, l ) = (1000, 15). We
use the interlayer-dependency tensor in Fig. 2(b) and a Dirichlet null
distribution with q = 1, θ = 1, and nset = 10 (see Appendix A). We
perform 200 updating iterations (see Appendix B). For (a) p̂ = 0,
(b) p̂ = 0.5, (c) p̂ = 0.85, (d) p̂ = 0.95, (e) p̂ = 0.99, and (f) p̂ = 1,
where p̂ = (l − 1)p is the probability that a state node copies its
assignment from another state node, we show color-coded meso-set
assignments ( , top) for a single example output partition and
NMI values [94] (0 1, bottom) between induced partitions in
different layers averaged over a sample of 10 output partitions. (For
the temporal example in Fig. 4, note that p̂ = p.) The parameter
values match those in the numerical examples in Sec.VI (with the
exception of p̂ = 0, which we include for completeness). We choose
a node ordering that (whenever possible) emphasizes “persistent”
mesoscale structure [16].

partitions in different layers. NMI is a measure of similarity
between partitions, so we expect the values of NMI to reflect
the planted dependencies. As expected, for the temporal ex-
amples, partitions are most similar for contiguous layers. Sim-
ilarities decay with the distance between layers and increase
with the value of p. For the multiplex examples, we obtain
approximately uniform similarities between pairs of layers
(for all pairs of layers), where the similarities increase with
the value of p̂. We use the examples of interlayer dependency
from Figs. 4 and 5, as well as nonuniform and multiaspect
examples, in our numerical experiments of Sec. VI.

To provide a detailed illustration of the steps that result in
a multilayer partition, we focus on the temporal examples in
Fig. 4. For the important special case of temporal interlayer
dependencies, we can significantly simplify our generative
model for multilayer partitions. In particular, there is a single
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ordered aspect, so the layer index α ∈ N is a scalar and
the order of the layers corresponds to temporal ordering.
Furthermore, as we mentioned in Sec. IV B, for a fully ordered
multilayer network, we require that the order of the meso-
set-assignment update process in Eq. (4) respects the order of
the layers. The update order of state nodes (1, α), . . . , (n, α)
in any layer α is arbitrary (so we can update them simul-
taneously), but each update is conditional on the meso-set
assignments of state nodes in layer α − 1.

The update process that we described in Sec. IV B reduces
to three steps: (1) initialize (in an arbitrary order) the meso-set
assignments in layer α = 1; (2) take the meso-set assignment
of (i, α + 1) to be that of (i, α) with probability p, and
sample the meso-set assignment of (i, α + 1) from Pα+1

0 with
complementary probability 1 − p; and (3) increment α by 1
and repeat steps (2) and (3) until we have updated the meso-set
assignments in all layers. (See Algorithm 2 in Appendix C.)
As we mentioned in Sec. IV B, convergence is not an issue for
this case (or, more generally, for any fully ordered multilayer
network), as we need only one iteration through the layers.
This three-step generative model for temporal partitions was
also suggested by Ghasemian et al. [49]. They used it to
derive a detectability threshold when the null distributions
are uniform across meso-sets (i.e., θ → ∞ in Appendix A)
and intralayer edges are generated independently using a
standard SBM. Specifically, one replaces the degree-corrected
SBM that we discuss in Sec. V with the non-degree-corrected
SBM of [41]. In Appendix C, we highlight properties of a
sampled temporal partition that illustrate how the interplay
between p and the null distributions affects the evolution
of meso-sets across layers (e.g., growth, birth, and death of
induced meso-sets). The properties that we highlight hold
for any choice of null distribution. In the same appendix,
we subsequently illustrate that the particular choice of null
distributions can greatly influence resulting partitions. For
example, a nonempty overlap between the supports of null
distributions of contiguous layers is a necessary condition for
meso-sets to gain new state nodes over time. The properties
and observations in Appendix C are independent of one’s
choice of planted-partition network model.

V. GENERATING NETWORK EDGES

There are diverse types of multilayer networks [4,8]. One
common type of multilayer network is one with only in-
tralayer edges. There are also many multilayer networks with
both intralayer and interlayer edges (e.g., multimodal trans-
portation networks [95]), as well as ones with only interlayer
edges (e.g., temporal networks with edge delays, such as
departures and arrivals of flights between airports [5,96]).
One can use our framework to generate all three types of
examples, provided the underlying edge-generation model is
a planted-partition network model.

Having generated a multilayer partition S with dependen-
cies between induced partitions in different layers, the sim-
plest way to generate edges is to use any single-layer planted-
partition network model (e.g., SBMs [41,42,48,56,62,97],
models for spatially embedded networks [12,63], and so on)
and to generate edges for each layer independently. This
yields a multilayer network with only intralayer edges, such

that any dependencies between different layers result only
from dependencies between induced partitions in the different
layers. For our numerical experiments in Sec. VI, we use a
single-layer network model that is a slight variant (avoiding
the creation of self-edges and multi-edges) of the degree-
corrected SBM (DCSBM) benchmark from [42], where the
term “DCSBM benchmark” designates the specific type of
DCSBM that was used in the numerical experiments of [42].

One can also include dependencies between layers other
than those that are induced by planted mesoscale structures.
For example, one can introduce dependencies between the
parameters of a single-layer planted-partition network model
by (1) sampling them from a common probability distribution
(e.g., to incorporate interlayer degree correlations [4,98] in a
DCSBM) or by (2) introducing interlayer edge correlations,
given a single-layer partition on each layer [99]. For temporal
networks, one can also incorporate “burstiness” [2,3,100] in
the interevent-time distribution of edges. In such a scenario,
the probability for an edge to exist in a given layer depends
not only on the induced partition in that layer, but also on the
existence (and weights) of the edge in previous layers. For
example, one can use a Hawkes process to specify the time
points at which edges are active [101,102].

In Appendix D, we describe a multilayer generalization
of the DCSBM of Ref. [42] that one can use to generate
intralayer edges and/or interlayer edges. Our generalization
gives a framework to formulate the parameters of a single-
layer DCSBM in a multilayer setting. One can use our multi-
layer DCSBM (M-DCSBM) framework to incorporate some
of the features (e.g., degree correlations) that we described in
the previous paragraph in a multilayer network with intralayer
and/or interlayer edges.

VI. NUMERICAL EXAMPLES

In this section, we use our framework to construct
benchmark models for multilayer community-detection meth-
ods and algorithms. We use the examples of interlayer-
dependency tensors from Figs. 2 and 3 to generate benchmark
models. We also consider a variant of Fig. 2(b) in which
we split the layers into groups, use uniform dependencies
between layers in the same groups, and treat layers in different
groups as independent of each other. These examples cover
commonly studied temporal and multiplex dependencies, and
they illustrate how one can generate benchmark multilayer
networks with more than one aspect. In our numerical exam-
ples, we focus on a couple of popular objective functions for
multilayer community detection, rather than investigating any
given method or algorithm in detail.

We compare the behaviors of several variants of GenLou-
vain algorithms [103], which are similar to the the locally
greedy Louvain computational heuristic [104], to optimize
a multilayer modularity objective function [16,32] using the
standard Newman–Girvan null model (which is a variant of
a “configuration model” [105]). Modularity is an objective
function that is popular for partitioning sets of nodes into
communities that have a larger total internal edge weight than
the expected total internal edge weight of the same sets in
a “null network” [16], which is generated from some null
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model. Modularity maximization consists of finding a parti-
tion that maximizes this difference. For our numerical exper-
iments, we use the generalization of modularity to multilayer
networks of [32]. For multilayer modularity, the strengths
of the interactions between different layers are governed by
an interlayer-coupling tensor that controls the incentive for
state nodes in different layers to be assigned to the same
community. We use multilayer modularity with uniform in-
terlayer coupling, so the strength of the interactions between
different layers of a network depends on a layer-independent
and node-independent interlayer coupling weight ω � 0. We
use diagonal and categorical (i.e., between all pairs of layers)
interlayer coupling with weight ω for the multiplex examples
in Sec. VI A. We use diagonal and ordinal interlayer coupling
(so the coupling is between contiguous layers) with weight
ω for the temporal examples in Sec. VI B. In Appendix E,
we describe the Louvain algorithm and the variants of it
(GENLOUVAIN and GENLOUVAINRAND) that we use in this
paper.

We compare the results of multilayer modularity maxi-
mization with those of multilayer INFOMAP6 [9], which uses
an objective function called the “map equation” (which is
not an equation) that is based on a discrete-time random
walk and ideas from coding theory, to coarse-grain sets of
nodes into communities [106]. In multilayer INFOMAP, one
uses a probability r ∈ [0, 1] called the “relaxation rate” to
control the relative frequency with which a random walker
remains in the same layer or moves to other layers. (A random
walker cannot change layers when r = 0.) The relaxation rate
thus controls the interactions between different layers of a
multilayer network. We allow the random walker to move to
any other layer when r �= 0 for the multiplex examples in
Sec. VI A, and we allow the random walker to move only
to contiguous layers for the temporal examples in Sec. VI B.
In contrast to multilayer modularity (where ω = 0 yields
single-layer modularity for each layer), computing single-
layer INFOMAP for each layer is not equivalent to choosing
r = 0 in multilayer INFOMAP, because placing state nodes that
correspond to the same physical node in the same community
can contribute positively to the objective function even when
r = 0 [9]. Consequently, we compute single-layer INFOMAP

for each layer separately and reference it with the label “s” on
the horizontal axis in our figures with results from INFOMAP.

In all experiments in this section, we generate a multi-
layer partition using our copying process in Sec. IV (see
Algorithm 1 in Appendix B) and a multilayer network for a
fixed planted partition using a slight variant of the DCSBM
benchmark of Ref. [42]. We generate only intralayer edges,
and our variant avoids creating self-edges and multi-edges
(see Algorithm 3 in Appendix D). This multilayer planted-
partition network model is our M-DCSBM benchmark. This
M-DCSBM benchmark produces multilayer networks that
have only intralayer edges and whose connectivity patterns
in different layers depend on each other. Following [42],
we parametrize our M-DCSBM benchmark in terms of its

6We use version 0.18.2 of the INFOMAP code with the
“--two-level” option. The code is available at http://mapequation.
org/code.

distribution of expected degrees and a community-mixing
parameter μ ∈ [0, 1] that controls the strength of the commu-
nity structure in the sampled network edges. For μ = 0, all
edges lie within communities; for μ= 1, edges are distributed
independently of the communities, where the probability of
observing an edge between two state nodes in the same layer
depends only on the expected degrees of those two state
nodes. We use a truncated power law for the distribution of
expected degrees (see Appendix D).

The DCSBM benchmark has several features that make
our M-DCSBM benchmark an interesting test for the abil-
ity of multilayer community-detection methods to aggregate
information from multiple layers. The DCSBM benchmark
imposes community structure as an expected feature of an
ensemble of networks that it generates. Furthermore, the
definition of the mixing parameter μ of the DCSBM bench-
mark ensures that the planted partition from the benchmark
remains community-like for any μ < 1, as one is more likely
to observe intracommunity edges and less likely to observe
intercommunity edges than in a network that is generated
from a single-block DCSBM with the same expected degree
for each node. Consequently, given sufficiently many samples
from the same DCSBM benchmark (i.e., all samples have the
same planted partition and the same expected degrees), one
should be able to identify the planted community structure for
any μ < 1 (where the necessary number of samples goes to
infinity as μ → 1).

We use NMI [94] to compare the performance of different
community-detection algorithms. For each of our partitions,
we compute the mean of the NMI between the partition
induced on each layer by the output partition and that induced
by the planted partition. That is,

〈NMI〉(S, T ) = 1

l

∑
α∈L

NMI(S|α, T |α) .

The quantity 〈NMI〉 is invariant under permutations of the
meso-set labels within a layer. Consequently, 〈NMI〉 is well-
suited to comparing multilayer community-detection methods
with single-layer community-detection methods. In particular,
it allows us to test whether multilayer community-detection
methods can exploit dependencies between layers of a mul-
tilayer network when p̂ � 0 [see Eq. (6)]. In Appendix F,
we show numerical experiments in which we compute NMI
between multilayer partitions. We denote the NMI between
two multilayer partitions by mNMI.

In all of our numerical experiments in Secs. VI A and
VI B, we sample the benchmark networks in the following
way. For each value of p̂, we generate 10 sample partitions.
For each sample partition and each value of μ, we generate
10 sample multilayer networks. This yields 100 benchmark
instantiations for each pair ( p̂, μ). We run each community-
detection algorithm 10 times on each instantiation. In Figs. 6–
9, we show 〈NMI〉 between planted and recovered multilayer
partitions averaged over sample partitions, sample networks,
and algorithmic runs for each value of μ. Our results for
different planted partitions tend to be similar to each other.
The only exceptions are the results from using INFOMAP

on temporal networks with p = 0.99 and p = 1, where we
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FIG. 6. Multiplex networks with uniform interlayer dependencies. We illustrate the effects of the interlayer coupling strength ω and
relaxation rate r on the ability of different community-detection algorithms to recover planted partitions as a function of the community-mixing
parameter μ in benchmark networks with uniform multiplex dependencies [see Fig. 2(b)]. Each multilayer network has 1000 nodes and 15
layers, and each node is present in all layers. All NMI values are means over 10 runs of the algorithms and 100 benchmark instantiations. (See
the introduction of Sec. VI.) Each curve corresponds to the mean NMI values that we obtain for a given value of μ, and the shaded area around
a curve indicates the minimum and maximum NMI values that we obtain with the 10 sample partitions for a given value of p̂.

observe large differences between our results for different
partitions for certain values of μ.

Figures 6–10 illustrate results for different choices of the
interlayer-dependency tensor. In Figs. 6–9, rows correspond
to different choices of community-detection algorithm, and
columns correspond to different values of the copying prob-
abilities (with the strength of interlayer dependencies increas-
ing from left to right). All benchmark instantiations that we
use for Figs. 6–10 are available online.7

A. Multiplex examples

In this section, we consider two stylized examples of
multiplex networks. Multiplex networks arise in a variety of
different applications, including international relations and
trade [107–109], social networks [110], and ecological net-
works [111]. In our multiplex examples, we consider simple
dependency structures in which we expect multilayer

7See https://dx.doi.org/10.5281/zenodo.3304059.

community-detection methods to outperform single-layer
methods by exploiting interlayer dependencies.

In Fig. 6, we consider multiplex networks with uniform de-
pendencies between community structure in different layers.
In Fig. 7, we consider multiplex networks with nonuniform
dependencies between community structure in different lay-
ers. In both figures, we parametrize the amount of interlayer
dependency in a network by the probability p̂ [see Eq. (6)]
that a state node copies its community assignment from an in-
neighbor in the interlayer-dependency network. All multilayer
networks in these examples have n = 1000 physical nodes
and l = 15 layers. Each node is present in every layer, so
there are a total of 15 000 state nodes. In Fig. 2(b), we show
the layer-coupled interlayer-dependency matrix that we use to
generate the uniform multiplex networks. For the nonuniform
multiplex networks, we split the layers into 3 groups of 5
layers each. We use uniform dependencies between layers
in the same group, and layers in different groups are inde-
pendent of each other. The resulting layer-coupled interlayer-
dependency matrix is block diagonal with diagonal blocks
as in Fig. 2(b) and 0 entries in the off-diagonal blocks. We
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FIG. 7. Multiplex networks with nonuniform interlayer depen-
dencies. We illustrate the effects of the interlayer coupling strength
ω and relaxation rate r on the ability of different community-
detection algorithms to recover planted partitions as a function of
the community-mixing parameter μ in a multiplex benchmark with
nonuniform interlayer dependencies. Each multilayer network has
1000 nodes and 15 layers, and each node is present in all layers.
The layer-coupled interlayer-dependency matrix is a block-diagonal
matrix with diagonal blocks of size 5 × 5. Each diagonal block
corresponds to a copy of the matrix in Fig. 2(b) with p = p̂/4. In
each off-diagonal block, we set the value of p to pc = 0, thereby
incorporating an abrupt change in community structure. All NMI
values are means over 10 runs of the algorithms and 100 benchmark
instantiations. Each curve corresponds to the mean NMI values that
we obtain for a given value of μ, and the shaded area around a curve
indicates the minimum and maximum NMI values that we obtain
with the 10 sample partitions for a given value of p̂.

use a Dirichlet null distribution with nset = 10 and θ = 1 (see
Appendix A) to specify expected community sizes and the M-
DCSBM benchmark (see Appendix D) with ηk = 2, kmin = 3,
and kmax = 150 to generate intralayer edges. We perform 200
iterations of our update process (see Appendix B).

Comparing our results for GENLOUVAIN [see Figs. 6(a)–
6(e) and 7(a)–7(c)] and GENLOUVAINRAND with “reiteration”
and “postprocessing”8 [see Figs. 6(f)–6(j) and 7(d)–7(f)],
we see that the choice of optimization heuristic for a given
objective function can significantly affect the quality of the

8We describe reiteration and postprocessing in Appendix E.

resulting output partitions. In particular, for GENLOUVAIN, we
observe two distinct regimes and what appears to be a sharp
transition between them.9 For ω � 1, we obtain partitions
that are of similar quality to what we obtain by maximizing
single-layer modularity for each layer; however, for ω � 1,
each partition that we obtain has identical induced partitions
in each layer. We call the former the single-layer regime, and
we call the latter the aggregate regime. Although partitions
from the aggregate regime may be more similar to a planted
partition than partitions from the single-layer regime when p̂
is sufficiently large [e.g., this occurs in Figs. 6(d) and 6(e)],
we do not observe an interval of ω values between the two
regimes in which GENLOUVAIN is better at recovering the
planted partition than it is in the aggregate and single-layer
regimes. By contrast, in most cases, GENLOUVAINRAND

with reiteration and postprocessing identifies partitions that
match the planted partition more closely than it does in either
the single-layer or aggregate regimes. The exceptions are
uniform multiplex networks with p̂ = 0.5 [see Fig. 6(f)],
where GENLOUVAINRAND is unable to exploit the weak
interlayer dependencies to outperform the partitions from
the single-layer regime, and p̂ = 1 [see Fig. 6(j)], where the
partitions from the aggregate regime are always best. Most
of the improvement in the results for GENLOUVAINRAND

over those for GENLOUVAIN comes from reiteration. The
additional randomization helps smooth out the transition
(which tends to occur when ω ≈ 1) between the single-layer
and aggregate regimes. Postprocessing only yields a minor
improvement in the value of 〈NMI〉. However, the effect of
postprocessing is more pronounced when we compute mNMI
between multilayer partitions (see Appendix F).

Multilayer INFOMAP has some problematic behavior in
these benchmark experiments. Our results for multilayer
INFOMAP are noticeably worse than those that we obtain
with single-layer INFOMAP (corresponding to the label “s”
on the horizontal axis) for networks with relatively weak
community structure (specifically, for our computations with
μ � 0.4), unless the planted partition for different layers is
very similar (specifically, unless p̂ � 0.99).10 Furthermore,
the methods that are based on multilayer modularity outper-
form multilayer INFOMAP in our experiments for networks
with weak community structure and similar layers (specif-
ically, when both μ and p̂ are close to 1). INFOMAP does
not identify meaningful community structure in networks
with μ � 0.8 in any of our numerical examples, whereas
GENLOUVAIN and GENLOUVAINRAND identify meaningful
structure even for networks with very weak community
structure (e.g., with μ = 0.9) for sufficiently large values
of ω.

9We observe some erratic behavior as the interlayer coupling ω

approaches 1 from below. For values of ω near 1 but smaller than
1, the GENLOUVAIN algorithm has a tendency to place all state nodes
into a single community. This observation is related to the transition
behavior that was described in Ref. [16]. For values of ω that are
above a certain threshold, only interlayer merges occur in the first
phase of GENLOUVAIN (because of the locally greedy nature of the
algorithm).

10When we give inequalities like these for parameter values, we
refer specifically to values at which we do numerical computations.
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Our results for nonuniform multiplex networks in Fig. 7 are
similar to those that we showed for the uniform multiplex net-
works in Fig. 6. In particular, we see that GENLOUVAINRAND

can exploit dependencies between community structure in
different layers (although the improvement over single-layer
modularity is less pronounced than in the uniform examples),
whereas GENLOUVAIN cannot. The main difference is that for
p̂ = 1, the partitions from the aggregate regime for GENLOU-
VAIN and GENLOUVAINRAND do not recover the planted par-
tition, because the partitions induced by the planted partition
in different layers are not identical. In principle, multilayer
INFOMAP should have an advantage over methods that are
based on maximizing multilayer modularity in this case study,
as the former’s objective function is designed to detect breaks
in community structure, whereas multilayer modularity forces
some persistence of community labels between any pair of
layers. In practice, however, multilayer INFOMAP correctly
identifies the planted community structure only when it is
particularly strong (as we show in Appendix F, it correctly
identifies the different groups of layers for our computations
on networks with μ � 0.3); and it is outperformed by single-
layer INFOMAP for our computations on networks with μ �
0.4.

We suspect that at least some of the shortcomings of
multilayer INFOMAP in these experiments are due to the use
of a Louvain-type optimization heuristic, rather than from
flaws in INFOMAP’s objective function. As we have seen in
our results with the heuristics GENLOUVAIN and GENLOU-
VAINRAND, seemingly minor adjustments of an optimization
heuristic can have large effects on the quality of the results.
We are thus hopeful that similar adjustments can also improve
the results for multilayer INFOMAP.

B. Temporal examples

Temporal networks arise in many different applications
[2,3], such as the study of brain dynamics [17], financial-
asset correlations [16], and scientific citations [18]. When
representing a temporal network as a multilayer network, one
orders the layers in a causal way, such that structure in a
particular layer depends directly only on structure in previous
layers (and not on structure in future layers). To generate
multilayer networks that have such structure, we use our
sampling process for fully ordered multilayer networks and
the interlayer-dependency tensor of Fig. 2(a).

We consider two stylized examples of temporal networks.
In Fig. 8, we show results for temporal networks that have
uniform dependencies between contiguous layers (and hence
tend to evolve gradually). To generate these networks, we
set pβ = p for all layers in Fig. 2(a). In Fig. 9, we show
results for temporal networks with change points. To generate
these networks, we set pβ = p for all layers except layers
25, 50, and 75, for which pβ = pc = 0, resulting in abrupt
changes in community structure. Each multilayer network in
these two examples has n = 150 physical nodes and l = 100
layers. Each node is present in every layer, so there are a total
of 15 000 state nodes. We use a Dirichlet null distribution
to specify expected community sizes and set nset = 5 and
θ = 1 (see Appendix A). For the temporal networks with
change points in Fig. 9, we choose the supports of the null

distributions so that communities after a change point have
new labels. We use the M-DCSBM benchmark (see Appendix
D) with ηk = 2, kmin = 3, and kmax = 30 to generate intralayer
edges.

Both multilayer-modularity-based algorithms (i.e., GEN-
LOUVAIN and GENLOUVAINRAND) can exploit interlayer de-
pendencies for these temporal benchmark networks and iden-
tify partitions with significantly larger 〈NMI〉 values than
those that we obtain with single-layer modularity (i.e., with
ω = 0). Typically, the peak of 〈NMI〉 seems to occur when
1 � ω � 4. When p < 1, one expects 〈NMI〉 to decrease for
sufficiently large values of ω, as increasing ω further favors
“persistence” [16] in the output partition that is not present in
the multilayer planted partition.

For multilayer INFOMAP, the results are less promising.
For most parameter choices, the best result for multilayer
INFOMAP is at best similar and often worse than the result
for single-layer INFOMAP. (In the relevant plots, we label
the 〈NMI〉 value for single-layer INFOMAP with “s” on the
horizontal axis.) An exception occurs for p = 1 and uniform
temporal dependencies [see Fig. 8(o)]. In this example (where
induced partitions are the same across layers), increasing the
value of the relaxation rate r enhances the recovery for all
sampled planted partitions when μ � 0.4 and for a subset
of sampled planted partitions when μ = 0.5 and μ = 0.6.
Our results for multilayer INFOMAP on temporal benchmarks
with uniform interlayer dependencies with p = 0.99 [see
Fig. 8(n) for μ = 0.3 and μ = 0.4] and p = 1 [see Fig. 8(o)
for μ = 0.5 and μ = 0.6] are the only instances in which we
observe large differences in results for different partitions that
are generated by our model using the same parameter values.

Comparing results for GENLOUVAIN [see Figs. 8(a)–8(e)
and 9(a)–9(c)] and GENLOUVAINRAND with reiteration and
postprocessing [see Figs. 8(f)–8(j) and 9(d)–9(f)], we see
that the difference in results between the two optimization
heuristics for multilayer modularity is even more pronounced
in these temporal examples than in the multiplex examples in
Sec. VI A. In particular, GENLOUVAIN has an abrupt change in
behavior near ω = 1; this is related to the transition behavior
that was described in Ref. [16]. As we explained in Sec. VI A
(where we also observed such a phenomenon), this transition
occurs for the following reason: for values of ω that are above
a certain threshold, only interlayer merges occur in the first
phase of GENLOUVAIN. This abrupt transition no longer oc-
curs with the additional randomization in GENLOUVAINRAND,
which exhibits smooth behavior as a function of ω. However,
unlike in our multiplex experiments, we observe benefits from
the behavior of GENLOUVAIN in some situations, especially
for networks with weak community structure (specifically,
for μ � 0.8). This phenomenon first becomes noticeable for
networks with p = 0.95, and it becomes more pronounced
for progressively larger values of p. Compare Figs. 8(c)–8(e)
with Figs. 8(h)–8(j); and compare Figs. 9(b) and 9(c) with
Figs. 9(e) and 9(f).

Our results for temporal benchmark networks with change
points (see Fig. 9) are mostly similar to those for temporal
benchmark networks with uniform dependencies when we
calculate 〈NMI〉 to compare planted and recovered partitions.
Only the results for p = 1 are noticeably different. [Compare
Figs. 9(c), 9(f), and 9(i) with Figs. 8(e), 8(j), and 8(o).]
Because of the change points, the induced planted partitions

023100-15



BAZZI, JEUB, ARENAS, HOWISON, AND PORTER PHYSICAL REVIEW RESEARCH 2, 023100 (2020)

FIG. 8. Temporal networks with uniform interlayer dependencies. We illustrate the effects of the interlayer coupling strength ω and
relaxation rate r on the ability of different community-detection algorithms to recover planted partitions as a function of the community-mixing
parameter μ in a temporal benchmark with uniform interlayer dependencies [i.e., pβ = p ∈ [0, 1] for all β ∈ {2, . . . , l} in Fig. 2(a)]. Each
multilayer network has 150 nodes and 100 layers, and each node is present in all layers. All NMI values are means over 10 runs of the
algorithms and 100 benchmark instantiations. (See the introduction of Sec. VI.) Each curve corresponds to the mean NMI values that we
obtain for a given value of μ, and the shaded area around a curve indicates the minimum and maximum NMI values that we obtain with the 10
sample partitions for a given value of p.

for each layer are not identical, even when p = 1. Conse-
quently, unlike in Fig. 8, the results for p = 1 in Fig. 9
are qualitatively similar to those for smaller values of p. In
principle, one might expect multilayer INFOMAP to have an
advantage over multilayer-modularity-based methods in this
case study, as the former’s objective function is designed
to detect abrupt changes in community structure, whereas
maximizing multilayer modularity favors some persistence
of community labels across layers. However, this theoretical
advantage is not borne out in our computations. When com-
paring the planted and output partitions by calculating mNMI,
we see that multilayer INFOMAP can correctly recover the
change points only when both p = 1 and μ ∈ {0, 0.1} (see
Appendix F).

C. Multiaspect examples

In this section, we illustrate the ability of our framework
to generate multilayer networks with more than one aspect.
A common type of multilayer network with two aspects is
a multiplex network that changes over time (e.g., citations

patterns that change over time [112]). In our framework, one
can model such a situation by using an interlayer-dependency
tensor like the one in Fig. 3. For the illustrative examples in
this section, we use uniform multiplex and temporal depen-
dencies. We parametrize the interlayer-dependency tensor as
follows:

P̃βt ,βm
αt ,αm

= δ(αt , βt )[1 − δ(αm, βm)](1 − a) p̂/(lm − 1)

+ δ(αt + 1, βt )δ(αm, βm)ap̂ ,

where a ∈ [0, 1] controls the balance between multiplex and
temporal dependencies and p̂ controls the overall strength of
the interlayer dependencies.

To recover communities, we optimize a multiaspect gener-
alization,

Q(S) =
∑

(i, α) ∈ VM

( j, β) ∈ VM

[(
Aj,β

i,α − kα
i,αkβ

j,β

2mβ
α

)
δ(α,β)

+Cβ
α δ(i, j)

]
δ(Si,α, S j,β ) , (8)
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FIG. 9. Temporal networks with nonuniform interlayer depen-
dencies. We illustrate the effects of the interlayer coupling strength
ω and relaxation rate r on the ability of different community-
detection algorithms to recover planted partitions as a function of
the community-mixing parameter μ in a temporal benchmark with
nonuniform interlayer dependencies. Each multilayer network has
150 nodes and 100 layers, and each node is present in all layers. The
layer-coupled interlayer-dependency matrix is the one in Fig. 2(a).
We choose the values of pβ in Fig. 2(a) such that we introduce three
abrupt changes in community structure. Every 25th layer (specifi-
cally, for layers 25, 50, and 75), we set the value of pβ to pc = 0,
thereby introducing an abrupt change in community structure; we
set all other values of pβ to p. All NMI values are means over 10
runs of the algorithms and 100 benchmark instantiations. Each curve
corresponds to the mean NMI values that we obtain for a given value
of μ, and the shaded area around a curve indicates the minimum and
maximum NMI values that we obtain with the 10 sample partitions
for a given value of p.

of the multilayer modularity function that was introduced in
Ref. [32].

We specify the interlayer-coupling tensor C (a multiaspect
generalization of the “interslice coupling” of [32]), such that
it reflects the planted interlayer dependencies, by writing

Cβt ,βm
αt ,αm

= δ(αt , βt )(1 − δ(αm, βm))ωm

+ δ(αt + 1, βt )δ(αm, βm)ωt ,

where ωt denotes the coupling parameter for the temporal
dependencies and ωm denotes the coupling parameter for the
multiplex dependencies.

FIG. 10. Multiaspect networks with uniform interlayer depen-
dencies. We illustrate the effects of the strengths of the temporal
interlayer coupling ωt and the multiplex interlayer coupling ωm

on the ability of multilayer modularity maximization to recover a
planted partition in two-aspect multilayer networks that we generate
using our framework. The first aspect is temporal (and thus ordered)
and the second aspect is multiplex (and thus unordered). The heat
maps show the mean (〈NMI〉, 0 1) over all layers of the
NMI between induced planted partitions and recovered community
structure. A black cross indicates the maximum value of 〈NMI〉.
The dependence between structure in different layers increases from
top to bottom, and the importance of the temporal aspect versus the
multiplex aspect increases from left to right. We average our results
for each pair of parameters over 10 runs of GENLOUVAINRAND with
reiteration. The generated networks have n = 100 nodes and l = 100
layers with |LT| = |LM| = 10, so there are a total of 10 000 state
nodes. We fix the community-mixing parameter of the M-DCSBM
benchmark to be μ = 0.5.

In Fig. 10, we illustrate the effects of the two interlayer
coupling parameters, ωt and ωm, on the extent to which
multilayer modularity maximization can recover a planted
partition. We use GENLOUVAINRAND with reiteration (but
without postprocessing) to find a local optimum of Eq. (8). For
all of the values of p̂ and a that we consider in Fig. 10, we see
some improvement in the performance of multilayer modular-
ity maximization with nonzero interlayer coupling compared
with the case in which both ωt = 0 and ωm = 0. As the latter
case corresponds to independently maximizing modularity on
each layer of a network, this demonstrates that multilayer
modularity is able to exploit the interlayer dependencies to
better recover a planted partition. As expected, increasing a
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(which gives more weight to temporal dependencies) leads
to a shift of the region of the parameter space with good
planted-partition recovery to larger values of ωt and smaller
values of ωm. For progressively larger p̂, we observe a small
overall increase in the value of 〈NMI〉, but its dependence on
ωt and ωm remains similar.

VII. CONCLUSIONS AND DISCUSSION

We introduced a unifying and flexible framework for the
construction of generative models for mesoscale structures
in multilayer networks. The three most important features of
our framework are the following: (1) it includes an explicitly
parametrizable tensor P that controls interlayer-dependency
structure; (2) it can generate an extremely general, diverse set
of multilayer networks (including, e.g., temporal, multiplex,
“multilevel” [113], and multiaspect multilayer networks with
uniform or nonuniform dependencies between state nodes);
and (3) it is modular, as the process of generating a partition is
separate from the process of generating edges, enabling a user
to first generate a partition and then use any planted-partition
network model. Along with our paper, we provide publicly
available code [14] that users can modify to readily incor-
porate different types of null distributions (see Sec. IV A),
interlayer-dependency structures (see Sec. IV B), and planted-
partition network models (see Sec. V).

The ability to explicitly specify interlayer-dependency
structure makes it possible for a user to control which layers
depend directly on each other (by deciding which entries
in the interlayer-dependency tensor are nonzero) and the
strengths of such dependencies (by varying the values of the
entries in the interlayer-dependency tensor). One can thereby
generate multilayer networks with either a single aspect or
multiple aspects (e.g., temporal and/or multiplex networks)
and vary dependencies between layers from the extreme case
in which induced partitions of a planted multilayer partition
are the same across layers to the opposite extreme, in which
induced partitions of a planted multilayer partition are gener-
ated independently for each layer from a null distribution for
that layer. To the best of our knowledge, this level of general-
ity is absent from existing generative models for mesoscale
structures in multilayer networks, as those models tend to
consider only networks with a single aspect (e.g., temporal
or multiplex) or networks with limited interlayer-dependency
structures (e.g., in which a planted multilayer partition has
identical induced partitions in all layers).

We illustrated several examples of generative models that
one can construct from our framework, with a focus on a
few special cases of interest, rather than on trying to discuss
as many situations as possible. We focused on community
structure in our numerical experiments because it is a com-
monly studied mesoscale structure, but one can also use our
framework to construct generative models of mesoscale struc-
tures other than community structure (e.g., core–periphery
structure, bipartite structure, and so on) by taking advantage of
our framework’s ability to use any planted-partition network
model. For our single-aspect examples, we assumed that
interlayer dependencies exist either between all contiguous
layers (a special case of temporal networks), between all
layers (a special case of multiplex networks), or between all

contiguous groups of layers (another special case of multiplex
networks). For both our temporal and multiplex examples,
we considered both uniform and nonuniform interlayer de-
pendencies. We also combined some of these scenarios in an
example with two aspects (a temporal aspect and a multiplex
aspect). Our framework’s flexibility allows us to construct
generative models of multilayer networks with more realistic
features. For example, for temporal networks, one can intro-
duce dependencies between a layer and all layers that follow
it (such that the interlayer-dependency tensor in Fig. 2(a) is
an upper-triangular matrix with nonzero entries above the
diagonal) to incorporate memory effects [114]. One can also
consider interlayer dependencies that are not layer-coupled.
For example, dependencies can be diagonal but nonuniform,
or they can be nonuniform and exist only between sets of
related nodes.

In Sec. VI, we considered the commonly studied case of
a multilayer network with only intralayer edges and connec-
tivity patterns in the different layers that depend on each
other. We used a slight variant of the DCSBM benchmark
from [42] to generate edges for each layer. However, other
types of multilayer networks are also important [4], and one
can readily combine our approach for generating multilayer
partitions with different network generative models that cap-
ture various important features. For example, one can use
an SBM to generate interlayer edges (e.g., using our M-
DCSBM framework, which we discuss in Appendix D), or
one can replace the degree-corrected SBM in Sec. V with
any other planted-partition network model or other interesting
models (e.g., other variants of SBMs [41,48] and models for
networks whose structure is affected by space [12] or latent
features [63]). In all of these examples, dependencies between
connectivity patterns in different layers arise only from a
planted multilayer partition. It is also possible to modify
our network-generation process (see Sec. V) to incorporate
additional dependencies between layers beyond those that
are induced by a planted mesoscale structure. For example,
one can introduce dependencies between a node’s degree in
different layers [98,115] or burstiness [100] in the interevent-
time distributions of edges.

Our work has the potential for many useful and inter-
esting extensions, and we highlight three of these. First,
although we have given some illustrative numerical examples
in Sec. VI, the area of benchmarking community-detection
methods in multilayer networks is far from fully developed.
Generative models are useful tools for understanding the
behavior of community-detection methods in detail and thus
for suggesting ways of improving heuristic algorithms without
losing scalability. One can use our framework to construct
benchmark models that provide a test bed for gaining in-
sight into the advantages and shortcomings of community-
detection methods and algorithms (and, more generally, of
meso-set-detection methods and algorithms). Importantly, we
expect these benchmark models to be very informative for
detecting potential artifacts of algorithms that can some-
times be masked in real-world applications. Second, a well-
understood generative model can be a powerful tool for
statistical inference (specifically, for inferring the structure
of a multilayer network, rather than generating a multilayer
network with a planted structure) [23]. For temporal networks,
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closed forms for the joint distribution of meso-set assignments
have been derived for models that are special cases of our
framework [10,13]. These results may be useful for statistical
inference. Additionally, it seems likely that it is possible to
adapt Bayesian inference techniques (such as Gibbs sampling
[116–118] and variational methods [119]) that have been
developed for SBMs to derive methods both for inferring a
multilayer partition and for inferring an interlayer-dependency
tensor. A key advantage of the generality of the framework
that we have developed in this paper is that it may be possible
to frame many model-selection questions in terms of posterior
estimation of an interlayer-dependency tensor. Finally, it is
important to model interdependent data streams and not just
fixed data sets. For example, for any fully ordered multilayer
network, our generative model respects the causality of layers
(e.g., temporal causality), and one can thus update a multilayer
network with a new layer without the need to update any
previous layers. It is critical to develop generative models that
are readily adaptable to such situations, and our work in this
paper is a step in this direction.
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APPENDIX A: EXAMPLE NULL DISTRIBUTIONS

In this appendix, we discuss parameter choices for cate-
gorical null distributions and give concrete examples that can
be useful for modeling mesoscale structures in temporal and
multiplex networks.

In Sec. IV A, we described the general form of a categorical
null distribution:

Pα
0 [s] =

{
pα

s , s ∈ {1, . . . , nset}
0 , otherwise , (A1)

where pα
s is the probability for a state node in layer α to

be assigned to a meso-set s in the absence of interlayer
dependencies, nset is the number of meso-sets in the multilayer
partition, and

∑nset
s=1 pα

s = 1 for each α ∈ L. The support Gα of

the null distribution Pα
0 is Gα = {s : Pα

0 [s] �= 0}. We say that
a label s is active in a layer α if it is in the support of the null
distribution Pα

0 (i.e., if Pα
0 [s] �= 0), and we say that a label is

inactive in layer α if it is in the complement of the support of
Pα

0 (i.e., if Pα
0 [s] = 0).

A natural choice is to sample pα from a Dirichlet distribu-
tion, which is the conjugate prior of a categorical distribution
[90,91]. The Dirichlet distribution of order q has q parameters
θ1, . . . , θq. Its probability density function is

p(x1, . . . , xq ) = 	
(∑q

i=1 θi
)∏q

i=1 	(θi )

q∏
i=1

xθi−1
i ,

where 	 denotes the gamma function, xi ∈ (0, 1), and θi > 0
for each i ∈ {1, . . . , q}. The case in which all θi are equal
is called a “symmetric Dirichlet distribution,” which we
parametrize by the common value θ (the so-called “concen-
tration parameter”) of the parameters and the number q of
variables.

The concentration parameter θ determines the types of dis-
crete probability distributions that one is likely to obtain from
the symmetric Dirichlet distribution of order q = nset. For
θ = 1, the symmetric Dirichlet distribution is the continuous
uniform distribution over the space of all discrete probabil-
ity distributions with nset states. As θ → ∞, the symmetric
Dirichlet distribution becomes increasingly concentrated near
the discrete uniform distribution, such that all entries in pα

are approximately equal. As θ → 0, it becomes increasingly
concentrated away from the uniform distribution, such that pα

tends to have 1 (or a few) large entries and all other entries
are close to 0. Consequently, to have very heterogeneous
meso-set sizes, one wants θ ≈ 1. To have all meso-sets be
of similar sizes, one uses a large value of θ . To have a few
large meso-sets and many small meso-sets, one wants θ to be
sufficiently smaller than 1. The value of nset also affects the
amount of meso-set label overlap across layers in the absence
of interlayer dependencies. For example, if pα is the same
for all layers, then larger values of nset incentivize less label
overlap across layers (because there are more possible labels
for each layer) and smaller values of nset incentivize more
label overlap across layers (because there are fewer possible
labels for each layer).

In some situations—for example, when modeling the birth
and death of communities in temporal networks or the ap-
pearance and disappearance of communities in multiplex
networks—it is desirable to have meso-set labels that have
a nonzero probability in Eq. (A1) only in some layers. For
these situations, we suggest sampling the support of the
distributions before sampling the probabilities pα. Given the
supports for each layer, one then samples the corresponding
probabilities from a symmetric Dirichlet distribution (or any
other distribution over categorical distributions). That is,

pα
Gα ∼ Dir(θ, |Gα|) , pα

G
α = 0 , (A2)

where Gα = {s ∈ {1, . . . , nset} : Pα
0 [s] = 0} is the comple-

ment of the support, with nset = maxα∈L max(Gα).
A simple example of a process for modeling the birth and

death of meso-sets is the following one. First, fix a number
of meso-sets and a support (i.e., active community labels) for
the first layer. One then sequentially initializes the supports
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for the other layers by removing each meso-set in the support
of the previous layer with probability rd ∈ [0, 1] and adding
a number, sampled from a Poisson distribution with rate rb ∈
[0,∞), of new meso-sets (with new labels that are not active
in any previous layer). In temporal networks, for example,
this ensures that if a meso-set label is not in the support of
a given layer after being in the support of previous layers,
then the label is also not in the support of any subsequent
layers. For this process, the expected number 〈|Gα|〉 of meso-
sets in a layer approaches rb/rd as one iterates through the
layers. Therefore, for the first layer, one should initialize the
support of the null distribution with about rb/rd elements to
avoid transients in the number of meso-sets. For this process,
the lifetime of meso-sets follows a geometric distribution.
The nature of the copying process that we use to introduce
dependencies between induced partitions in different layers
typically implies that meso-sets that have been removed from
the support of the null distribution do not lose all of their
members instantly, but instead shrink at a rate that depends
on the values of the copying probabilities in the interlayer-
dependency tensor.

One can also allow labels to appear and disappear when
examining multiplex partitions. For example, given a value for
nset, one can generate the support for each layer by allowing
each label s ∈ {1, . . . , nset} to be present with some probabil-
ity q̃ and absent with complementary probability 1 − q̃. This
yields a sets of active and inactive meso-set labels for each
layer. One can then sample the nonzero probabilities in pα

that correspond to active labels from a Dirichlet distribution
and set pα

s to 0 for each inactive label s. Because multiplex
partitions are unordered, there is no notion of one layer oc-
curring after another one, so we do not need to ensure that an
inactive label in a given layer is also inactive in “subsequent”
layers.

APPENDIX B: PARTITION SAMPLING PROCESS

In this appendix, we provide a detailed description of the
way in which we sample multilayer partitions, including a
discussion of the convergence properties of our sampling
process. As we mentioned in Sec. IV B, we assume that the
multilayer partitions are generated by a copying process on
the meso-set assignments of state nodes. Recall that the con-
ditional probability distribution that governs the new meso-set
assignment of a state node, given the current state of the
copying process [see Eq. (4) in Sec. IV B], is

P [S j,β(τ + 1) = s|S(τ )]

=
∑

(i,α)∈VM

P j,β
i,α δ(Si,α(τ ), s)

+ (1 − p̂ j,β )Pβ
0 [S j,β = s] ,

p̂ j,β =
∑

(i,α)∈VM

P j,β
i,α , (B1)

where P0 is a given set of independent layer-specific null
distributions and P is a specified interlayer-dependency ten-
sor. Recall as well that a multilayer network can have both
ordered aspects and unordered aspects, where we denote the
set of ordered aspects by O and the set of unordered aspects

ALGORITHM 1. Pseudocode for generating multilayer par-
titions with an interlayer-dependency tensor P, a set P0 of null
distributions, and ordered aspects O. The parameter nupd is the
expected number of updates for each state node.

function SAMPLEPARTITION(P, P0, O, nupd)
for (i,α) ∈ Vm do

Si,α ∼ P α
0 � Initialize partition tensor

using null distributions
end for
for [α] ∈ L/∼O do � Loop over ordered aspects

in lexicographic order
for τ ∈ {1, . . . , |[α]| nupd} do

α ∼ U ([α]) � Sample uniformly from
order-equivalent layers

for i ∈ V do � Loop over nodes in some
order

Si,α ∼ P [Si,α|S] � Update (i, α) according to
Eq. (B1)

end for
end for

end for
return S

end function

by U . Our goal is to sample multilayer partitions that are
consistent with generation by Eq. (B1) while respecting the
update order from its ordered aspects (if any are present).
Recall that two layers, α and β, are order equivalent (which
we denote by α ∼O β) if αa = βa for all a ∈ O. Based on
this equivalence relation, we obtain an ordered set L/∼O of
equivalence classes by inheriting the order from the ordered
aspects (where, for definiteness, we consider lexicographic
ordering [92] over ordered aspects). We want to simultane-
ously sample the meso-set assignments of state nodes in each
class of order-equivalent layers; and we want to sequentially
sample the meso-set assignments of state nodes in non-order-
equivalent layers, conditional on the fixed assignments of state
nodes in preceding layers (see Algorithm 1).

1. Scan order and compatibility

To sample the induced partitions for each class of order-
equivalent layers, we use a technique that resembles Gibbs
sampling [79]. We define a Markov chain, as in Gibbs
sampling, on the space of multilayer partitions by updating
the meso-set assignments of state nodes by sampling from
Eq. (B1). In Gibbs sampling, one assumes that the conditional
distributions that one uses to define such a Markov chain are
compatible, in the sense that there exists a joint distribution
that realizes these conditional distributions [80–83]. However,
for a general interlayer-dependency tensor, there is no guar-
antee that the distributions that are defined by Eq. (B1) are
compatible. Following [78], we use the term “pseudo-Gibbs
sampling” to refer to Gibbs sampling from a set of poten-
tially incompatible conditional distributions. We can define
different Markov chains by changing the way in which we
select which conditional distribution to apply at each step
(i.e., which state node to update at each step). The order in
which one cycles through conditional distributions is known
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as the scan order [85]. We use the term sampling Markov
chain for the Markov chain that is defined by pseudo-Gibbs
sampling with a specified scan order. Common scan orders are
cycling through conditional distributions in a fixed order and
sampling the update distribution uniformly at random from
the set of conditional distributions. In pseudo-Gibbs sampling,
the choice of scan order deserves careful attention. In such
sampling, different scan orders correspond to sampling from
different distributions [85]. (By contrast, in Gibbs sampling,
the choice of scan order influences only the speed of conver-
gence.) In particular, when cycling through conditional dis-
tributions in a fixed order, later conditional distributions have
more influence than earlier ones on the stationary distributions
of the sampling Markov chain [85]. Sampling the update
distribution uniformly at random mitigates this problem, at the
expense of introducing computational overhead.

We can improve on a purely random sampling strategy by
exploiting the structure of the interlayer-dependency tensor.
In particular, note that the conditional distributions for state
nodes in the same layer are independent (as we assume that the
interlayer-dependency tensor has no intralayer contributions)
and hence compatible. When updating a set of state nodes
from a given layer, we can update them in any order or even
update them concurrently. To take advantage of this, we first
sample a layer uniformly at random from the current class of
order-equivalent layers and then update all state nodes in that
layer. The sequence of layer updates defines a Markov chain
on the space of multilayer partitions, and its convergence
properties determine the level of effectiveness of our sampling
algorithm.

2. Convergence guarantees

We now discuss two key properties, aperiodicity and er-
godicity, that determine the convergence behavior of finite
Markov chains.

First, note that sampling layers uniformly at random guar-
antees that we have an aperiodic sampling Markov chain. To
see this, note that a sufficient condition for aperiodicity is that,
for all states, there is a nonzero probability to transition from
the state to itself. This clearly holds for our sampling Markov
chain, as it is possible for two consecutive updates to update
the same layer and [because the probability distributions in
Eq. (B1) remain unchanged after the first update] there is a
positive probability that the second update does not change
the partition.

Second, note that if p̂i,α < 1 for all state nodes (i,α) ∈ VM

with α ∈ [α], where [α] is a class of order-equivalent layers,
then the sampling Markov chain for that class is ergodic over
a subspace of multilayer partitions that includes the support
G[α] = ∏

α∈[α] Gα of the null distributions. We have already
shown that the sampling Markov chain is aperiodic, so we
only need to verify that there exists a sample path from
any arbitrary initial partition S0 to any arbitrary multilayer
partition Sg ∈ G[α] in the support of the null distributions.
Such a sample path clearly exists, as

P
[
Si,α(τ + 1) = Sg

i,α

∣∣Si,α(τ ) = S0
i,α

]
� 1

|[α]| (1 − p̂i,α)Pα
0

[
Sg

i,α

]
> 0 .

Therefore, one can achieve the desired transition using one
update for each state node.

Sample paths of a finite, aperiodic Markov chain converge
in distribution to a stationary distribution of the Markov
chain. However, different sample paths can converge to dif-
ferent distributions, and the eventual stationary distribution
can depend both on the initial condition and on the transient
behavior of the sample path. If a Markov chain is ergodic, its
stationary distribution is unique, so it is independent of the
initial condition and transient behavior.

After sufficiently many updates (i.e., by specifying a suffi-
ciently large value for the expected number nupd of updates for
each state node in Algorithm 1), we approximately sample the
state of the Markov chains for each class of order-equivalent
layers from their stationary distributions. For fully ordered
multilayer networks (i.e., for multilayer networks with U =
∅), setting nupd = 1 is sufficient for convergence, because the
equivalence classes include only a single layer in this case
and subsequent updates are thus independent samples from
the same distribution.

Sampling initial conditions in an unbiased way can be
important for ensuring that one successfully explores the
space of possible partitions, as the updating process is not
necessarily ergodic over the support of the null distributions
when

∑
(i,α)∈VM

P j,β
i,α = 1 for some state nodes. For example,

if p̂i,α = 1 for all (i,α) ∈ VM , then any partition in which
all state nodes in each weakly connected component of the
interlayer-dependency network have the same meso-set as-
signment is an absorbing state of the Markov chain.

However, provided the updating process has converged,
any partition that one generates should still reflect the desired
dependencies between induced partitions in different layers.
Therefore, to circumvent the problem of nonunique station-
ary distributions when the updating process is not ergodic,
we reinitialize the updating process by sampling from the
null distribution for each partition that we want to generate.
Reinitializing the initial partition from a fixed distribution
for each sample always defines a unique joint distribution,
which is a mixture of all possible stationary distributions
when the updating process is not ergodic. When the updating
process is ergodic, it is equivalent to sample partitions by
reinitializing or to sample multiple partitions from a single
long chain. Using a single long chain is usually more efficient
when one needs many samples and it is not problematic for
there to be some dependence between samples [120]. In our
case, however, we usually need only a few samples with the
same parameters, and ensuring independence tends to be more
important than ensuring perfect convergence (provided the
generated partitions have the desired interlayer-dependency
structure). Using multiple chains thus has clear advantages
even when the updating process is ergodic, and it is necessary
to use multiple chains when it is not ergodic.

3. Convergence tests

It is difficult to determine whether a Markov chain has
converged to a stationary distribution, mostly because it is
difficult to distinguish the case of a slow-mixing chain be-
coming stuck in a particular part of state space from the case
in which the chain has converged to a stationary distribution.
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FIG. 11. Autocorrelation of the sampling Markov chain, as mea-
sured by mNMI. We use the layer-coupled interlayer-dependency
matrix in Fig. 2(b) to generate partitions and show the corresponding
value of p̂ above each panel. On the horizontal axis, we show
the value of nupd that we use to generate the first partition in the
comparison. The lag is the number of additional updates per state
node that we use to generate the second partition in the comparison.
We average results over a sample of 100 independent chains with
different initial partitions. The shaded area indicates one standard
deviation above and below the mean. Note that the large amount of
noise for small values of the lag is not a result of differences between
chains in the sample; instead, it is an inherent feature of all chains in
the sample.

There has been much work on trying to define convergence
criteria for Markov chains [121], but none of the available
approaches are entirely successful. In practice, one usually
runs a Markov chain (or chains) for a predetermined num-
ber of steps. One checks manually for a few examples that
the resulting chains exhibit behavior that is consistent with
convergence by examining autocorrelations between samples
of the same chain and cross correlations between samples of
independent chains with the same initial state. When feasible,
one can also check whether parts of different, independent
chains or different parts of the same chain are consistent with
sampling from the same distribution.

To estimate the number of updates that we need in the
numerical experiments of Sec. VI A, we examine autocorrela-
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FIG. 12. Convergence of the dependency pattern between in-
duced partitions in different layers, as measured by the mean abso-
lute distance d between NMI matrices [see Eq. (B2)]. We use the
layer-coupled interlayer-dependency matrix in Fig. 2(b) to generate
partitions and show the corresponding value of p̂ above each panel.
On the horizontal axis, we show the value of nupd that we use to
generate the first partition in the comparison. The lag is the number of
additional updates per state node that we use to generate the second
partition in the comparison. We average results over a sample of 100
independent chains with different initial partitions. The shaded area
indicates one standard deviation above and below the mean.

tions of the Markov chain in two different ways. In Fig. 11, we
calculate multilayer NMI (mNMI) between sampled partitions
at different steps of the Markov chain. We are interested
in the behavior of the mNMI both as a function of nupd

(the expected number of updates per state node that we use
to generate the first partition in the comparison) and the
lag (the number of additional updates per state node that
we use to generate the second partition in the comparison).
Because the Markov chain converges to a stationary distri-
bution, the value of mNMI for a given lag should become
independent of nupd (so the curves in Fig. 11 should become
flat). The results in Fig. 11 suggest that the number of updates
that we need for convergence increases moderately with p̂,
where nupd ≈ 50 is sufficient for convergence even when
p̂ = 1. In Fig. 12, we examine whether the dependency pattern
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between induced partitions in different layers (we characterize
such a pattern by calculating NMI between induced partitions
in different layers) has converged using the mean absolute
distance

d (S, T ) = 2

l (l − 1)

∑
α<β

∣∣ NMI(S|α,S|β ) − NMI(T |α, T |β )
∣∣

(B2)

between the NMI matrices between induced partitions in
a multilayer partition. (We showed examples of such NMI
matrices in Figs. 4 and 5.) As with mNMI, the mean ab-
solute distance d should become independent of nupd once
the Markov chain has converged to a stationary distribution.
This yields estimates for the minimum number of updates for
convergence that are consistent with those from the results in
Fig. 11. It is always safe to use a larger number of updates to
sample partitions, and the results from Figs. 11 and 12 suggest
that our choice of nupd = 200 is conservative.

Figures 11 and 12 reveal additional important information
about the behavior of our sampling process. We can estimate
the mixing time of the sampling Markov chain at stationarity
from Fig. 11 because the mixing time corresponds to the lag
that is necessary for the mNMI to converge to 0. The mixing
time at stationarity increases with p̂ and becomes infinite as
p̂ → 1 because the Markov chain converges to an absorbing
state. From Fig. 12, we observe that, for all values of p̂, the
mean absolute distance d between NMI matrices converges
to a value near 0 and becomes essentially independent of the
lag. This corroborates our assumption that different partitions
that we generate from our sampling process have similar
interlayer-dependency structures.

APPENDIX C: A GENERATIVE MODEL
FOR TEMPORAL NETWORKS

In this appendix, we examine the generative model for
temporal networks that we considered in Sec. IV D. In this
model, we assume uniform dependencies between contiguous
layers [i.e., pβ = p ∈ [0, 1] for all β ∈ {2, . . . , l} in Fig. 2(a)].
For this choice of interlayer-dependency tensor, Algorithm 1
simplifies to Algorithm 2. In this case (and, more generally,
for any fully ordered multilayer network), convergence is
automatic because we need only one iteration through the
layers.

A first important feature of the generative model in Al-
gorithm 2 is that it respects the arrow of time. In particu-
lar, meso-set assignments in a given layer depend only on
meso-set assignments in the previous layer (e.g., the previous
temporal snapshot) and on the null distributions P0. That is,
for all s ∈ {1, . . . , nset} and all α ∈ {2, . . . , l}, we have

P [Si,α = s|S|α−1]

= pδ(Si,α−1, s) + (1 − p)P α
0 [Si,α = s] , (C1)

where we recall that S|α is the n-node partition that is induced
in layer α by the multilayer partition S . The value of p
determines the relative importances of the previous layer and
the null distribution. When p = 0, meso-set assignments in
a given layer depend only on the null distribution of that
layer [i.e., on the second term of the right-hand side of

ALGORITHM 2. Pseudocode for generating partitions of a
temporal network with uniform interlayer dependencies p between
successive layers [i.e., pβ = p for all β ∈ {2, . . . , l} in Fig. 2(a)].

function TEMPORALPARTITION(p, P0)
S = 0 � Initialize partition tensor of

appropriate size
for i ∈ V do � Loop over nodes in some order

Si,1 ∼ P 1
0 � Initialize induced partition in first

layer using null distribution
end for
for α ∈ {2, . . . , l} do � Loop over layers in sequential

order
for i ∈ V do � Loop over nodes in some order

if RAND() < p then � With probability p
Si,α = Si,α−1 � Copying update (Step C)

else � With probability 1 − p
Si,α ∼ P α

0 � Reallocation update (Step R)
end if

end for
end for
return S

end function

Eq. (C1)]. When p = 1, meso-set assignments in a given layer
are identical to those in the previous layer (and, by induction,
to meso-set assignments in all previous layers).

Using Eq. (C1), we see that the marginal probability that a
given state node has a specific meso-set assignment is

P [Si,α = s]

= pP [Si,α−1 = s] + (1 − p)P α
0 [Si,α = s]

= P 1
0 [Si,1 =s]pα−1 + (1 − p)

α−1∑
β=2

P β

0 [Si,β = s]pα−β

+ (1 − p)P α
0 [Si,α = s] , α > 1.

Computing marginal probabilities can be useful for computing
expected meso-set sizes.

We now highlight how the copying update (i.e., Step C) and
the reallocation update (i.e., Step R) in Algorithm 2 govern
the evolution of meso-set assignments between contiguous
layers. Steps C and R deal with the movement of nodes by first
removing some nodes (“subtraction”) and then reallocating
them (“addition”). In Step C, a meso-set with label s in
layer α can lose a number of nodes that ranges from 0 to
all of them. It can keep all of its nodes in layer α + 1 (i.e.,
Ss|α+1 = Ss|α), lose some of its nodes (i.e., Ss|α+1 ⊂ Ss|α), or
disappear entirely (i.e., Ss|α+1 = ∅ and Ss|α �= ∅). The null
distribution in Step R is responsible for a meso-set gaining
new nodes (i.e., Ss|α+1 �⊂ Ss|α) or for the appearance of a
new meso-set label (i.e., Ss|α+1 �= ∅ and Ss|α = ∅). When
defining the null distributions P0, it is necessary to consider
the interplay between Step C and Step R.

To illustrate how the meso-set-assignment copying process
and the null distribution in Algorithm 2 can interact with
each other, we give the conditional probability that a label
disappears in layer α and the conditional probability that
a label appears in layer α. For all s ∈ {1, . . . , nset} and all
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α ∈ {2, . . . , l}, the conditional probability that a label s is not
present in layer α is

P [Ss|α = ∅|S|α−1]

= [
(1 − p)

(
1 − P α

0 [Si,α = s]
)]|Ss|α−1|

× [
p + (1 − p)

(
1 − P α

0 [Si,α = s]
)]n−|Ss|α−1|

. (C2)

The expression (C2) depends only on our copying process and
simplifies to (1 − p)|Ss|α−1| when P α

0 [Si,α = s] = 0 (i.e., when
the probability of being assigned to label s is 0 using the null
distribution of layer α). Furthermore, for progressively larger
P α

0 [Si,α = s], the conditional probability that a label s is not
present is progressively smaller.

For all s ∈ {1, . . . , nset} and all α ∈ {2, . . . , l}, the condi-
tional probability that at least one new label appears in layer
α is

P
[(∃ s such that Ss|α−1 = ∅ and Ss|α �= ∅

)∣∣S|α−1
]

= 1 −
⎡⎣p + (1 − p)

⎛⎝ ∑
Sr |α−1∈S|α−1

P α
0 [Si,α = r]

⎞⎠⎤⎦n

.

(C3)

When
∑

Sr |α−1∈S|α−1
P α

0 [Si,α = r] = 0, the conditional proba-
bility that a new label appears depends only on our meso-set-
assignment copying process and is given by 1 − pn. Further-
more, larger values of

∑
Sr |α−1∈S|α−1

P α
0 [Si,α = r] reduce the

conditional probability that a new label appears in layer α.
All discussions thus far in this appendix hold for any choice

of P0. We now give two examples to illustrate some features of
the categorical null distribution from Sec. IV A. In particular,
we focus on the effect of the support of a categorical null
distribution on a sampled multilayer partition. (See Sec. IV A
for definitions of some of the notation that we use below.)
Recall that the support Gα of a categorical null distribution Pα

0
is Gα = {s : pα

s �= 0}, where s ∈ {1, . . . , nset}. An important
property of the supports of the null distributions for the
interlayer dependencies in Fig. 2(a) is that overlap between
Gα and Gα+1 (i.e., Gα+1 ∩ Gα �= ∅) is a necessary condition
for a meso-set in layer α to gain new members in layer α + 1.

Let cα denote the vector of expected sizes of the induced
meso-sets in layer α (i.e., cα

s = npα
s ), and suppose that the

probabilities pα are the same in each layer (i.e., pα = p for all
α). The expected number of meso-set labels is then the same
for each layer, and the expected number of state nodes with
meso-set label s is also the same in each layer and is given
by cα

s . This choice produces a temporal network in which
state nodes change meso-set labels across layers in a way that
preserves both the expected number of induced meso-sets in
a layer and the expected sizes of the induced meso-sets in a
layer.

Now suppose that we choose the pα values such that their
supports do not overlap (i.e., Gα ∩ Gβ = ∅ for all α �= β). At
each Step C in Algorithm 2, an existing meso-set label can
then only lose members; and, in each layer except for the first,
with probability 1 − pn, at least one new label will appear. For
this case, one expects pcα

s members of meso-set s in layer α to
remain in meso-set s in layer α + 1 and (1 − p)cα

s members of
meso-set s in layer α to be assigned to new meso-sets (because

labels are nonoverlapping) in layer α + 1. This choice thus
produces multilayer partitions in which the expected number
of new meso-set labels per layer is nonzero (unless p = 1)
and the expected size of a given induced meso-set decreases
in time.

APPENDIX D: M-DCSBM SAMPLING PROCEDURE

In this appendix, we discuss a generalization to multi-
layer networks of the degree-corrected SBM (DCSBM) from
Ref. [42]. In other words, it is a multilayer DCSBM (M-
DCSBM). The parameters of a general, directed M-DCSBM
are a multilayer partition S (which determines the assign-
ments of state nodes to meso-sets), a block tensor W (which
determines the expected number of edges between meso-sets
in different layers), and a set σ of state-node parameters
(which determine the allocation of edges to state nodes in
meso-sets). The probability of observing an edge (or the
expected number of edges, if we allow multi-edges) from state
node (i,α) to state node ( j,β) with meso-set assignments
r = Si,α and s = S j,β in an M-DCSBM is

P
[
Aj,β

i,α = 1
] = σ

β
i,α W s,β

r,α σ j,β
α , (D1)

where W s,β
r,α is the expected number of edges from state nodes

in layer α and meso-set Sr to state nodes in layer β and meso-
set Ss, the quantity σ

β
i,α is the probability for an edge starting

in meso-set Sr in layer α and ending in layer β to be attached
to state node (i,α) (note that the dependence on Sr is implicit
in σ

β
i,α), and σ

j,β
α is the probability for an edge starting in layer

α and ending in meso-set Ss in layer β to be attached to state
node ( j,β). (Note that the dependence on Ss is implicit in
σ

j,β
α .) For an undirected M-DCSBM, both the block tensor

W and the state-node parameters σ are symmetric. That is,
W r,α

s,β = W s,β
r,α and σ i,α

β
= σ

β
i,α.

The above M-DCSBM can generate multilayer networks
with arbitrary expected layer-specific in-degrees and out-
degrees for each state node. (The DCSBM of [42] can gen-
erate single-layer networks with arbitrary expected degrees.)
Given a multilayer network with adjacency tensor A, the
layer-α-specific in-degree of state node ( j,β) is

k j,β
α =

∑
i∈V

Aj,β
i,α ,

and the layer-β-specific out-degree of state node (i,α) is

kβ
i,α =

∑
j∈V

Aj,β
i,α .

The layer-α-specific in-degree and out-degree of state node
(i,α) are the “intralayer in-degree” and “intralayer out-
degree” of (i,α). For an undirected multilayer network, layer-
β-specific in-degrees and out-degrees are equal (i.e., ki,α

β
=

kβ
i,α). We refer to their common value as the “layer-β-specific

degree” of a state node. For an ensemble of networks that are
generated by an M-DCSBM, the associated means are

〈
k j,β
α

〉 = σ j,β
α

|S|∑
r=1

W s,β
r,α , s = S j,β (D2)
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and 〈
kβ

i,α

〉 = σ
β
i,α

|S|∑
s=1

W s,β
r,α , r = Si,α . (D3)

As we mentioned in Sec. V, we consider undirected multi-
layer networks with only intralayer edges for our experiments
in Sec. VI. The block tensor W thus does not have any in-
terlayer contributions (i.e., W s,β

r,α = 0 if α �= β). Furthermore,
we can reduce the number of node parameters that we need
to specify the M-DCSBM to a single parameter σi,α = σ α

i,α =
σ i,α

α for each state node (i,α).
We construct the M-DCSBM benchmark that we use in our

numerical experiments by sampling the expected intralayer
degrees ei,α = 〈kα

i,α〉 of the state nodes from a truncated power
law11 with exponent ηk , minimum cutoff kmin, and maximum
cutoff kmax. We then construct the block tensor W and state-
node parameters σ for the M-DCSBM from the sampled
expected intralayer degrees e and the meso-set assignments
S . Let

κs,α =
∑

i∈Ss|α
ei,α , Ss ∈ S

be the expected degree of meso-set s in layer α; and let

wα = 1

2

∑
i∈V

ei,α

be the expected number of edges in layer α. Consequently,

σi,α = ei,α

κs,α
, s = Si,α

is the probability for an intralayer edge in layer α to be
attached to state node (i,α), given that the edge is attached
to a state node that is in layer α and is part of meso-set Si,α.

The elements

W s,β
r,α = δ(α,β)

(
(1 − μ)δ(r, s)κs,α + μ

κr,ακs,α

2wα

)
(D4)

of the block tensor give, for r �= s, the expected number of
edges between state nodes in meso-set s in layer β and state
nodes in meso-set r in layer α. For s = r and β = α, the
block-tensor element W s,β

r,α gives twice the expected number
of edges. One way to think of the M-DCSBM benchmark is
that we categorize each edge that we want to sample as an
intra-meso-set edge with probability 1 − μ or as a “random
edge” (i.e., an edge that can be either an intra-meso-set edge
or an inter-meso-set edge) with probability μ. To sample an
edge, we sample two state nodes (which we then join by an
edge). We call these two state nodes the “end points” of the

11A power law with cutoffs xmin and xmax and exponent τ is a
continuous probability distribution with probability density function

p(x) =
{

C x−η , xmin � x � xmax

0 , otherwise ,

where

C = η − 1

x−(η−1)
min − x−(η−1)

max

is a normalization constant.

ALGORITHM 3. Sampling multilayer networks (with only
intralayer edges) from an M-DCSBM with meso-set assignments S ,
node parameters σ, and block tensor W .

function M-DCSBM(S , σ, W )
A = 0 � Initialize adjacency tensor of

appropriate size
for α ∈ L do � Loop over layers

for r ∈ {1, . . . , |S|} do
for s ∈ {r, . . . , |S|} do

� Sample number of edges from a
Poisson distribution

if r = s then
m = POISSON (W r,α

r,α /2)
else

m = POISSON (W s,α
r,α )

end if
e = 0 � Count sampled edges

while e < m do
i = SAMPLE (Sr |α, σSr |α,α)

� Sample node i from induced
meso-set r in layer α with
probability σi,α

j = SAMPLE (Ss|α, σSs |α,α)
� Sample node j from induced

meso-set s in layer α with
probability σ j,α

if i �= j & Aj,α
i,α = 0 then

� Reject self-edges and multi-edges
Aj,α

i,α = 1, Ai,α
j,α = 1

e = e + 1
end if

end while
end for

end for
end for
return A

end function

edge. We sample the two end points of an intra-meso-set edge
with a frequency that is proportional to the expected degree
of their associated state nodes, conditional on the end points
being in the same meso-set. By contrast, we sample each end
point of a random edge with a frequency that is proportional
to the expected degree of its associated state node (without
conditioning on meso-set assignments). We assume that the
total number of edges in layer α is sampled from a Poisson
distribution12 with mean wα. Although our procedure for
sampling edges describes a potential algorithm for sampling

12The choice of a Poisson distribution for the number of edges en-
sures that this approach for sampling edges is approximately consis-
tent with sampling edges independently from Bernoulli distributions
with success probabilities (D1). The exact distribution of the number
of edges is a Poisson-binomial distribution, from which it is difficult
to sample. A Poisson-binomial distribution is well-approximated by
a Poisson distribution if none of the individual edge probabilities are
too large.
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networks from the M-DCSBM benchmark, it usually is more
efficient to sample edges separately for each pair of meso-sets.

In Algorithm 3, we show pseudocode for the specific
instance of the M-DCSBM benchmark that we use to
sample intralayer network edges (independently for each
layer) for a given multilayer partition in our numeri-
cal experiments of Sec. VI. The only difference between
Algorithm 3 and the sampling algorithm of [42] is that
we use rejection sampling to avoid creating self-edges and
multi-edges. (In other words, if we sample an edge that
has already been sampled or that is a self-edge, we do not
include it in the multilayer network; instead, we resample.)
Rejection sampling is efficient as long as all blocks of a
network’s adjacency tensor are sufficiently sparse, such that
the probability of generating multi-edges is small. For dense
blocks, we instead sample edges from independent Bernoulli
distributions with success probabilities (D1). This algorithm
for sampling networks from an M-DCSBM is very efficient;
it scales linearly with the number of edges in a network.

In the above discussion, we defined the parameters in
Eq. (D1) to generate intralayer edges in a multilayer net-
work by specifying expected layer-specific in-degrees and ex-
pected layer-specific out-degrees. That is, the expected layer-
β-specific in-degree and expected layer-β-specific out-degree
of state node (i,α) are both 0 if β �= α. We can also ex-
tend the M-DCSBM benchmark to generate interlayer edges.
For a directed multilayer network with interlayer edges, we
sample expected layer-β-specific in-degrees ei,α

β
and expected

layer-β-specific out-degrees eβ
i,α for each state node (i,α)

and layer β from appropriate distributions. Given expected
layer-specific degrees e and a multilayer partition S , we then
construct the block tensor W and state-node parameters σ of
the M-DCSBM analogously to the special case on which we
have been focusing. Let

κs,α
β

=
∑

i∈Ss|α
ei,α
β

, κβ
s,α =

∑
i∈Ss|α

eβ
i,α , Ss ∈ S

be the expected layer-β-specific in-degree and expected layer-
β-specific out-degree of meso-set s in layer α. Additionally,
let

wβ
α =

∑
i∈V

eβ
i,α =

∑
i∈V

ei,β
α

be the expected number of edges from layer α to layer β.
(Note the consistency constraint on expected in-degrees and
expected out-degrees.) It then follows that

σ i,α
β

=
ei,α
β

κs,α
β

, σ
β
i,α = eβ

i,α

κ
β
s,α

, s = Si,α ,

and

W s,β
r,α = (1 − μ)δ(r, s)

κ
β
s,α + κ

s,β
α

2
+ μ

κ
β
r,ακ

s,β
α

w
β
α

.

For directed networks, the expected layer-specific in-degrees
and expected layer-specific out-degrees that are generated by
this model do not correspond exactly to the values from the
input parameters e, except when μ = 1.

APPENDIX E: THE LOUVAIN ALGORITHM
AND ITS VARIANTS

In this appendix, we describe the Louvain community-
detection algorithm and the variants of the Louvain algorithm
that we used in our numerical experiments in Sec. VI.

The Louvain algorithm [104] for maximizing (single-layer
or multilayer) modularity proceeds in two phases, which are
repeated iteratively. Starting from an initial partition of a net-
work, one considers the state nodes one by one (in some order)
and places each state node in a set that results in the largest
increase of modularity. (If there is no move that improves
modularity, a state node keeps the same assignment.) One
repeats this first phase of the algorithm until reaching a local
maximum. In the second phase of the Louvain algorithm,
one obtains a new modularity matrix by aggregating the sets
of state nodes that one obtains after the convergence of the
first phase. One then applies the algorithm’s first phase to
the new modularity matrix and iterates both phases until
one converges to a local maximum. The two Louvain-type
algorithms that we use in Sec. VI differ in how they select
which moves to make. The first is GENLOUVAIN, which al-
ways chooses a move that maximally increases modularity;
the second is GENLOUVAINRAND, which chooses modularity-
increasing moves at random, such that the probability of a
particular move is proportional to the resulting increase in the
modularity objective function. (The latter is a variant of the
algorithm “LouvainRand” in Ref. [16]; in that algorithm, one
chooses modularity-increasing moves uniformly at random.)
We use “reiteration” and “postprocessing” to improve the
output of GENLOUVAINRAND. Reiteration entails taking an
output partition of GENLOUVAINRAND as an initial partition
and reapplying the algorithm until the output partition no
longer changes. Postprocessing entails using the Hungarian
algorithm [122] to optimize the “persistence” [16] (i.e., the
number of interlayer edges for which both end points have the
same community assignment) of each output partition without
changing the induced partitions in each layer. All Louvain
variants and related functionality that we use in this paper are
available at [103].

APPENDIX F: MULTILAYER NMI EXPERIMENTS

In this appendix, we calculate multilayer NMI (mNMI) be-
tween output multilayer partitions and corresponding planted
multilayer partitions for the numerical experiments in Figs. 6–
9. We include only a subset of the values of p and p̂ that we
considered in Figs. 6 and 8, as these suffice for the purpose
of this appendix. One needs to be cautious when interpreting
values of mNMI; they depend on how one determines cor-
respondences between communities in different layers, and
these correspondences can be ambiguous. For example, in a
temporal network, if a community in one layer splits into
multiple communities in the next layer, there are multiple
plausible ways to define labels across layers (e.g., all new
communities get new labels or the largest new community
keeps the original label). Moreover, different objective func-
tions reward community-assignment labeling across layers
in different ways, and mNMI conflates this issue with how
well an objective function recovers structure within layers. In
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FIG. 13. Effects of the interlayer coupling strength ω and re-
laxation rate r on the ability of different community-detection
algorithms to recover planted partitions as a function of the
community-mixing parameter μ in a uniform multiplex benchmark
[see Fig. 2(b)]. Each multilayer network has 1000 nodes and 15
layers, and each node is present in all layers. (We use the shorthand
“NO PP” for experiments with GENLOUVAINRAND that do not include
postprocessing.)

particular, a small value of mNMI can hide an optimal value
of 〈NMI〉 (as 〈NMI〉 = 1 is necessary, but not sufficient, to
guarantee that mNMI = 1).

In the numerical experiments of Sec. VI, we observed that
postprocessing does not have a major effect on 〈NMI〉. This
suggests that any misassignment across layers that underem-
phasizes the “persistence” of a multilayer partition (which
postprocessing tries to mitigate [16]) does not affect an al-
gorithm’s ability to identify structure within layers. (Recall
that postprocessing relabels an assignment without changing
the induced partitions.) We include figures without postpro-
cessing (which we indicate with the shorthand “NO PP”) in

FIG. 14. Effects of the interlayer coupling strength ω and relax-
ation rate r on the ability of different community-detection algo-
rithms to recover planted partitions as a function of the community-
mixing parameter μ in a multiplex benchmark with nonuniform
interlayer dependencies. Each multilayer network has 1000 nodes
and 15 layers, and each node is present in all layers. The layer-
coupled interlayer-dependency matrix is a block-diagonal matrix
with diagonal blocks of size 5 × 5. Each diagonal block corresponds
to a copy of the matrix in Fig. 2(b) with p = p̂/4. In each off-
diagonal block, we set the value of p to pc = 0, thereby incorporating
an abrupt change in community structure. We define the null distri-
butions in these experiments so that there is no overlap in community
labels between different groups of layers. (We use the shorthand “NO

PP” for experiments with GENLOUVAINRAND that do not include
postprocessing.)

the experiments in this appendix, as we expect the effect
of postprocessing to be more noticeable for mNMI than for
〈NMI〉 (because mNMI accounts for meso-set assignments
both within and across layers).

In Figs. 13 and 14, we use the same benchmark networks
as in the multiplex examples in Figs. 6 and 7, respectively.
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FIG. 15. Effects of the interlayer coupling strength ω and relax-
ation rate r on the ability of different community-detection algo-
rithms to recover planted partitions as a function of the community-
mixing parameter μ in a temporal benchmark with uniform inter-
layer dependencies [i.e., pβ = p ∈ [0, 1] for all β ∈ {2, . . . , l} in
Fig. 2(a)]. Each multilayer network has 150 nodes and 100 layers,
and each node is present in all layers. (We use the shorthand “NO

PP” for experiments with GENLOUVAINRAND that do not include
postprocessing.)

In Figs. 15 and 16, we use the same benchmark networks as
in the temporal examples of Figs. 8 and 9, respectively. All
mNMI values are means over 10 runs of the algorithms and
100 benchmark instantiations. (See the introduction of Sec. VI
for more details on how we generate these instantiations.)
Each curve in each figure corresponds to the mean mNMI val-
ues that we obtain for a given value of the community-mixing
parameter μ, and the shaded area around a curve corresponds
to the minimum and maximum mNMI values that we obtain
with the 10 sample partitions for a given value of p or p̂.

For experiments with nonuniform interlayer dependencies
in Figs. 14 and 16, it seems that INFOMAP is better at detecting

FIG. 16. Effects of the interlayer coupling strength ω and relax-
ation rate r on the ability of different community-detection algo-
rithms to recover planted partitions as a function of the community-
mixing parameter μ in a temporal benchmark with nonuniform
interlayer dependencies. Each multilayer network has 150 nodes and
100 layers, and each node is present in all layers. The layer-coupled
interlayer-dependency matrix is given by Fig. 2(a). We choose the
values of pβ in Fig. 2(a) such that we introduce three abrupt changes
in community structure. Every 25th layer (specifically, for layers 25,
50, and 75), we set the value of pβ to pc = 0 (thereby incorporating
an abrupt change in community structure); we set all other values
of pβ to p. We define the null distributions in these experiments
so that there is no overlap in community labels between different
groups of layers. (We use the shorthand “NO PP” for experiments
with GENLOUVAINRAND that do not include postprocessing.)

abrupt differences (so-called “breaks,” such as in the form of
change points in temporal examples) in community structure
than both GENLOUVAIN and GENLOUVAINRAND, especially in
the multiplex examples (where this manifests for all exam-
ined values of p̂). However, multilayer INFOMAP correctly
identifies the planted community structure only when it is
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particularly strong (specifically, for our computations with
μ � 0.3). Recall from our experiments in Figs. 7 and 9 that
both GENLOUVAIN and GENLOUVAINRAND are better than
INFOMAP at detecting an induced partition in a layer (es-
pecially when the planted community structure is somewhat
weak). The reason that multilayer modularity maximization
does not perfectly recover breaks in community structure of a
planted multilayer partition is because multilayer modularity
maximization with uniform ordinal or categorical coupling
(see the introduction of Sec. VI) incentivizes “persistence”

of community labels between layers (and nonzero persistence
is achievable even when one independently samples induced
partitions in different layers) [16]. However, by design, our
benchmark networks have no persistence whenever there is a
break in community structure because of how we defined the
support of the null distributions. Therefore, we do not expect
multilayer modularity maximization to recover the planted
labels between layers when pc = 0; this manifests as a de
facto maximum in the mNMI between an output partition and
its corresponding planted partition.
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