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Network analysis has driven key developments in research on animal behaviour by providing quanti-
tative methods to study the social structures of animal groups and populations. A recent formalism,
known as multilayer network analysis, has advanced the study of multifaceted networked systems in
many disciplines. It offers novel ways to study and quantify animal behaviour through connected ‘layers’
of interactions. In this article, we review common questions in animal behaviour that can be studied
using a multilayer approach, and we link these questions to specific analyses. We outline the types of
behavioural data and questions that may be suitable to study using multilayer network analysis. We
detail several multilayer methods, which can provide new insights into questions about animal sociality
at individual, group, population and evolutionary levels of organization. We give examples for how to
implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences
about social structure and the positions of individuals within such a structure. Finally, we discuss caveats
to undertaking multilayer network analysis in the study of animal social networks, and we call attention
to methodological challenges for the application of these approaches. Our aim is to instigate the study of
new questions about animal sociality using the new toolbox of multilayer network analysis.
© 2019 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

‘MULTIDIMENSIONALITY’ OF ANIMAL SOCIAL BEHAVIOUR

Sociality is widespread in animals, and it has a pervasive impact
on behavioural, evolutionary and ecological processes, such as
social learning and disease spread (Allen, Weinrich, Hoppitt, &
Rendell, 2013; Aplin et al., 2014; Silk, Alberts, & Altmann, 2003;
White, Forester, & Craft, 2017). The structure and dynamics of
animal societies emerge from interactions between and among
individuals (Hinde, 1976; Krause, Croft, & James, 2007; Pinter-
Wollman et al., 2014). These interactions are typically ‘multidi-
mensional’, as they occur across different social contexts (e.g.
affiliation, agonistic and feeding), connect different types of
individuals (e.g. maleemale, femaleefemale or maleefemale in-
teractions) and/or vary spatially and temporally. Considering such
multidimensionality is crucial for thoroughly understanding the
structure of animal social systems (Barrett, Henzi,& Lusseau, 2012).

Network approaches for studying the social behaviour of ani-
mals have been instrumental in quantifying how sociality in-
fluences ecological and evolutionary processes (Krause et al., 2007;
Krause, James, Franks,& Croft, 2015; Kurvers, Krause, Croft, Wilson,
& Wolf, 2014; Pinter-Wollman et al., 2014; Sih, Hanser, & McHugh,
2009; Sueur, Jacobs, Amblard, Petit,& King, 2011;Webber& Vander
Wal, 2018; Wey, Blumstein, Shen, & Jord!an, 2008). In animal social
networks, nodes (also called ‘vertices’) typically represent indi-
vidual animals; and edges (also called ‘links’ or ‘ties’) often repre-
sent pairwise interactions (e.g. behaviours, such as grooming, in
which two individuals engage) or associations (e.g. spatiotemporal
proximity or shared group memberships) between these in-
dividuals. Such a network representation is a simplified depiction
of a much more intricate, multifaceted system. A social system can
include different types of interactions, with different biological
meanings (e.g. cooperative or competitive), which standard
network approaches often do not take into account, or they do so by
analysing networks of different edge types separately (Gazda, Iyer,
Killingback, Connor, & Brault, 2015b). Typical approaches ignore
interdependencies that may exist between different types of in-
teractions and between different subsystems (Barrett et al., 2012;
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Beisner, Jin, Fushing, & McCowan, 2015). Furthermore, networks
are often studied as snapshots or aggregations of processes that
change over time, but dynamics can play a major role in animal
behaviour (Blonder, Wey, Dornhaus, James, & Sih, 2012; Farine,
2018; Wey et al., 2008; Wilson et al., 2014). As we highlighted
recently (Silk, Finn, Porter, & Pinter-Wollman, 2018), advances in
multilayer network analysis provide opportunities to analyse the
multifaceted nature of animal behaviour, to ask questions about
links between social dynamics across biological scales, and to
provide new views on broad ecological and evolutionary processes.
In this paper, we introduce the new mathematical formalism of
multilayer network analysis to researchers in animal behaviour.
This formalism provides a common vocabulary to describe,
compare and contrast multilayer network methodologies. Our goal
is to review research areas and questions in animal behaviour that
are amenable to multilayer network analysis, and we link specific
analyses to these questions (see Table 1). We describe different
types of multilayer networks and detail how they can encode ani-
mal data. We also review several questions and hypotheses, across
social scales, that multilayer network analysis can help investigate.
We summarize key questions and provide a guide to available
methods and software for multilayer network analysis in Table 1.
We present examples to illustrate our ideas, and we consider some
of the requirements and caveats of multilayer network analysis as a
tool to study animal social behaviour. We also discuss several di-
rections for future work.

What Are Multilayer Networks?

Multilayer networks are assemblages of distinct network ‘layers’
that are connected (and hence coupled) to each other via interlayer
edges (Boccaletti et al., 2014; Kivel€a et al., 2014). A multilayer
network can include more than one ‘stack’ of layers, and each such
facet of layering is called an ‘aspect’. For instance, one aspect of a
multilayer network can encode temporal dynamics and another
aspect can represent types of social interactions (Fig. 1,
Supplementary Material 1).

The recent formalism ofmultilayer networks has opened up new
ways to study multifaceted networked systems (Boccaletti et al.,
2014; Kivel€a et al., 2014). The application of multilayer networks
to questions in animal behaviour is still in its infancy, butmultilayer
network analysis has facilitated substantial advances over mono-
layer (i.e. single-layer) network analysis in many other fields (Aleta
& Moreno, 2019; Kivel€a et al., 2014). For example, multilayer
network approaches have made it possible to identify important
nodes that are not considered central in a monolayer network (De
Domenico, Sol!e-Ribalta, Omodei, G!omez, & Arenas, 2015). Multi-
layer approaches applied to studying information spread on Twitter
(where, e.g. one can use different layers to represent ‘tweets’,
‘retweets’ and ‘mentions’) have uncovered information spreaders
who have a disproportionate impact on social groups but were
overlooked in prior monolayer investigations (Al-Garadi, Varathan,
Ravana, Ahmed, & Chang, 2016). Multilayer modelling of trans-
portation systems has improved investigations of congestion and
efficiency of transportation. For example, each layer may be a
different airline (Cardillo et al., 2013) or a different form of trans-
portation in a city (Chodrow, al-Awwad, Jiang, & Gonz!alez, 2016;
Gallotti & Barthelemy, 2015; Strano, Shai, Dobson, & Barthelemy,
2015). Modelling dynamical processes on multilayer networks
can result in qualitatively different outcomes compared to model-
ling dynamics on aggregate representations of networks (for a
discussion of aggregating networks, see Supplementary Material 2)
or on snapshots of networks (De Domenico, Granell, Porter, &
Arenas, 2016). For instance, the dynamics of disease and informa-
tion spread can be coupled in a multilayer framework to reveal how

different social processes can impact the onset of epidemics (Wang,
Andrews, Wu, Wang, & Bauch, 2015). Historically, the usage of
‘multiplexity’ dates back many decades (Mitchell, 1969), and the
new mathematical formalism (De Domenico et al., 2013; Kivel€a
et al., 2014; Newman, 2018c; Porter, 2018) has produced a unified
framework that makes it possible to consolidate analysis and ter-
minology. For reviews of previous multilayer network studies and
applications in other fields, see Aleta and Moreno (2019), Boccaletti
et al. (2014), D'Agostino and Scala (2014), Kivel€a et al. (2014) and
Pilosof, Porter, Pascual, and K!efi (2017).

Types of Multilayer Networks

The mathematical framework of multilayer networks was
developed recently to create a unified formalism to study such
networks (De Domenico et al., 2013; Kivel€a et al., 2014; Mucha,
Richardson, Macon, Porter, & Onnela, 2010; Porter, 2018). One can
use this multilayer network framework, which we follow in this
paper and detail in SupplementaryMaterial 1, to represent a variety
of network types and situations. In contrast tomonolayer networks,
which are traditional in network analysis and which consist of only
a single network ‘layer’, multilayer networks can include many
different types of data that are commonly collected in studies of
animal behaviour. For example, types of social interactions, spatial
locations (with connections between them) and different measures
of genetic relatedness can all constitute layers in a multilayer
network. Node attributes can include behavioural or physical
phenotypes, sex, age, personality, and more. Edge attributes, such
as their weight or direction, can encode interaction frequencies,
distances between locations, dominance, and so on. Commonly
studied types of multilayer networks that can accommodate such
data include the following.

(1) Multiplex networks (i.e. edge-coloured networks) are
multilayer networks in which interlayer edges connect nodes to
themselves on different layers (Fig. 1, Supplementary Material 1).
It is often assumed, for convenience, that all layers consist of the
same set of nodes, but this is not necessary.

(a) In multirelational networks, each layer represents a
different type of interaction. For example, a network of
aggressive interactions can be connected with a network of
affiliative interactions through interlayer edges that link in-
dividuals to themselves if they appear in both layers (Fig. 1,
horizontal dotted black lines).
(b) In temporal networks, each layer encodes the same type
of interactions during different time points or over different
time windows. In the most common multiplex representa-
tion of a temporal network, consecutive layers are connected
to each other through interlayer edges that link individuals
to themselves at different times (Fig. 1, vertical dotted blue
lines).

(2) In interconnected networks (i.e. node-coloured networks), the
nodes in different layers do not necessarily represent the same
entities, and interlayer edges can exist between different types of
nodes. See our discussion of the mathematical formalism and an
example figure in Supplementary Material 1.

(a) Networks of networks consist of subsystems, which
themselves are networks that are linked to each other
through interlayer edges between the subsystems' nodes. For
example, one can model intergroup interactions in a
population-level network of interactions between social
groups, which are themselves networks.
(b) In intercontextual networks, one can construe each layer
as representing a different type of node. For example, in-
teractions between males can be in one layer, interactions
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between females can be in a second layer, and intersex in-
teractions are interlayer edges. See Fig. 1 in Silk, Weber et al.
(2018) and Fig. 1 in Silk et al. (2018).
(c) Spatial networks, which we define here as networks of
locations, can be linked with social networks of animals that
move between these locations (Pilosof et al., 2017; Silk et al.,
2018). Our use of the term ‘spatial networks’ refers to net-
works that are embedded in space, rather than networks that
are influenced by a latent space (Barthelemy, 2018).

Throughout this paper, we use the term ‘multilayer networks’ to
refer to any of the variants above, unless we specify that a method
applies to only one or a subset of specific network types. For a re-
view of other types of multilayer networks, see Kivel€a et al. (2014).

NOVEL INSIGHTS INTO ANIMAL SOCIALITY: FROM INDIVIDUALS
TO POPULATIONS

We propose that a multilayer network approach can advance
the study of animal behaviour and expand the types of questions
that one can investigate. Specifically, we discuss how a multilayer
framework can enhance understanding of (1) an individual's role
(or roles) in a social network, (2) group-level structure and dy-
namics, (3) population structure and (4) evolutionary models of the
emergence of sociality.

An Individual's Role(s) in Society

Traditionally, the use of network analysis to examine the impact
of individuals on their society has focused on the social positions of
particular individuals using various centrality measures (such as
degree, eigenvector centrality, betweenness centrality, and others;
see Pinter-Wollman et al., 2014; Wasserman & Faust, 1994; Wey
et al., 2008; Williams & Lusseau, 2006). It is common to construe
individuals with disproportionally large centrality values as influ-
ential or important to a network in some way (but see Rosenthal,
Twomey, Hartnett, Wu, & Couzin, 2015 for a different trend). The
biological meaning of ‘importance’ and corresponding centrality
measures differ among types of networks and is both system-
dependent and question-specific. Consequently, one has to be
careful to avoid misinterpreting the results of centrality calcula-
tions. Centrality measures have been used to examine which in-
dividuals have the most influence on a group in relation to age, sex
or personality (Sih et al., 2009; Wilson, Krause, Dingemanse, &
Krause, 2013) and to study the fitness consequences of holding an
influential position (Pinter-Wollman et al., 2014). A multilayer
approach can advance understanding of roles that individuals play
in a population or a social group, and it can potentially identify
central individuals who may be overlooked when using monolayer
approaches on ‘multidimensional’ data.

An individual's role in a social group is not restricted to its
behaviour in just one social or ecological situation. A multilayer
approach creates an opportunity to consolidate analyses of a variety
of social situations and simultaneously examine the importances of
individuals across and within situations. Many centrality measures
have been developed for multilayer networks, and different ones
encompass different biological interpretations. For instance,
eigenvector ‘versatility’ (see Supplementary Material 1 for its
mathematical definition) is one way to quantify the overall
importance of individuals across and within layers, because this
measure takes into account multiple layers to identify individuals
who increase group cohesion in multiple layers and bridge social
situations (De Domenico, Sol!e-Ribalta et al., 2015). In a multirela-
tional network, an individual can have small degree (i.e. degree
centrality) in each layer, where each layer represents a differentTa
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social situation, but it may participate in many social situations,
thereby potentially producing a larger impact on social dynamics
than individuals with large degrees in just one or a few social sit-
uations. One can also account for the inter-relatedness of behav-
iours in different layers in a multilayer network when combining
interlayer centralities, if appropriate for the study system (De
Domenico, Sol!e-Ribalta et al., 2015). For example, it is not
possible for two individuals to engage in grooming interactions
without also being in proximity. By accounting for inter-relatedness
between proximity and grooming when calculating multilayer
centralities and versatilities, it may be possible to consider
grooming interactions as explicitly constrained by proximity in-
teractions and thereby incorporate potentially important nuances.

The appropriateness of a versatility measure differs across bio-
logical questions, just as distinct centrality measures on a mono-
layer network have different interpretations (Wasserman & Faust,
1994; Wey et al., 2008). Versatility measures that have been
developed include shortest-path betweenness versatility, hub/au-
thority versatility, Katz versatility and PageRank versatility (De
Domenico, Sol!e-Ribalta et al., 2015). Experimental removal of

versatile nodes, similar to the removal of central nodes in mono-
layer networks (Barrett et al., 2012; Firth et al., 2017; Flack, Girvan,
deWaal,& Krakauer, 2006; Pruitt& Pinter-Wollman, 2015; Sumana
& Sona, 2013), has the potential to uncover the effects of the
removed nodes on group actions, group stability, and their impact
on the social positions of other individuals. However, which
versatility measure gives the most useful information about an
individual's importance may depend on the level of participation of
an individual in the different types of behaviours that are encoded
in a multilayer network. Furthermore, if layers have drastically
dissimilar densities, one layer can easily dominate a versatility
measure. For other nuances and caveats, see our discussion below
in Considerations When Using Multilayer Network Analysis. In
addition to calculating node versatility, one can examine versatility
of edges to yield interesting insights into the importance of re-
lationships with respect to group stability and cohesion. Such an
approach can help reveal whether interlayer interactions are
comparably important, more important, or less important than
intralayer interactions for group cohesion. Examining edge versa-
tility can also illuminate which interactions between particular

Aggressive Trophalaxis

t=1

t=2

t=3

A B C D

Figure 1. A hypothetical multilayer network. Four ants interact at different time points and in two different ways. Each diamond represents a layer. The stack of three layers on the
left represents aggressive interactions, and the stack of three layers on the right represents trophalactic interactions. Each colour represents a different time point (blue is t¼1, green
is t¼2, and yellow is t¼3). Solid lines represent intralayer (i.e. within-layer) interactions, dotted blue lines represent interlayer (i.e. across-layer) edges in the temporal aspect, and
dotted black lines represent interlayer edges in the behavioural aspect. Each interlayer edge connects replicates of the same individual across different layers. See Supplementary
Material 1 for further discussion and for a presentation of the mathematical formalism of multilayer networks.

K. R. Finn et al. / Animal Behaviour 149 (2019) 7e22 11



individuals (within or across layers) have the largest impact on
group activity and/or stability; and it may be helpful for conser-
vation efforts, such as the identification of social groups that are
vulnerable to fragmentation (Snijders, Blumstein, Stanley,& Franks,
2017).

A multilayer approach can help elucidate the relative impor-
tances of different individuals in various social or ecological situa-
tions. For example, a node's ‘multidegree’ is a vector of the
intralayer degrees (each calculated as on a monolayer network) of
an individual in each layer. Differences in how the degrees of in-
dividuals are distributed across layers help indicate which in-
dividuals have influence over others in the different layers. For
example, if each layer represents a different situation, individuals
whose intralayer degree peaks in one situation may be more
influential in that context than individuals whose intralayer degree
is small in that situation but peaks in another one. Because multi-
degree does not account for interlayer connections, quantitatively
comparing it with versatility or other multilayer centralities, which
account explicitly for interlayer edges (Kivel€a et al., 2014), can help
elucidate the importance of interlayer edges and thereby highlight
interdependencies between biological situations. Such behavioural
interdependencies can help quantify the amount of behavioural
carryover across situations (i.e. ‘behavioural syndromes’; Sih, Bell,
& Johnson, 2004) if, for example, measures that account for inter-
layer edges explain observed data better than measures that do not
take into account such interdependencies.

As a final example, one can use a multilayer approach to
examine temporal changes in an individual's role (or roles) in a
group. A multilayer network in which one aspect represents time
and another aspect represents situation (Fig. 1) can reveal when
individuals gain or lose central roles and whether roles are lost
simultaneously in all situations or if changes in one situation pre-
cede changes in another. Comparing monolayer (e.g. time-
aggregated) measures and multilayer measures has the potential
to uncover the importance of temporal changes in an animal's
fitness.

Roles of individuals in a group: baboon versatility in a multiplex
affiliation network

To demonstrate the potential insights from employing multi-
layer network analysis to examine the roles of individuals in a social
group using multiple interaction types, we analysed published
affiliative interactions from a baboon (Papio cynocephalus) group of
26 individuals (Franz, Altmann, & Alberts, 2015a, 2015b) (Fig. 2).
One can quantify affiliative relationships in primates in multiple
ways, including grooming, body contact and proximity (Barrett &
Henzi, 2002; Jack, 2003; Kasper & Voelkl, 2009; Pasquaretta
et al., 2014). To characterize affiliative relationships, combinations
of these behaviours have been investigated separately (Jack, 2003;
Perry, Manson, Muniz, Gros-Louis, & Vigilant, 2008), pooled
together (Kasper & Voelkl, 2009), or used interchangeably
(Pasquaretta et al., 2014). These interaction types are often corre-
lated with each other, but their networks typically do not coincide
completely (Barrett & Henzi, 2002; Brent, MacLarnon, Platt, &
Semple, 2013).

We analyse the baboon social data in four ways: (1) as a
weighted grooming network with only grooming interactions
(Fig. 2a), (2) as a weighted association network with only
proximity-based associations (Fig. 2b), (3) as an aggregate mono-
layer network that we obtained by summing the weights of
grooming and association interactions of the node pairs (Fig. 2c; see
Supplementary Material 2 for more details on aggregating net-
works) and (4) as a multiplex network with two layers (one for
grooming and one for associations). We then calculated measures
of centrality (for themonolayer networks in (1)e(3)) and versatility

(for the multilayer network (4)) using MuxViz (De Domenico,
Porter, & Arenas, 2015). We ranked individuals according to their
PageRank centralities and versatilities (De Domenico, Sol!e-Ribalta
et al., 2015), which quantify the importance of an individual in a
network recursively based on being adjacent to important neigh-
bours (Fig. 3).

The most versatile baboon in the multilayer network (individual
3 in Fig. 3) is the fourth-most central individual in the aggregated
network, the second-most central individual in the grooming
network and the 16th-most central individual in the association
network (Fig. 3). These differences in results using the multilayer,
aggregated and independent networks of the same data highlight
the need to (1) carefully select which behaviours to encode in
networks and (2) interpret the ensuing results based on the ques-
tions of interest (Carter, DeChurch, Braun, & Contractor, 2015;
Krause, James, Franks, & Croft, 2015). When social relationships
depend on multiple interaction types, it is helpful to use a multi-
layer network framework to reliably capture an individual's social
roles (see Table 1 for more questions and tools), because monolayer
calculations may yield different results and centrality in one layer
can differ substantially from versatility in an entire multilayer
network (Fig. 3).

Multilayer Structures in Animal Groups

Animal social groups are emergent structures that arise from
local interactions (Sumpter, 2010), making network analysis an
effective approach for examining group-level behaviour. Networks
provide useful representations of dominance hierarchies (Hobson,
Avery, & Wright, 2013) and allow investigations of information
transmission efficiency (Pasquaretta et al., 2014), group stability
(Baird & Whitehead, 2000; McCowan et al., 2011), species

Grooming

Association

Aggregate

(a)

(b)

(c)

Figure 2. Social networks of a baboon group based on (a) grooming interactions, (b)
proximity-based association relations and (c) an aggregate of both interaction types. We
created the network visualization using MuxViz (De Domenico, Porter, & Arenas, 2015).
To construct a multilayer network, we joined the grooming and association monolayer
networks as two layers in a multiplex network by connecting nodes that represent the
same individual using interlayer edges. The sizes of the nodes are based on multilayer
PageRank versatility (with larger nodes indicating larger versatilities). We colour the
nodes based on monolayer PageRank centrality (with darker shades of green indicating
larger values). A given individual in these two layers has the same size, but it can have
different colours in the two layers. In the aggregate layer, we determine both the node
sizes and their colours from PageRank centrality values in the aggregate network. We
position the nodes in the same spatial location in the two layers and the aggregate
network. The data (Franz et al., 2015a) are from Franz et al. (2015b).
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comparisons (Pasquaretta et al., 2014; Rubenstein, Sundaresan,
Fischhoff, Tantipathananandh, & Berger-Wolf, 2015) and collective
behaviour (Rosenthal et al., 2015; Westley, Berdahl, Torney, & Biro,
2018). However, given that animals interact with each other in
many differentdand potentially interdependentdways, a multi-
layer approach may help accurately capture a group's structure
and/or dynamics. In one recent example, Smith-Aguilar, Aureli,
Busia, Schaffner, and Ramos-Fern!andez (2018) studied a six-layer
multiplex network of spider monkeys, with layers based on types
of interactions. In this section, we detail how multilayer method-
ologies can advance the study of group stability, group composition
and collective movement.

One can analyse changes in group stability and composition
using various multilayer calculations or by examining changes in
relationships across network layers (Beisner&McCowan, 2015). For
instance, Barrett et al. (2012) examined changes in a baboon group
following the loss of group members by calculating a measure from
information theory called ‘joint entropy’ on a multiplex net-
workdwith grooming, proximity and aggression layersdboth
before and after a known perturbation. A decrease in joint entropy
following individual deaths corresponded to individuals interacting
in a more constrained and therefore more predictable manner.
Using a different approach, Beisner et al. (2015) investigated co-
occurrences of directed aggression and status-signalling in-
teractions between individuals in macaque behavioural networks.
In their analysis, they employed a null model that incorporates
constraints that encode interdependences between behaviour
types. For example, perhaps there is an increased likelihood that
animal B signals to animal A if animal A aggresses animal B.

Incorporating such constraints was more effective at reproducing
the joint probabilities (which they inferred from observations) of
interactions in empirical data in stable macaque groups than in
groups that were unstable and eventually collapsed (Chan, Fushing,
Beisner, & McCowan, 2013). These findings illustrate how in-
terdependencies between aggression and status-signalling
network layers may be important for maintaining social stability
in captive macaque groups. A potential implication of these find-
ings is that analysing status signalling and aggression may be
helpful for predicting social stability. Another approach that may be
useful for uncovering temporal structures in multilayer networks is
an extension of stochastic actor-oriented models (SAOMs)
(Snijders, 2017). One can use SAOMs to examine traits and pro-
cesses that influence changes in network ties over time, including
in animal social networks (Fisher, Ilany, Silk, & Tregenza, 2017;
Hunt et al., 2018; Ilany, Booms, & Holekamp, 2015). SAOMs can
use unweighted or weighted edges, with some restrictions in how
weights are incorporated (Snijders, 2017). A multiple-network
extension to an SAOM enables modelling of the co-dynamics of
two sets of edges, while incorporating influences of other individ-
ual or network-based traits. Such an approach has the potential to
provide interesting insights into how changes in one layer may
cascade into changes in other layers. It also provides a useful
method to quantify links between group-level structural changes
and temporal dynamics of individual centralities.

Multilayer analysis of animal groups can go beyond monolayer
network analysis when highlighting a group's composition and
substructures. For example, one measure of interdependence, the
proportion of shortest paths between node pairs that span more
than one layer (Morris & Barthelemy, 2012; Nicosia, Bianconi,
Latora, & Barthelemy, 2013), can help describe a group's interac-
tion structure. In social insect colonies, layers can represent
different tasks. As time progresses and individuals switch tasks, an
individual can appear in more than one layer. The amount of
overlap among layers (see Supplementary Material 1, Similarity of
Layers: Example Measures for examples of overlap measures) can
indicate the level of task specialization and whether or not there
are task-generalist individuals (Pinter-Wollman, Hubler, Holley,
Franks, & Dornhaus, 2012). Consequently, the above interdepen-
dencemeasuremay be useful as away to quantify division of labour
(Beshers & Fewell, 2001), because having a small proportion of
shortest paths that traverse multiple layers may be an indication of
pronounced division of labour. Such a new measure may reveal
ways inwhich workers are allocated to tasks that are different from
those that have been inferred by using other measures of division of
labour. Comparing different types of measures may uncover new
insights into the mechanisms that underlie division of labour.

Animal groups are often organized into substructures called
‘communities’ (Fortunato & Hric, 2016; Porter, Onnela, & Mucha,
2009; Shizuka et al., 2014; Wolf, Mawdsley, Trillmich, & James,
2007), which are sets of individuals who interact with each other
more often (in absolute amount and/or as a rate) than they do with
other individuals. Finding communities can aid in predicting how a
group may split, which can be insightful for managing captive
populations when it is necessary to remove individuals (Sueur,
Jacobs et al., 2011). Community-detection algorithms distinguish
sets of individuals who are connected more densely within a
community than with individuals in other communities in a
network. One example of a multilayer community-detection algo-
rithm is maximization of ‘multislice modularity’ (Mucha et al.,
2010), which can account for different behaviours and/or time
windows. A recent review includes a discussion of how multilayer
modularity maximization can inform ecological questions, such as
the ecological effects of interdependencies between herbivory and
parasitism (Pilosof et al., 2017). In animal groups, individuals can be
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Figure 3. A circular heat map illustrates variation among individuals in PageRank
centralities and versatilities. Darker colours indicate larger values of PageRank cen-
tralities and versatilities. A given angular wedge in the rings indicates the values for
one individual, whose identity (ID) we list outside the ring. The rings are PageRank
centrality values from the monolayer grooming network (innermost ring), association
network (second ring), aggregate network in which we sum the grooming and asso-
ciation ties (third ring) and PageRank versatility for the multiplex network (outermost
ring). Using a blue outline, we highlight individual 3, who we discuss in the main text.
We indicate the PageRank centrality and versatility values of individual 3 on the rings.
We created this visualization using MuxViz (De Domenico, Porter et al., 2015). The data
(Franz et al., 2015a) are from Franz et al. (2015b).
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part of more than one community, depending on the types of in-
teractions under consideration. For example, an individual may
groom with one group of animals but fight with a different group.
Because maximizing multislice modularity does not constrain an
individual's membership to a single community, it can yield com-
munities of different functions with overlapping membership. It
can also be used to examine changes in community structure over
time. Additionally, sex, age and kinship are known to influence
patterns of subgrouping in primates (Sueur, Jacobs et al., 2011), so
investigating group structure while considering several of these
characteristics at once can reveal influences of subgrouping (such
as nepotism) that may not be clear when using monolayer clus-
tering approaches. See Aleta and Moreno (2019) for references to
various methods for studying multilayer community structure.

Collective motion is another central focus in studies of animal
groups (Berdahl, Biro, Westley, & Torney, 2018; Sumpter, 2010).
Coordinated group movements emerge from group members
following individual-based, local rules (e.g. in fish schools and bird
flocks; Couzin, Krause, James, Ruxton, & Franks, 2002; Sumpter,
2010). Recent studies of collective motion have employed
network analysis to examine relationships of individuals beyond
the ones with their immediate neighbours. For instance, one can
incorporate connections between individuals who are in line of
sight of each other (Rosenthal et al., 2015) or with whom there is a
social relationship in other contexts (Bode, Wood, & Franks, 2011;
Farine et al., 2016). One can also combine multiple sensory modes
into a multilayer network to analyse an individual's movement
decisions. Expanding the study of collective motion to incorporate
multiple sensorymodalities (e.g. sight, odour, vibrations, and so on)
and social relationships (e.g. affiliative, agonistic, and so on) can
benefit from a multilayer network approach, which may uncover
synergies among sensory modes, social relationships and envi-
ronmental constraints.

Multilayer groupings: dolphin communities emerge from
multirelational interactions

To demonstrate the utility of multilayer network analysis for
uncovering group dynamics, we analysed the social associations of
102 bottlenose dolphins (Tursiops truncatus) that were observed by
Gazda et al. (2015b). They recorded dolphin associations during
travel, socialization and feeding. They identified different com-
munities when analysing the interactions as three independent
networks and compared the results with an aggregated network, in
which they treated all types of interactions equally (regardless of
whether they occurred when animals were travelling, socializing or
foraging). However, analysing these networks separately or as one
aggregated network ignores interdependencies that may exist be-
tween the different behaviours (Kivel€a et al., 2014). Therefore, we
employed multiplex community detection, using the multilayer
InfoMap method (De Domenico, Lancichinetti et al., 2015), to
examine how interdependencies between layers influence which
communities occur when the data are encoded as a multiplex
network. We use multiplex community detection to assign each
replicate of an individual (there is one for each layer in which an
individual appears; Supplementary Material 1) to a community.
Therefore, an individual can be assigned to one or several com-
munities, where the maximum number corresponds to the number
of layers in which the individual is present. The community as-
signments depend on how individuals are connected with each
other in a multilayer network and on interactions between layers,
which arise in this case from a parameter in the multilayer InfoMap
method (see Supplementary Material 2 for details). The coupling
between layers thus arises both from interlayer edges and their
weights (Supplementary Material 1) and from a parameter in the
community-detection method (Supplementary Material 2). With

no coupling, the layers are distinct and communities cannot span
more than one layer; for progressively larger coupling, commu-
nities span multiple layers increasingly often. For details on our
parameter choices for community detection with the multilayer
InfoMap method, see Supplementary Material 2.

To be consistent with Gazda et al. (2015b), our multiplex
network (Fig. 4) includes only individuals who were seen at least
three times, and we weight the edges using the half-weight index
(HWI) of association strength (Cairns & Schwager, 1987). Our
community-detection computation yielded 12 communities. The
largest community (Fig. 4, dark blue) consists of individuals from all
three association layers, and several smaller communities consist of
only foraging individuals, only travelling individuals, and both
foraging and travelling individuals. For details on the specific
implementation of the InfoMap method, see Supplementary
Material 2.

In their investigation, Gazda et al. (2015b) revealed contextu-
ally-dependent association patterns, as indicated by different
numbers of communities in the foraging (17), travel (8) and social
(4) networks. Notably, when examining the three behavioural sit-
uations as a multiplex network, we found similar trends in the
numbers of communities across behavioural situations: foraging

Travel

Social

Forage

Figure 4. Multiplex network of dolphin proximity-based associations during (1)
travelling, (2) socializing and (3) foraging. There are 102 distinct individuals, and each
layer has a node for each individual. Individuals who were never seen interacting in a
specific layer (behavioural context) are the small white nodes. Individuals who inter-
acted in at least one layer are the large nodes, which we colour based on their com-
munity assignment from multilayer InfoMap (De Domenico, Lancichinetti et al., 2015).
We created the network visualization with MuxViz (De Domenico, Porter et al., 2015).
The data (Gazda, Iyer, Killingback, Connor, & Brault, 2015a) are from Gazda et al.
(2015b).
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individuals were in nine communities, travelling individuals were
in six communities, and individuals who interact socially were in
only one community. Thus, our analysis strengthens the finding
that dolphins forage in more numerous, smaller groups and so-
cialize in fewer, larger groups. Different methods for community
detection yield different communities of nodes (Fortunato & Hric,
2016); therefore, it is not surprizing that we detected a different
number of communities in the monolayer networks than the
number in Gazda et al. (2015b). We used InfoMap, which has been
implemented for both monolayer and multilayer networks. By
contrast, Gazda et al. (2015b) used a community-detection
approach that has been implemented only for monolayer net-
works. Additionally, because we found one markedly large com-
munity that spans all layers, we note that it may also be useful to
explore coreeperiphery structure in this network (Csermely,
London, Wu, & Uzzi, 2013; Rombach, Porter, Fowler, & Mucha,
2017).

We also analysed each layer independently and an aggregate of
all layers using monolayer InfoMap (Rosvall & Bergstrom, 2007),
which is implemented in MuxViz. Multiplex community detection
produces somewhat different community assignments from
monolayer community detection (Fig. 5). With a multiplex
network, one can identify and label an individual's membership in a
community that spans one or several layers (Fig. 5a). However, in
monolayer community detection, one examines individuals inde-
pendently in different layers, thereby assigning their replicates in
different layers to different communities (Fig. 5b). Therefore, which
individuals are grouped into communities can vary substantially.
See Table 1 for more questions and tools in multilayer community
detection in animal behaviour. As this example illustrates,
depending on the research aims, the form of the data and

knowledge of the study system, one or both of monolayer and
multilayer investigations may provide valuable insights into the
structure of a social system of interest.

Multilayer Processes at a Population Level

Network analysis has been fundamental in advancing under-
standing of social processes over a wide range of spatial scales and
across multiple social groups (Silk, Croft, Tregenza, & Bearhop,
2014; Sueur, King et al., 2011). A multilayer approach is conve-
nient for combining spatial and social networks (e.g. in a recent
study of international human migration; Danchev & Porter, 2018),
and it may contribute to improved understanding of fissionefusion
dynamics, transmission processes and dispersal. It also provides an
integrative framework to merge social data from multiple species
and extend understanding of the drivers that underlie social dy-
namics of multispecies communities (Farine, Garroway, & Sheldon,
2012; Sridhar, Beauchamp, & Shanker, 2009).

Many animals possess complicated fissionefusion social dy-
namics, inwhich groups join one another or split into smaller social
units (Couzin & Laidre, 2009; Silk et al., 2014; Sueur, King et al.,
2011). It can be insightful to study such populations as networks
of networks. Additionally, recent advances in quantifying temporal
dynamics of networks have shed some light on fissionefusion so-
cial structures (Rubenstein et al., 2015). A multilayer approach
applied to association data (collected at times that make it
reasonable to treat group membership as independent across ob-
servations) can assist in detecting events and temporal scales of
social transitions in fissionefusion societies. For example, if each
layer in a multiplex network represents the social associations of
animals at a certain time, a multiplex community-detection

(a) Multilayer InfoMap community detection (b) Monolayer InfoMap community detection

In
di

vi
du

al
s

Travel Social Forage Travel AggregateSocial Forage

Figure 5. Community structures of individuals from (a) multilayer InfoMap community detection and (b) monolayer InfoMap community detection. Each row represents an in-
dividual dolphin, and each column represents a behavioural situation. In the multiplex community detection (a), communities can span all three columns of behaviours, and
individuals who are the same colour in one or more columns belong to the same community. Community colours are the same as those in Fig. 4. Note that an individual who
appears in all three layers can be assigned to the same community in all three situations (and therefore have the same colour in all three columns). An individual can also be part of
three different communities, and it then has different colours in each layer. It can also be assigned twice to one community and once to another. In monolayer InfoMap (b), each
behavioural situation (as well as the aggregate monolayer network in the last column) yields a separate set of communities, so we use a different colour palette in each column.
Individuals in the same column and the same colour are assigned to the same community. In both panels, white represents individuals who were not observed in the associated
behavioural situation.
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algorithm can uncover temporally cohesive groups, similar to the
detection of temporal patterns of correlations between various
financial assets (Bazzi et al., 2016). Further development of com-
munity detection and other clustering methods for general multi-
layer networks (e.g. stochastic block models; Peixoto, 2014, 2015)
and methods based on random walks (De Domenico, Lancichinetti
et al., 2015; Jeub, Balachandran, Porter, Mucha, & Mahoney, 2015;
Jeub, Mahoney, Mucha, & Porter, 2017) may provide insights into
the social and ecological processes that contribute to the temporal
stability of social relationships in fissionefusion societies.

Ecological environments and connections between different
locations have fundamental impacts on social dynamics (Barocas,
Golden, Harrington, McDonald, & Ben-David, 2016; Firth &
Sheldon, 2016; Leu, Farine, Wey, Sih, & Bull, 2016; Spiegel, Leu,
Sih, & Bull, 2016). A multilayer network representation can
explicitly link spatial and social processes in one framework
(Pilosof et al., 2017). One approach is to use interconnected net-
works of social interactions and spatial locations to combine layers
that represent social networks with layers for animal movement
and habitat connectivity. Data on social interactions can also have
multiple layers, with different layers representing interactions in
different locations or habitats. For example, in bison, Bison bison, it
was observed that group formation is more likely in open-meadow
habitats than in forests (Fortin et al., 2009). The same study also
noted that larger groups are more likely than smaller groups to
occur in meadow habitats. Multilayer network approaches, such as
examining distributions of multilayer diagnostics, may be helpful
for detecting fundamental differences in social relationships be-
tween habitats.

Important dynamical processes in animal societies, such as in-
formation and disease transmission, are intertwined with social
network structures (Allen et al., 2013; Aplin et al., 2014; Aplin,
Farine, Morand-Ferron, & Sheldon, 2012; Hirsch, Reynolds, Gehrt,
& Craft, 2016; Weber et al., 2013). Research on networks has
revealed that considering multilayer network structures can pro-
duce very different spreading dynamics than those detected when
collapsing (e.g. by aggregating) multiple networks into one
monolayer network (De Domenico et al., 2016). Multilayer ap-
proaches can uncover different impacts on transmission from
different types of social interactions (Craft, 2015; White et al., 2017)
or link the transmission of multiple types of information or disease
across the same network. Compartmental models of disease
spreading, which describe transitions of individuals between
infected and other states (e.g. susceptibleeinfected (SI) models,
susceptibleeinfectederecovered (SIR) models, and others; Kiss,
Miller, & Simon, 2017) have been used to model transmission
through multilayer networks (Aleta &Moreno, 2019; De Domenico
et al., 2016; Kivel€a et al., 2014). For example, several studies have
incorporated a multilayer network structure into an SIR model for
disease spreading coupled with information spreading about the
disease, with the two spreading processes occurring on different
network layers (Wang et al., 2015). This approach suggests that
taking into account the spread of information about a disease can
reduce the expected outbreak size, especially in strongly modular
networks and when infection rates are low (Funk, Gilad, Watkins,&
Jansen, 2009). Given the growing evidence for coupled infection
and behaviour dynamics in animals (Croft, Edenbrow et al., 2011;
Lopes, Block, & K€onig, 2016; Poirotte et al., 2017), using multi-
layer network analysis to help understand interactions between
information and disease spread is likely to be informative in studies
of contagions in animals. Analogous arguments apply to the study
of acquisition of social information, where learning one behaviour
can influence the likelihood of social learning of other behaviours.
For example, extending models of information spreading (Aleta &
Moreno, 2019; De Domenico et al., 2016; Kivel€a et al., 2014) to

two-aspect multilayer networks that include one layering aspect to
represent different types of social interactions and another aspect
to represent different time periods (Fig. 1) may provide valuable
insights into how social dynamics influence cultural transmissions
in a population.

The study of dispersal can also benefit from utilizing a multi-
layer framework. Networks have been used to uncover the role of
spatial (Reichert, Fletcher, Cattau, & Kitchens, 2016) and social
(Blumstein, Wey,& Tang, 2009) connectivity in dispersal decisions.
One can use a two-aspect multilayer approach to integrate spatial
layers that encode habitat connectivity, or movements of in-
dividuals, with social layers that encode intragroup and intergroup
social relationships. For example, integrating a multilayer frame-
work with existing multistatemodels of dispersal (such as the ones
in Borg et al., 2017; Polansky, Kilian, & Wittemyer, 2015) can make
it possible to relate the likelihood of transitioning between
dispersive and sedentary states to the positions of individuals in a
multilayer sociospatial network. Such integration of spatial and
social contexts may provide new insights both into the relative
roles of social and ecological environments in driving dispersal
decisions and into the subsequent effects of dispersal on popula-
tion structure.

Interspecific interactions as a multilayer network
Network approaches have been useful for studying the social

dynamics of mixed-species assemblages (Farine et al., 2012). For
example, in mixed-species groups of passerine birds, network
analysis was used to show that social learning occurs both within
and between species (Farine, Aplin, Sheldon, & Hoppitt, 2015b).
Mixed-species assemblages have an inherent multilayer structure.
Most simply, one can represent a mixed-species community as a
node-coloured network in which each layer represents a different
species (Fig. 6). To incorporate additional useful information in a
mixed-species multilayer network, one can represent the type of
behavioural interaction as an additional aspect of the network. For
example, one aspect can encode competitive interactions and
another can encode noncompetitive interactions.

Considering multilayer measures, such as multidegree or
versatility, may provide new insights into the role (s) of particular

Figure 6. A multilayer network of mixed-species interactions between blue tits, Cya-
nistes caeruleus (bottom layer; blue nodes), and great tits, Parus major (top layer; or-
ange nodes), in Wytham Woods, U.K. (in the CammooreStimpsons area) using data
from Farine, Aplin, Sheldon, and Hoppitt (2015a, 2015b). Each node represents an in-
dividual bird. Blue and orange edges connect individuals within layers (i.e. intraspecific
associations), and grey edges connect individuals across layers (i.e. interspecific as-
sociations). To aid clarity, we only show edges with a simple ratio index (Cairns &
Schwager, 1987; Ginsberg & Young, 1992) of 0.03 or larger. Photographs by Keith Silk.
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species or individuals in information sharing in mixed-species
groups. Furthermore, multilayer community detection has the po-
tential to provide new insights into the structure of fissionefusion
social systems that involve multiple species. The original study
(Farine et al., 2015b) that generated the networks that we used in
Fig. 6 investigated information transmission in both intraspecies
and interspecies social networks (i.e. constituent interaction types
of an interconnected network). The authors of the original study
concluded that both networks help predict the spread of informa-
tion, but that the likelihood of acquiring foraging information was
higher through intraspecific associations than through interspecific
associations, thereby providing a better understanding of infor-
mation transmission in mixed-species communities than would be
possible using monolayer network analysis. This highlights the
potential of taking explicitly multilayer approaches to better un-
derstand how information can spread within and between species
in mixed-species groups.

Evolutionary Models

Understanding the evolution of sociality is a central focus in
evolutionary biology (Krause & Ruxton, 2002). Research ap-
proaches include agent-based simulations, game-theoretic models,
comparative studies, and others. Evolutionary models have been
expanded to incorporate interactions between agents, resulting in
different evolutionary processes than those in models without in-
teractions (Nowak, Tarnita, & Antal, 2010). However, social behav-
iours evolve and persist in conjunction with other behaviours and
with ecological changes. Therefore, incorporating multiple types of
interactionsdsocial, physiological, and with an environmentdas
part of a multilayer framework can provide novel insights about the
pressures on fitness and evolutionary processes. For example,
incorporating interactions between molecules at the cellular level,
organs at the organismal level, individuals at the group level and
groups at the population level into a network of networks can
facilitate multilevel analysis of social evolution. In the following
paragraphs, we discuss how the expansion of evolutionary
modelling approaches to include multilayer network analysis may
enhance the study of (1) evolution of social phenomena (such as
cooperation) and (2) covariation in behavioural structures across
species.

Incorporating ideas from network theory into evolutionary
models has made it possible to account for long-term relation-
ships, nonrandom interactions and infrequent interactions
(Lieberman, Hauert, & Nowak, 2005). These considerations can
alter the outcomes of game-theoretic models of social evolution
and facilitate the emergence or persistence of interactions, such as
cooperation, by enabling assortativity of cooperative individuals
(Aktipis, 2004, 2006; Allen et al., 2017; Croft, Edenbrow, & Darden,
2015; Fletcher & Doebeli, 2009; Nowak et al., 2010; Rand,
Arbesman, & Christakis, 2011). Given the effects that group
structure can have on the selection and stability of cooperative
strategies, multilayer structures can significantly alter the dy-
namics (both outcomes and transient behaviour) of evolutionary
games. Indeed, it has been demonstrated, using a multilayer
network in which agents play games on multiple interconnected
layers, that cooperation can persist under conditions in which it
would not in a monolayer network (G!omez-Garde~nes, Reinares,
Arenas, & Floría, 2012; Wang, Szolnoki, & Perc, 2012; Wang,
Wang, Szolnoki, & Perc, 2015). Furthermore, the level of interde-
pendence, in the form of coupling payoffs between layers or by
strategy transfer across layers, can influence the persistence of
cooperation (Wang, Szolnoki, & Perc, 2013; Xia, Miao, Wang, &
Ding, 2014). Therefore, in comparison to monolayer network
analysis, using a multilayer network approach can improve the

realism of models by better reflecting the ‘multidimensional’ na-
ture of sociality and allowing a larger space of possible evolu-
tionary strategies and outcomes. Certain behaviours that may not
be evolutionarily stable when considering only one realm of social
interactions may be able to evolve and/or persist when consid-
ering a multilayer structure of an agent's possible interactions. For
example, expanding game-theoretic models to include multiple
types of coupled interactions may facilitate the inclusion of both
competition and mutualism, as well as both intraspecific and
interspecific interactions.

Comparative approaches offer another powerful method to
examine the evolution of different social systems across similar
species (Thierry, 2004; West-Eberhard, 1969). In socially complex
species, such comparisons can benefit greatly from a multilayer
approach. For instance, the macaque genus consists of over 20
species that exhibit a variety of social structures, each with co-
varying behavioural traits, such as those related to connectivity
and/or individual behaviours (Balasubramaniam et al., 2012, 2017;
Sueur, Petit et al., 2011; Thierry, 2004). A multilayer network
analysis of such covarying interactionsde.g. with layers as con-
nectivity types or time periodsdmay offer an effective way to
reveal differences in social structure. For example, using matrix-
correlation methods to measure similarities between layers in a
multilayer network offers away to compare how behaviours covary
across different species using a multiple regression quadratic
assignment procedure (MRQAP) (Croft, Madden, Franks, & James,
2011). For multilayer networks, global overlap (Bianconi, 2013)
and global interclustering coefficient (Parshani, Rozenblat, Ietri,
Ducruet, & Havlin, 2010) are two measures that can quantify the
overlap in edges between two layers. See SupplementaryMaterial 1
for a brief discussion of layer similarity measures. One can, for
instance, use global overlap between an affiliative network and
a kinship network to examine the extent to which nepotism plays a
role in social structure across species (Thierry, 2004). In such an
analysis, it may also be useful to account for spatial dependencies.

Researchers continue to develop new approaches for measuring
heterogeneous structures in multilayer networks (Aleta & Moreno,
2019; Kivel€a et al., 2014) that can aid in testing specific evolutionary
hypotheses. For example, the ‘social brain hypothesis’ (Dunbar,
1998) posits that the evolution of cognition is driven by sociality,
which is cognitively challenging. Recently, there have been several
propositions for how to define sociality to test the social brain
hypothesis; all of these include the idea that relationships between
animals arise from different types of interactions (Bergman &
Beehner, 2015; Fischer, Farnworth, Sennhenn-Reulen, & Ham-
merschmidt, 2017). Multilayer network analysis can aid in devel-
oping objective measures of social structures that include the
nuances of the various proposed definitions. Another evolutionary
hypothesis, the ‘covariation hypothesis’ (Thierry, 2004), posits that
changes in a single trait or behaviour can lead to changes in global
social organization. Simulations of agent-based models (ABMs) on
multilayer networks can test this hypothesis by exploring how
different behavioural parameters along with coupling between
layers influence group-level structure (Hemelrijk, 2002). For
example, an ABM ofmacaque societies (called ‘Groofiworld’) linked
grooming and fighting behaviour through a single trait (termed
‘anxiety’) (Hemelrijk & Puga-Gonzalez, 2012; Puga-Gonzalez, Hil-
denbrandt, & Hemelrijk, 2009). This model has an implicitly
multilayer network structure, as it includes multiple interaction
‘layers’ that are coupled by a parameter. By incorporating such
structure, the model illustrated that patterns of reciprocation and
exchange (Hemelrijk & Puga-Gonzalez, 2012) and aggressive in-
terventions (Puga-Gonzalez, Cooper, & Hemelrijk, 2016) can
emerge from the presence of a few interconnected interaction
types along with spatial positions.
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CONSIDERATIONS WHEN USING MULTILAYER NETWORK
ANALYSIS

We have outlined many opportunities for multilayer network
approaches to be useful for the study of animal behaviour. How-
ever, the application of multilayer network analysis to animal
behaviour data is in its infancy, with many exciting directions for
future work. Multilayer network analysis may not always be
appropriate for a given study, and there are several important
considerations about both the applicability of the tools and the
types of data on which to use them. Most importantly, practical
implementation of these new tools will vary across study systems,
and it will differ based on the questions asked. Therefore, re-
searchers should not blindly implement these new techniques;
instead, as with any other approach, they should be driven by their
research questions and ensure that the tools and data are appro-
priate for answering those questions.

When and How to Use Multilayer Network Analysis

Multilayer network analysis adds complexity to the repre-
sentation, analysis and interpretation of data. Therefore, it should
be applied only when incorporating a system's multifaceted na-
ture can contribute to answering a research question, without
adding needless complexity to data interpretation. Different
types of social relationships may differ in the ‘units’ of their
measurement, and it can be challenging to interpret a multilayer
network analysis of such integrated data. For example, if one
layer represents genetic relatedness and another represents a
social interaction, a multilayer similarity measure can reveal one
or more relationships between these layers, but a versatility
measure that uses both layers may be impractical or confusing to
interpret, because they encode different types of connectivity
data (i.e. relatedness and behaviour). In a similar vein, intralayer
and interlayer edges can have entirely different meanings from
each other, and it can thus be difficult to interpret the results of
considering them jointly (Kivel€a et al., 2014; Supplementary
Material 1).

Therefore, while the strength of using a multilayer network
formalism is that it includes more information about interactions
than a monolayer network, it is imperative to consider carefully
which interactions to include in each layer, based on the study
question. It is also important to be careful about which calculations
are most appropriate for the different layers in a multilayer
network, based on the functions of those layers, especially when
they represent different behaviours.

Data Requirements

Just as in monolayer network analysis (or in any study that
samples a population), a key challenge is collecting sufficient and/
or appropriately sampled data that provide a realistic depiction of
the study system (Newman, 2018a, 2018b; Whitehead, 2008).
Breaking data intomultiple layers can result in sparse layers that do
not provide an appropriate sample of the relationships in each
layer. Furthermore, if data sampling or sparsity varies across
different layers or if the frequency of behaviours differs drastically,
one layer may disproportionally dominate the outcome of a
multilayer calculation. To avoid domination of one data type, one
can threshold the associations, normalize edge weights, adjust
interlayer edge weights (Supplementary Material 1) or aggregate
layers (Supplementary Material 2) that include redundant infor-
mation (De Domenico, Nicosia, Arenas, & Latora, 2015).

It is also important to compare computations on a multilayer
network to those on suitable randomizations (Kivel€a et al., 2014).

Just as in monolayer network analysis (Farine, 2017; Fosdick,
Larremore, Nishimura, & Ugander, 2018; Newman, 2018c), it is vi-
tal to tailor the use of null models in multilayer networks in a
context-specific and question-specific way. For example, some
network features may arise from external factors or hold for a large
set of networks (e.g. all networks with the same intralayer degree
distributions), rather than arising as distinctive attributes of a focal
system.

Practical Availability and Further Development of Multilayer
Methodology

In practice, there are many ways for researchers in animal
behaviour to implement multilayer network analysis. Existing
software packages for examining multilayer networks include
MuxViz (De Domenico, Porter et al., 2015), Pymnet (Kivel€a) and the
R package Multinet (Magnani & Dubik, 2018). In Table 1, we
summarize available tools for implementing various measures.
Multilayer network analysis is a rapidly growing field of research
in network science, and new measures and tools continue to
emerge rapidly. Because this is a new, developing field of research,
many monolayer network methods have not yet been generalized
for multilayer networks; and many of the existing generalizations
have not yet been implemented in publicly available code. Addi-
tionally, many multilayer approaches have been published pre-
dominantly as proofs of concept in theoretically oriented research
or have been implemented only for multiplex networks, but not
for other multilayer network structures (such as interconnected
networks). Furthermore, multilayer networks with multiple as-
pects (e.g. time and behaviour type) have rarely been analysed in
practice, and the potential utility of incorporating multiple aspects
to investigate questions about social behaviour may propel the
development of tools to do so. The ongoing development of user-
friendly software and modules is increasing the accessibility and
practical usability of multilayer network analysis. Multilayer
network analysis is very promising, but there is also a lot more
work to do, as detailed above. Interdisciplinary collaborations
between applied mathematicians, computer scientists, social sci-
entists, behavioural ecologists, and others will be crucial for
moving this exciting new field forward.

CONCLUSIONS

In this article, we have discussed multilayer network analysis
and outlined potential avenues for using it to provide insights into
social behaviour in animals. Multilayer networks provide a useful
framework for considering many extensions of animal social
network analysis. For example, theymake it possible to incorporate
temporal and spatial processes alongside multiple types of behav-
ioural interactions in an integrated way. We have highlighted ex-
amples in which multilayer methods have been used previously to
study animal behaviour, illustrated them with several case studies,
proposed ideas for future work in this area and provided practical
guidance on some suitable available methodologies and software
(Table 1). Using multilayer network analysis offers significant po-
tential for uncovering eco-evolutionary dynamics of animal social
behaviour. Multilayer approaches provide new tools to advance
research on the evolution of sociality, group and population dy-
namics, and the roles of individuals in interconnected social and
ecological systems. The incorporation of multilayer methods into
studies of animal behaviour will facilitate efforts to improve un-
derstanding of what links social dynamics across behaviours and
contexts, and it provides an explicit framework to link social
behaviour with broader ecological and evolutionary processes (Silk
et al., 2018).
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Supplementary Material 1

The mathematical formalism of multilayer networks (Kivelä et al., 2014; Newman, 2018), a generaliza-
tion of ordinary graphs (i.e. ‘monolayer networks’), was developed recently to help study multitudinous
types of networks and to unify them into one framework. In this supplement, we complement the main
text with an introduction to this formalism. We follow the mathematical approach of the review article by
Kivelä et al. (2014), including most of its terminology and much of its notation. Another useful resource
is Porter (2018), which is an expository summary of multilayer networks for mathematics students. We
draw on some exposition from Porter (2018) in our section on mathematical formalism.

Mathematical Formalism

A multilayer network M = (VM , EM , V, L) has an underlying set V = {1, . . . , N} of N entities (i.e.
‘physical nodes’) that occur on layers in L, which we construct as a sequence, L = {La}da=1, of sets
L1, . . . , Ld of elementary layers, where d is the number of ‘aspects’ (i.e. types of layering). One ‘layer’
in L is thus a combination, through the Cartesian product L1 ⇥ · · ·⇥ Ld, of ‘elementary layers’ from all
aspects. Therefore, each layer in a multilayer network includes one elementary layer from each aspect.
For example, if the sets of elementary layers of a multilayer network are L1 = {1, 2} (so 1 and 2 are each
elementary layers, perhaps representing di↵erent points in time) and L2 = {X,Y, Z}, then the network’s
layers are (1, X), (1, Y ), (1, Z), (2, X), (2, Y ) and (2, Z). In a multilayer network, the set of node-layer
tuples (i.e. ‘state nodes’ that correspond to the same entity) in M is VM ✓ V ⇥L1⇥ · · ·⇥Ld, and the set
of multilayer edges is EM ✓ VM ⇥VM . The edge ((i,↵), (j,�)) 2 EM indicates that there is an edge from
node i on layer ↵ to node j on layer � (and vice versa, if M is undirected). Each aspect of M represents
a type of layering: a type of social interaction, a point in time, and so on. For example, a multirelational
network that does not change in time has one aspect; a multirelational network that has layers that
encompass multiple time points has two aspects; and so on. To consider weighted edges, one proceeds
as in monolayer networks by assigning a weight to each edge using a function w : EM �! W , where
W = R�0 if all weights are nonnegative real numbers. In Fig. S1, we show an example of a multilayer
network with one aspect.

Adjacency Structure

Each multilayer network with the same number of nodes in each layer has an associated adjacency
tensor (a linear-algebraic object that generalizes an adjacency matrix)A of order 2(d+1). (For discussions
of tensors in the context of multilayer networks, see (De Domenico et al., 2013; Kivelä et al., 2014).)
Analogous to the case of monolayer networks, each unweighted (and directed) edge in EM is associated
with a 1 entry of A, and the other entries are 0. An undirected edge in EM is associated with two 1
entries of A. To incorporate edge weights, one uses the values of the weights instead of 1. As discussed
in Kivelä et al. (2014), multilayer networks can have di↵erent numbers of nodes in di↵erent layers. To
ensure that the dimensions are consistent in A, one adds empty state nodes when necessary. Edges
attached to such state nodes are ‘forbidden’ (these yield ‘structural zeros’ in A), and this needs to be
taken into account when doing calculations.

For convenience, it is common to flatten A into a ‘supra-adjacency matrix’ AM , which is the adjacency
matrix of the graph GM associated with M . Intralayer edges (the solid arcs in Fig. S1) are on the
diagonal blocks of a supra-adjacency matrix (see Fig. S2), and interlayer edges (the dashed magenta
arcs and dotted blue arcs in Fig. S1) are on the o↵-diagonal blocks. For this illustration, we suppose
that the intralayer edges are unweighted; these are the 1 entries (which we colour based on layer) in
AM . We show interlayer edges between state nodes that represent the same entity in magenta, and we
show interlayer edges between state nodes that represent distinct entities in blue. We suppose that the
interlayer edge from state node (i,↵) to (j,�) has weight !i↵,j�, which we take to be a nonnegative real
number (although one can use negative values for antagonistic interlayer interactions).

Several developments in multilayer network analysis, including particular choices for how to generalize
ideas from monolayer network analysis, have exploited the tensorial structure of multilayer networks.
Readers who wish to ignore this structure are free to start with supra-adjacency matrices.

Types of Multilayer Networks

Multilayer networks allow one to investigate a diverse variety of complicated network architectures
and to integrate di↵erent types of data into one mathematical object. One can then use a common
toolkit to study these diverse scenarios.
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Two key types of multilayer networks arise from (1) labelling edges or (2) labelling nodes. When
one labels edges, one thinks of edges in di↵erent layers as representing di↵erent types of interactions.
This is the case for a multiplex network, a type of multilayer network in which the only permitted types
of interlayer edges are those that connect replicates of the same entity in di↵erent layers. We show
such edges, which correspond to diagonal elements of o↵-diagonal blocks in a supra-adjacency matrix, as
dashed magenta arcs in Fig. S1 and as magenta matrix elements in Fig. S2. A special case of a multiplex
network is an edge-coloured multigraph, which has multiple layers but does not have any interlayer edges.
In this case, only the diagonal blocks in a supra-adjacency matrix can have nonzero elements (such that
all !i↵,j� = 0 in Fig. S2 for i 6= j). By contrast, when one labels nodes, one can think of di↵erent
layers as representing di↵erent subsystems (in interconnected networks and ‘networks of networks’), and
there can be interlayer edges with nonzero supra-adjacency matrix elements in both the diagonal and
o↵-diagonal entries of the o↵-diagonal blocks. In this case, there are interlayer edges between di↵erent
entities, as we indicate using the dotted blue arcs in Fig. S1 and the blue matrix elements in Fig. S2. To
emphasize the fact that di↵erent layers in Fig. S1 can represent di↵erent subsystems, we use di↵erent
colours for the nodes from di↵erent layers.

For further details on types of multilayer networks, see Kivelä et al. (2014).

Weights of Interlayer Edges

An important idea is that interlayer edges are fundamentally di↵erent from intralayer edges, and it is
often less straightforward to determine weights from data for interlayer edges than for intralayer ones.
In the context of the supra-adjacency matrix in Fig. S2, for most applications, it is easier to determine
weights that are associated with the 1 entries in the diagonal blocks than to assign appropriate values
to the weights !i↵,j�. As in monolayer networks, larger weights correspond to stronger interactions.

A conceptually easy situation is a multimodal transportation network, in which one might determine
interlayer edge weights based on how long it takes to change modes of transportation (with larger
weights for shorter times). Suppose, for example, that entity A represents Oxford, entity B represents
Cambridge, layer 1 represents coach transportation and layer 2 represents train transportation. We
determine interlayer edge weights from the time that it takes to change transportation modes, with
larger weights for shorter times. If it takes longer to walk from the coach station to the train station in
Oxford than it does in Cambridge, then !A1,A2 < !B1,B2.

A harder scenario to model is communication between people in a social network. We will use
ourselves—with nodes called Mason, Noa, Kelly and Matt—to provide an example. One possibility
is to construe an interlayer edge that connects an entity to itself as encoding a transition probability
between di↵erent modes of communication. Therefore, !i↵,j� 2 [0, 1] because it represents a proba-
bility. One can also include interlayer edges between distinct entities (in blue in Fig. S2), as Mason
can send a message to Noa using one mode of communication (i.e. in one layer), such as via an e-mail
that he typed on his laptop, but she may read the contents of that message using some other mode of
communication (i.e. in another layer), such as on a mobile phone. Noa may then subsequently text
the message to Kelly and Matt. Additionally, because the four of us have di↵erent usage patterns for
di↵erent modes of communication, we also have di↵erent transition probabilities between layers, and our
associated interlayer edge weights thus di↵er from each other. For example, Mason is almost always
on his computer and almost never on his phone, so his transition probability from communicating via
computer to communicating via phone is small, whereas the probability of the reverse transition is very
large. By contrast, during proverbial work hours, Noa spends a similar amount of time on her computer
and her phone, and her transition probabilities for changing between these two modes of communication
are similar to each other.

For other applications, including in animal behaviour, interlayer edges can run into significant con-
ceptual di�culties, and researchers struggle with how to make sense of them. There are dependencies
across layers and interlayer edges can encode such dependencies, but how does one determine meaningful
values for the weights of those edges? In some applications, it may be useful to think of interlayer edges
as transition probabilities, as in the above example involving humans. In others, it may be useful to
construe an interlayer edge as representing a dependency between one layer (e.g. proximity associations)
and a second layer (e.g. grooming interactions, which require proximity to occur). A larger weight for
such an edge encodes a stronger dependency, thereby entailing a stronger dependence of one layer on
another. Additionally, di↵erent individual animals can have di↵erent values for such weights (as in the
example above), corresponding to individual di↵erences.

There are numerous possibilities for applying multilayer network analysis in animal behaviour (and in
other applications), because it is very flexible, but it can also be very challenging to interpret the results
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of such analysis. As we have illustrated in this subsection, a key issue that requires careful thought is
determining the weights of interlayer edges (or whether to use such edges at all). In di↵erent disciplines
and for di↵erent systems and research questions, one can use interlayer edges to represent qualitatively
di↵erent things (e.g. communication ties, correlations or transition probabilities), and how to determine
interlayer edge weights depends on the application domain, the system of interest and one’s particular
research question.

Eigenvector Versatility: An Example of a Multilayer Versatility Measure

In this section, we illustrate the formalism of calculating a ‘versatility’ measure (De Domenico et al.,
2015) in a multilayer network to supplement our conceptual discussion in the main text. For simplicity,
we consider eigenvector versatility, which is a generalization of eigenvector centrality from monolayer
networks, but one can also generalize other monolayer centrality measures (such as PageRank) into
associated versatility measures for multilayer networks.

To calculate eigenvector centralities in a monolayer network, one calculates the leading eigenvector
v1 (which is associated with the largest positive eigenvalue �1) of the equation Av = �v, where A is
the network’s adjacency matrix. For this type of centrality, we assume that the network associated to A
is strongly connected (or just that it is connected, for an undirected network), so that—by the Perron–
Frobenius theorem—the eigenvector v1 has strictly positive entries (Newman, 2018). These entries give
the eigenvector centralities of the corresponding nodes in the network.

Calculating eigenvector versatility proceeds in a similar way. One first calculates the leading eigenvec-
tor vM,1 of the equation AMvM = �vM . The eigenvector vM,1 gives multilayer eigenvector centralities
for each state node (i.e. for each node in each layer). Importantly, we need to use the whole multilayer
structure to calculate the multilayer eigenvector centrality for each state node. For each entity, one then
aggregates the centrality values over all layers to determine its eigenvector versatility. De Domenico et al.
(2015) used a maximum-entropy principle for their choice of aggregation, but other ways of weighting
di↵erent layers are also possible (Kivelä et al., 2014).

Similarity of Layers: Example Measures

In this section, we present example notions for quantifying the similarity of layers in a multilayer
network. As we suggested in the main text, such calculations can be helpful for exploring overlaps of
individuals and/or social interactions across layers, including for discerning task specialists and general-
ists. For simplicity, we consider the special case of multiplex networks. For a discussion of several types
of similarity measures and comparisons between them, see Kao and Porter (2018) and several references
therein.

One way to quantify the similarity of two layers is to count the number of intralayer edges that occur
in both layers. There is an overlapping edge between nodes i and j in layers ↵ and � if and only if there
is an edge between nodes i and j in both ↵ and �. That is, ✓(A↵

ij) = 1 and ✓(A�
ij) = 1, where A↵

ij is the

intralayer adjacency element between entities i and j on layer ↵ (and A�
ij is defined analogously), and

✓(x) = 1 if x > 0 and ✓(x) = 0 otherwise.
Usually, one wants to be a bit more sophisticated than using a raw count of overlapping edges, and

there are many possible ways to proceed. One example is to calculate the ‘local overlap’ (Cellai et al.,
2013)

o↵�
i =

X

j

✓(w↵
ij)✓(w

�
ij) ,

which counts the number of overlapping edges that are attached to node i in both layer ↵ and layer �. In
an undirected multiplex network, the local overlap o↵�

i quantifies the similarity between the connection
patterns of node i in layer ↵ and node i in layer �, although it does not take into account that the
intralayer degrees of a state node contribute to the amount of overlap that involves it. One measure of
similarity that does account for such information is ‘local similarity’ (Kao and Porter, 2018)

(1) �↵�
i =

o↵�
i

k↵i + k�i � o↵�
i

2 [0, 1] ,

where k↵i =
P

j ✓(w
↵
ij) is the degree of node i in layer ↵ (and k�i is defined analogously). Local similarity

�↵�
i calculates the number of overlapping edges that are attached to node i in layers ↵ and � as a

proportion of the number of unique edges that are attached to node i in the two layers.
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(A,3)
(B,3)

(C,3)
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Figure S1. An example of a multilayer network with three layers. We label each layer
using di↵erent colours for its state nodes and its edges: black nodes and brown edges
(three of which are unidirectional) for layer 1, purple nodes and green edges for layer
2, and pink nodes and grey edges for layer 3. Each state node (i.e. node-layer tuple)
has a corresponding physical node and layer, so the tuple (A, 3) denotes physical node
A on layer 3, the tuple (D, 1) denotes physical node D on layer 1, and so on. We draw
intralayer edges using solid arcs and interlayer edges using broken arcs; an interlayer edge
is dashed (and magenta) if it connects corresponding entities and dotted (and blue) if
it connects distinct ones. We include arrowheads to represent unidirectional edges. We
drew this network using Tikz-network (Jürgen Hackl, https://github.com/hackl/tikz-
network), which allows one to draw multilayer networks directly in a LATEX file.
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AM =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 1 0 !A1,A2 0 0 0 0 !A1,A3 0 0 0 0
0 0 1 0 0 0 !B1,B2 0 0 0 0 !B1,B3 0 0 !B1,E3

0 0 0 1 0 0 0 !C1,C2 0 0 0 0 !C1,C3 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 !D1,D3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

!A2,A1 0 0 0 0 0 1 1 0 0 !A2,A3 !A2,B3 0 0 0
0 !B2,B1 0 0 0 1 0 1 0 0 0 !B2,B3 0 0 0
0 0 !C2,C1 0 0 1 1 0 0 0 0 0 !C2,C3 0 !C2,E3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

!A3,A1 0 0 0 0 !A3,A2 0 0 0 0 0 0 1 0 0
0 !B3,B1 0 0 0 !B3,A2 !B3,B2 0 0 0 0 0 0 1 0
0 0 !C3,C1 0 0 0 0 !C3,C2 0 0 1 0 0 1 0
0 0 0 !D3,D1 0 0 0 0 0 0 0 1 1 0 1
0 !E3,B1 !E3,C1 0 0 0 0 !E3,C2 0 0 0 0 0 1 0

1

CCCCCCCCCCCCCCCCCCCCCCCCA

Figure S2. Supra-adjacency matrix corresponding to the multilayer network in Fig. S1.
Entries in diagonal blocks correspond to intralayer edges, whereas entries in o↵-diagonal
blocks correspond to interlayer edges. We follow the colouring scheme in Fig. S1: entries
that correspond to intralayer edges in layer 1 are in brown, those in layer 2 are in green,
and those in layer 3 are in grey. Magenta entries correspond to interlayer edges between
state nodes that represent the same entity, and blue entries correspond to interlayer
edges between state nodes that represent distinct entities. We use subscripts to identify
the weights of the specific interlayer edges; for example, !A1,A2 denotes the weight of
the edge from state node (A, 1) to state node (A, 2), and !A2,A1 denotes the weight of
the edge from (A, 2) to (A, 1). As in monolayer networks, intralayer edges can also be
weighted, but we do not indicate any such weights in AM .
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Supplementary Material 2 
 
 
Representation of Multifaceted Data as a Monolayer Network 
 
 

 One approach that has been utilized widely for studying multifaceted systems is to 

aggregate ‘layers’ of different data types into a weighted monolayer network and to then use 

traditional network measures to quantify properties of the resulting aggregated network. The 

simplest aggregation is a linear combination in which each edge between two individuals in a 

layer adds (or subtracts) from the weight of the edge in the aggregated monolayer network. For 

example, if we assign grooming interactions (affiliative) a value of +1 and aggressive 

interactions (agonistic) a value of -1 and combine them through simple addition, then two 

individuals with six agonistic interactions and one grooming interaction have an edge of weight 

of -5 in the aggregated network. Another approach is to aggregate in a way that assigns a greater 

importance to a particular layer. In the above example, if we decide (for example, by using pre-

existing knowledge of a study system) that grooming interactions are twice as important as 

agonistic interactions in defining social relationships, the monolayer edge between the above 

individuals in the ensuing aggregation now gets a weight of -4. Therefore, aggregating 

multifaceted data that has negatively weighted edges into a monolayer network yields a weighted 

signed network, for which there are fewer methods of analysis than there are for networks in 

which edge weights are nonnegative (Traag, Doreian, & Mrvar, 2018; Wasserman & Faust, 

1994). It is possible to adjust edge weights so that they are all positive, although one has to be 

careful about how this changes the information that is encoded in a network. Additionally, the 

relative importance of each layer is often not known, and it is not necessarily appropriate to 

weight them in linear proportion. 



 

 

Tuning Interlayer Coupling with Relaxation Rates 

 

When detecting communities in a network using the multilayer InfoMap method, one can 

tune the amount of coupling between layers (i.e. the influence of interlayer edges on the 

communities that are detected) by adjusting the ‘relaxation rate’ of a random walk. This 

relaxation rate determines how much interlayer edges (with uniform values of 1, using default 

settings of MuxViz) are taken into account when detecting communities; a value of 0 entails no 

influence of interlayer edges on community assignment (i.e. no coupling), and a value of 1 

entails that there is no distinction between layers (i.e. the assumption of distinction is ‘relaxed’) 

(De Domenico, Lancichinetti, Arenas, & Rosvall, 2015).  Depending on the study system, the 

specific function of intralayer and interlayer edges, and the study-specific research aim for 

examining communities, one may wish to use different relaxation rates or to explore how 

community composition changes across a range of relaxation rates (Fig. S3).  

For instance, it may be appropriate to use a small relaxation rate for a multiplex network 

in which the interactions in different layers are functionally very different (e.g. associating at 

work, at a bar or at home) and one is interested in identifying a community structure that 

emphasizes differences in relationship type (e.g. coworkers, friends or cohabitants) while still 

allowing some overlap. For example, a community of individuals that includes node replicates 

mostly from a work layer may also include node replicates in the bar layer (e.g. because some 

coworkers may often go to happy hour together after work).  A small relaxation rate may mostly 



separate communities of different relationship types, but it would still allow mixing when some 

individuals have multiple relationship types with the same people (e.g. friends and coworkers).  

Conversely, one may wish to use a larger relaxation rate for a multiplex network when 

the interactions on different layers are related to the same type of relationship (e.g. friendships in 

which individuals play sports, watch movies and/or drink beer) and one is interested in 

identifying a community structure that emphasizes different social circles while still allowing 

some individuals to be part of multiple groups. For example, an individual may have a primary 

friend group that always watches movies and drinks together, but this individual may also be 

much more competitive than the others and plays in a different sports league (and thus is also 

part of a friendship circle of competitive athletes). A large relaxation rate in this scenario may 

allow communities to easily span multiple layers (as social circles usually engage in multiple 

interaction types), but it would still allow mixing when some individuals are involved in multiple 

social circles.  

In the main text of the paper, we used a relaxation rate of 0.3 in our analysis of dolphin 

community structure (see Multilayer Groupings: Dolphin Communities Emerge from 

Multirelational Interactions). We chose this value because it was the smallest relaxation rate that 

yielded qualitatively different structures when using multilayer InfoMap versus detecting 

communities as independent monolayer networks using InfoMap (Figs S3, S4). For example, the 

former includes a community with node replicates from all layers. 

 

 

 



 

 

Figure S3. We investigate the number and composition of communities (on the vertical axis) 
across relaxation rates (on the horizontal axis) from 0 to1, in increments of 0.1, for detecting 
communities using the multilayer InfoMap algorithm of De Domenico et al. (2015). We use the 
MuxViz implementation of the algorithm. Each point indicates an individual in a particular 
behavioural situation, which we designate by the colours of the points. Thus, in each column, an 
individual can appear up to three times (once in each colour). Each cell in the grid represents a 
community, such that a certain cell includes all of the individuals in a particular community for a 
given relaxation rate. The number of communities and their composition (of nodes from the 
same or different layers) is different for different relaxation rates.  
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Figure S4. The number of communities in which individuals are members varies with the 
relaxation rate (horizontal axis). The maximum represents the number of layers in which an 
individual is present, so it is also the number of possible communities in which it can be a 
member. The number of individuals (vertical axis) who are in only one community (green) 
increases with relaxation rate. The number of individuals who are members of two communities 
(orange) decreases with relaxation rate. For relaxation rates of 0.3 and above, we no longer 
observe individuals who are members of three different communities (purple). Due to this 
qualitative difference in the number of communities in which individuals can be members 
between relaxation rates of 0.2 and 0.3, we choose 0.3 as the relaxation rate to implement in the 
main text. 
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