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Abstract We describe centralities in temporal networks using a supracentrality
framework to study centrality trajectories, which characterize how the importances
of nodes change with time. We study supracentrality generalizations of eigenvector-
based centralities, a family of centrality measures for time-independent networks
that includes PageRank, hub and authority scores, and eigenvector centrality. We
start with a sequence of adjacency matrices, each of which represents a time layer
of a network at a different point or interval of time. Coupling centrality matrices
across time layers with weighted interlayer edges yields a supracentrality matrix
C(w), where w controls the extent to which centrality trajectories change with time.
We can flexibly tune the weight and topology of the interlayer coupling to cater to
different scientific applications. The entries of the dominant eigenvector of C(w)
represent joint centralities, which simultaneously quantify the importances of every
node in every time layer. Inspired by probability theory, we also compute marginal
and conditional centralities. We illustrate how to adjust the coupling between time
layers to tune the extent to which nodes’ centrality trajectories are influenced by the
oldest and newest time layers. We support our findings by analysis in the limits of
small and large .
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17.1 Introduction

Quantifying the importances of nodes through the calculation of ‘centrality’ mea-
sures is a central topic in the study of networks (Newman 2018). It is important
in numerous and diverse applications, including identification of influential people
(Bonacich 1972; Faust 1997; Borgatti et al. 1998; Kempe et al. 2003), ranking web
pages in searches (Brin and Page 1998; Page et al. 1999; Kleinberg 1999), ranking
teams and individual athletes in sports (Callaghan et al. 2007; Saavedra et al. 2010;
Chartier et al. 2011), identification of critical infrastructures that are susceptible to
congestion or failure (Holme 2003; Guimera et al. 2005), quantifying impactful judi-
cial documents (Leicht et al. 2007; Fowler et al. 2007; Fowler and Jeon 2008) and
scientific publications (Bergstrom et al. 2008), revealing drug targets in biological
systems (Jeong et al. 2001), and much more.

Because most networks change with time (Holme and Saramiki 2012, 2013;
Holme 2015), there is much interest in extending centralities to temporal networks
(Liao et al. 2017). Past efforts have generalized quantities such as betweenness cen-
trality (Tang et al. 2010; Kim et al. 2012; Alsayed and Higham 2015; Williams and
Musolesi 2016; Fenu and Higham 2017), closeness centrality (Tang et al. 2010; Pan
and Saramaki 2011; Kim et al. 2012; Williams and Musolesi 2016), Bonacich and
Katz centrality (Lerman et al. 2010; Grindrod and Higham 2014), win/lose cen-
trality (Motegi and Masuda 2012), communicability (Grindrod et al. 2011; Estrada
2013; Grindrod and Higham 2013; Chen et al. 2016; Arrigo and Higham 2017; Fenu
and Higham 2017), dynamic sensitivity (Huang and Yu 2017), coverage centrality
(Takaguchi et al. 2016), PageRank (Walker et al. 2007; Rossi and Gleich 2012; Mar-
iani et al. 2015, 2016; You et al. 2017), and eigenvector centrality (Praprotnik and
Batagelj 2015; Huang et al. 2017; Flores and Romance 2018). A common feature
of these extensions is that they illustrate the importance of using methods that are
designed explicitly for temporal networks, as opposed to various alternatives. These
alternatives include aggregating a temporal network into a single ‘time-independent’
network, independently analyzing a temporal network at different instances of time,
and binning a temporal network into time windows and analyzing those windows
independently. With aggregation, it is not even possible to study centrality trajectories
(i.e., how centralities change with time).

Because one can derive many centralities by studying walks on a network, some
of the above temporal generalizations of centrality involve the analysis of so-called
‘time-respecting paths’ (Kossinets et al. 2008; Kostakos 2009). There are multiple
ways to define a time-respecting path, including the possibility of allowing multiple
edge traversals per time step for a discrete-time temporal network. There are also
multiple ways to quantify the length of a time-respecting path (Williams and Musolesi
2016), because such a path can describe the number of edges that are traversed by
a path, latency between the initial and terminal times of a path, or a combination of
these ideas. It is necessary to make choices even to define a notion of a ‘shortest path’
(from which one can formulate several types of centrality). Consequently, some of
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the diversity in the various temporal generalizations of centrality measures arises
from the diversity in defining and measuring the length of a time-respecting path.

In the present work, we examine a notion of supracentrality (Taylor et al. 2017,
2021), which one can calculate by representing a temporal network as a sequence of
network layers and coupling those layers to form a multilayer network (specifically,
a multiplex network (Kiveld et al. 2014; Porter 2018)). See Fig. 17.1 for illustrative
examples. The sequence of network layers, which constitute time layers, can repre-
sent a discrete-time temporal network at different time instances or a continuous-time
network in which one bins (i.e., aggregates (Taylor et al. 2017)) the network’s edges
to form a sequence of time windows with interactions in each window. This approach
is motivated by the use of a multiplex-network representation to detect communities
in temporal networks through maximization of multilayer modularity (Mucha and
Porter 2010; Bassett et al. 2013; Weir et al. 2017; Pamfil et al. 2019). There is also
widespread interest in generalizing centrality measures to multilayer networks more
generally (Magnani and Rossi 2011; Ng et al. 2011; De Domenico et al. 2013; Halu
et al. 2013; Magnani et al. 2013; Sol4 et al. 2013; Battiston et al. 2014; Solé-Ribalta
et al. 2014; Chakraborty and Narayanam 2016; Solé-Ribalta et al. 2016; Tavassoli
and Zweig 2016; DeFord 2017; DeFord and Pauls 2017; Ding and Li 2018; Rahmede
et al. 2017; Spatocco et al. 2018; Tudisco et al. 2018).

Our supracentrality framework generalizes a family of time-independent network
centralities that are called eigenvector-based centralities, which are defined by the
property of calculating centralities as the entries of an eigenvector (the so-called
‘dominant’ eigenvector) that corresponds to the largest-magnitude eigenvalue (the
‘dominant’ eigenvaluel) of a centrality matrix C(A), which one defines by some
function of a network’s adjacency matrix A. Different choices for the centrality
matrix recover some of the most popular centrality measures, including eigenvector
centrality (by using C(A) = A) (Bonacich 1972), hub and authority scores (by using
C(A) = AAT for hubs and AT A for authorities) (Kleinberg 1999), and PageRank
(Page et al. 1999) (see Sect. 17.2.2). Given a discrete-time temporal network in the
form of a sequence of adjacency matrices A’ € RV*N for ¢t € {1, ..., T}, where
Af’i) denotes a directed edge from entity i to entity j in time layer 7, examining
supracentralities involves two steps:

1. Construct a supracentrality matrix C(w), which couples centrality matrices
C(A") of the individual time layers t = 1,1 =2,¢t =3, ...
2. Compute and interpret the dominant eigenvector of C(w).

For a temporal network with N nodes and T time layers, C(w) is a square matrix
of size NT x NT. We require the set of nodes to be the same for all time layers.
However, it is easy to accommodate the appearance and disappearance of nodes
by including extra instances of the entities in layers in which they otherwise do
not appear (but without including any associated intralayer edges). The parameter w

! Technically, we study the eigenvector that is associated with the largest positive eigenvalue of
an irreducible, nonnegative matrix. We assume that this eigenvalue has a larger magnitude than all
other eigenvalues.
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Fig. 17.1 Multiplex-network representations of a discrete-time temporal network. Given a tem-
poral network with N = 4 nodes and T = 6 times, we represent the network at each time by a
‘time layer’ with adjacency matrix A®) € RV*N for r € {1,..., T}. a, b We represent the net-
work as a multiplex network by coupling the layers with ‘interlayer edges’ (gray edges) that we
encode in an interlayer-adjacency matrix A € R”*T . Panel a illustrates interlayer coupling in the
form of an undirected chain, and panel b depicts directed coupling between layers. In panels ¢
and d, we show visualizations of the networks that are associated with the matrix A for panels a
and b, respectively. In panel d, there are directed interlayer edges between consecutive time layers,
so these interlayer edges respect the direction of time. Additionally, we construct connections of
weight y > 0 between corresponding nodes from all pairs of layers to ensure that A corresponds
to a strongly connected network, which in turn ensures that the centralities are positive and unique.
By analogy to ‘node teleportation’ in PageRank (Gleich 2015), we refer to this coupling as ‘layer
teleportation’

scales the weights of the interlayer couplings to control the strength of the connection
between time layers. It thus provides a ‘tuning knob’ to control how rapidly centrality
trajectories can change with time.

An important aspect of the first step is that one chooses a topology to couple layers
to each other. To do this, we define an interlayer-adjacency matrix A € R7*” where
the entry A,, encodes the coupling from time layer ¢ to time layer '. In Fig. 17.1,
we illustrate two possible choices for coupling the time layers. In the upper row,
A € R”*T encodes an undirected chain, which couples the time layers with adjacent-
in-time coupling but neglects the directionality of time. In the lower row, by contrast,
we couple the time layers with a directed chain that reflects the directionality of time.
In addition to the directed, time-respecting edges, Fig. 17.1d also illustrates that we
include weighted, undirected edges between corresponding nodes for all pairs of
layers. This implements ‘layer teleportation’, which is akin to the well-known ‘node
teleportation’ of the PageRank algorithm (Gleich 2015). Just like node teleportation,
layer teleportation ensures that supracentralities are well-behaved (specifically, that
they are positive and unique).

The second step to examine supracentralities involves studying the dominant
right eigenvector of the supracentrality matrix C(w), which characterizes the joint
centrality of each node-layer pair (i, t)—that is, the centrality of node i in time
layer t—and thus reflects the importances of both node i and layer 7. From the joint
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centralities, one can calculate marginal centralities for only the nodes or only the
time layers. One can also calculate conditional centralities that measure a node’s
centrality at time ¢ relative only to the other nodes’ centralities at time ¢. These
concepts, which are inspired by ideas from probability theory, allow one to develop
a rich characterization for how node centralities change with time.

In this chapter, we describe the supracentrality framework that we developed in
Tayloretal. (2017, 2021) and extend these papers with further numerical explorations
of how interlayer-coupling topology affects supracentralities. We apply this approach
to a data set, which we studied in Taylor et al. (2017) and is available at Taylor (2019),
that encodes the graduation and hiring of Ph.D. recipients between mathematical-
sciences doctoral programs in the United States. We focus our attention on five top
universities and examine how they are affected by the value of @ and the choice of A.
Specifically, we compare the two strategies for interlayer coupling in Fig. 17.1 and
explore the effect of reversing the directions of all directed edges. Our experiments
reveal how to use w and A to tune the extent to which centrality trajectories of nodes
are influenced by the oldest time layers, the newest time layers, and the direction of
time.

17.2 Background Information

We now give some background information on multiplex networks and eigenvector-
based centralities. Our supracentrality framework involves representing a tempo-
ral network as a multiplex network (see Sect.17.2.1). In Sect.17.2.2, we review
eigenvector-based centrality measures.

17.2.1 Analysis of Temporal Networks
with Multiplex-Network Representations

We study discrete-time temporal networks, for which we provide a formal definition.

Definition 17.1 (Discrete-Time Temporal Network) A discrete-time temporal net-
work consists of aset ¥ = {1, ..., N} of nodes and sets & of weighted edges that
we index (using ¢) in a sequence of network layers. We denote such a network either
by (¥, {€D}) or by the sequence {A®} of adjacency matrices, where A" =

t
ij = Wij
if (i, j,wj;) € & and Ag.) = 0 otherwise.

As we illustrated in Fig. 17.1, we represent a discrete-time temporal network as
a multiplex network with weighted and possibly directed coupling between the time
layers. We restrict our attention to the following type of multiplex network.

Definition 17.2 (Uniformly and Diagonally Coupled (i.e., Layer-Coupled) Multi-
plex Network) Let (7, {£®}, &) be a T-layer multilayer network with node set
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¥ ={l1,..., N} and interactions between node-layer pairs that are encoded by the
sets {6'")} of weighted edges, where (i, j, wj;) € & if and only if there is an edge
(i, j) with weight w! i in layer ¢. The set &= {(s, t, wy,)} encodes the topology
and weights for coupling separate instantiations of the same node between a pair
(s,t) e {1,...,T} x {1,..., T} of layers. Equivalently, one can encode a multiplex
network as a set {A)} of adjacency matrices, such that Ag.) =wjif (i, j,w]) €& ®
and A;;) = 0 otherwise, along with an interlayer-adjacency matrix A with entries
Ay =y if (5,1, Ws) € & and A" = 0 otherwise.

The coupling in Definition 17.2 is ‘diagonal’ because the only interlayer edges are
ones that couple a node in one layer to that same node in another layer. It is ‘uniform’
because the coupling between two layers is identical for all nodes in those two layers.
A multilayer network with both conditions is called ‘layer-coupled’ (Kiveld et al.
2014).

As we illustrated in Fig. 17.1, we focus our attention on two choices for coupling
time layers:

(A) A encodes an undirected chain:

= L =r=1
Aw = {O, otherwise ; 7.1y

(B) A encodes a directed chain with layer teleportation:
A — 1 + V ’ t f— = 1
A = { y , otherwise, (17.2)

where y > 0 is the layer-teleportation probability. In Sect. 17.4, we compare
the effects on centrality trajectories of these two choices of A.

17.2.2 Eigenvector-Based Centrality for Time-Independent
Networks

Arguably the most notable—and certainly the most profitable—type of centrality is
PageRank, which provided the mathematical foundation for the birth of the web-
search algorithm of the technology giant Google (Brin and Page 1998; Page et al.
1999; Gleich 2015). PageRank quantifies the importances of the nodes of a network
(e.g., a directed network that encodes hyperlinks between web pages) by computing
the dominant eigenvector of the ‘PageRank matrix’ (i.e., ‘Google matrix’ (Langville
and Meyer 2006))

CP® =AD" + (1 —o)N 117, (17.3)
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where N is the number of nodes, 1 =[1,...,1]7 isa length- N vector of ones, and
A is an adjacency matrix in which each entry A;; encodes a directed (and possibly
weighted) edge from node i to node j. The matrix D = diag[d{™, ..., dy"] is a
diagonal matrix that encodes the node out-degrees d"' = . A;j.

The PageRank matrix’s dominant right eigenvector is a natural choice for ranking
nodes, as it encodes a random walk’s stationary distribution (which estimates the
fraction of web surfers on each web page in the context of a web-search engine?).
The term A”D~! is a transition matrix that operates on column vectors that encode
the densities of random walkers (Masuda et al. 2017). The term N ~'117 is a telepor-
tation matrix; it is a transition matrix of an unbiased random walk on a network with
uniform all-to-all coupling between nodes. The teleportation parameter o € (0, 1)
implements a linear superposition of the two transition matrices and yields an irre-
ducible matrix, even when the transition matrix ATD~! is reducible. Because we
introduced the concept of layer teleportation in Sect. 17.2.1, we henceforth refer to
the traditional teleportation in PageRank as ‘node teleportation’.

It is common to define the PageRank matrix as the transpose of Eq. (17.3); in
that case, one computes the dominant left eigenvector instead of the dominant right
eigenvector. However, we use the right-eigenvector convention to be consistent with a
broader class of centrality measures called ‘eigenvector-based centralities’, in which
one encodes node importances in the elements of the dominant eigenvector of some
centrality matrix. In addition to PageRank, prominent examples of eigenvector-based
centralities include (vanilla) eigenvector centrality (Bonacich 1972) and hub and
authority (i.e., HITS) centralities (Kleinberg 1999). We now provide formal defini-
tions.

Definition 17.3 (Eigenvector-Based Centrality) Let C = C(A) be a centrality
matrix, which we obtain from some function C : RM*¥ — RV*V of the adjacency
matrix A, of a network ¢ (7, &). Consider the dominant right eigenvector u, which
satisfies

Cu = A, (17.4)

where Amax € Ry is the largest eigenvalue of C. (This eigenvalue is guaranteed to be
positive.) The ith entry u; specifies the eigenvector-based centrality of node i € ¥
that is associated with the function C.

Definition 17.4 (PageRank (Page et al. 1999; Gleich 2015)) When C is given by
(PR)
1

Eq. (17.3), we say that Eq. (17.4) yields PageRank centralities {u;
Remark 17.1 Itis also common to compute PageRank centralities from a left eigen-
vector (Gleich 2015). In the present chapter, we use a right-eigenvector formulation
to be consistent with the other eigenvector-based centralities. One can recover the
left-eigenvector formulation by taking the transpose of Eq. (17.4).

2 PageRank has had intellectual impact well beyond web searches (Gleich 2015).
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17.3 Supracentrality Framework

We now describe the supracentrality framework that we presented in Taylor et al.
(2021). The present formulation generalizes our formulation of supracentrality from
Taylor et al. (2017) that required interlayer coupling to take the form of an undirected
chain. (See the top row of Fig.17.1.) To aid our presentation, we summarize our
mathematical notation in Table 17.1.

17.3.1 Supracentrality Matrices

We first describe a supracentrality matrix from Taylor et al. (2021).

Definition 17.5 (Supracentrality Matrix) Let {C"} be a set of T centrality matri-
ces for a discrete-time temporal network with a common set ¥ = {1,..., N} of
nodes, and assume that Ci(;) > 0. Let ;1, with entries A,- ;> 0,beaT x T interlayer-
adjacency matrix that encodes the interlayer couplings. We define a family of
supracentrality matrices C(w), which are parameterized by the interlayer-coupling
strength @ > 0, of the form

ch 9 0 ... A:HI A:lzl A:13I
0 C(z) 0 . Az]I AzzI A23I e
C(w) = C + wA = + | Anl Al Azl ...

)

0 0 CO® .

(17.5)

where C = diag[C", ..., CD]and A = A ® Iis the Kronecker product of A and I.

Table 17.1 Summary of our

. ¢ Typeface Class Dimension

mathematical notation for -
objects with different M Matrix NT xNT
dimensions M Matrix N x N

M Matrix TxT

v Vector NT x 1

v Vector N x 1

v Vector T x1

M;; Scalar 1

v; Scalar 1
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For layer ¢, the matrix C) can be any matrix whose dominant eigenvector is of
interest. In our discussion, we focus on PageRank centrality matrices (see Defini-
tion 17.4), but one can alternatively choose eigenvector centrality (Bonacich 1972),
hub and authority centralities (Kleinberg 1999), or something else.

The NT x NT supracentrality matrix C(w) encodes the effects of two distinct
types of connections: the layer-specific centrality entries {C i(;) } in the diagonal blocks
relate centralities between nodes in layer ¢; and entries in the off-diagonal blocks
encode coupling between layers. The matrix A=AQ®I implements uniform and
diagonal coupling. The matrix I encodes diagonal coupling; any two layers ¢ and
¢ are uniformly coupled because all interlayer edges between them have the same
weight a)A,t/.

17.3.2 Joint, Marginal, and Conditional Centralities

As we indicated earlier, we study the dominant right-eigenvalue equation for supra-
centrality matrices. That is, we solve the eigenvalue equation

Clo)v(®) = inx(@)v(®), (17.6)

and we interpret entries in the dominant right eigenvector v(w) as scores that measure
the importances of node-layer pairs {(i, #)}. Because the vector v(w) has a block
form—its first N entries encode the joint centralities for layer ¢ = 1, its next N
entries encode the joint centralities for layer t = 2, and so on—it is useful to reshape
v(w) into a matrix.

Definition 17.6 (Joint Centrality of a Node-Layer Pair (Taylor et al. 2017)) Let
C(w) be a supracentrality matrix given by Definition 17.5, and let v(w) be its dom-
inant right eigenvector. We encode the joint centrality of node i in layer ¢ via the
N x T matrix W(w) with entries

Wir(w) = vyi—1)+i (@) . (17.7)

We refer to W;;(w) as a ‘joint centrality’ because it reflects the importance of both
node i and layer ¢.

Definition 17.7 (Marginal Centralities of Nodes and Layers (Taylor et al. 2017))
Let W(w) encode the joint centralities given by Definition 17.6. We define the
marginal layer centrality (MLC) and marginal node centrality (MNC), respectively,
by

x(w) = Z Wi(w) ,

Bi@) =) Win(w). (17.8)
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Definition 17.8 (Conditional Centralities of Nodes and Layers (Taylor et al. 2017))
Let {W;;(w)} be the joint centralities given by Definition 17.6; and let {x,(w)} and
{X;(w)}, respectively, be the marginal layer and node centralities given by Defini-
tion 17.7. We define the conditional centralities of nodes and layers by

Z,',(a)) = "Vir(w)/xt(w) N
Zi(@) = Wi(w)/%i (@) (17.9)

where Z;;(w) gives the centrality of node i conditioned on layer ¢ and Zt(w) gives
the centrality of layer ¢ conditioned on node i. The quantity Z;;(w) indicates the
importance of node i relative just to the other nodes in layer ¢.

We ensure that the supracentralities are well-defined (i.e., unique, positive, and
finite) with the following theorem.

Theorem 17.1 (Uniqueness and Positivity of Supracentralities (Taylor et al. 2021))
Let C(w) be a supracentrality matrix given by Eq. (17.5). Additionally, suppose that
A is an adjacency matrix for a strongly connected graph and that ), CY is an
irreducible, nonnegative matrix. It then follows that C(w) is irreducible, nonnega-
tive, and has a simple largest positive eigenvalue Amax (@), with corresponding left
eigenvector W(w) and right eigenvector v(w) that are each unique and positive. The
centralities {W;; ()}, {x;(w)}, {%: (@)}, {Zi;(w)}, and {Zi,(a))} are then positive and
finite. If we also assume that C(w) is aperiodic, it follows that hnx (@) is a unique
dominant eigenvalue.

In Fig.17.2, we show the joint and marginal centralities for the network in
Fig. 17.1a. We have normalized the vector v(w) using the 1-norm.

layer index

1 2 3 4 5 6 MNC

1 |0.0305(0.0461|0.0493|0.0460|0.0360|0.0195(0.2272

2 (0.0198|0.0368(0.04800.0501|0.0471(0.0308]0.2326

3 |0.0249|0.0491)|0.0592|0.0520{0.0402|0.0212|0.2466

node index

4 |0.0238(0.0465(0.0660|0.0744|0.0552(0.0275]0.2935

MLC |0.0990(0.1784(0.2225|0.2225|0.1784|0.0990

Fig. 17.2 Joint centralities { W;; (@)} of Definition 17.6 (white cells), with corresponding marginal
layer centralities (MLCs) {x;(w)} and marginal node centralities (MNCs) {X;(w)} from Defini-
tion 17.7 (gray cells), for the network in panel a of Fig. 17.1 with @ = 1. The centrality matrices of
the layers are PageRank centrality matrices (see Eq. (17.3)) with a node-teleportation parameter of
o =0.85
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17.4 Application to a Ph.D. Exchange Network

‘We apply our supracentrality framework to study centrality trajectories for a temporal
network that encodes the graduation and hiring of mathematicians between N = 231
mathematical-sciences doctoral programs in the United States during the years 1946—
2010 (Tayloretal. 2017). Each edge Ag.) of the temporal network encodes the number
of Ph.D. recipients who graduated from university j in year ¢t and subsequently
supervised a Ph.D. student at university i. The edge directions, where Af;) is an edge
from university i to university j, point in the opposite direction to the flow of people
who earn their Ph.D. degrees. We define edge directions in this way to indicate that
university i effectively selects the output of university j when hiring someone who
received their Ph.D. from university j (Burris 2004; Myers et al. 2011; Clauset et al.
2015). With this convention for the direction of edges, {C”’} encodes the PageRank
matrices of the layers; the highest-ranking universities are the ones that are good
sources for the flow of Ph.D. recipients. The network, which we constructed using
data from the Mathematics Genealogy Project (2009), is available at Taylor (2019).

‘We focus our discussion on five universities: Harvard, Massachusetts Institute of
Technology (MIT), Princeton, Stanford, and University of California, Berkeley (UC
Berkeley). They have the largest PageRank centralities (using a node-teleportation
parameter of o = 0.85) for a temporally aggregated network with adjacency matrix
>, A" _In all of our experiments, we assume that the layers’ centrality matrices are
given by PageRank matrices (17.3). As in our other explorations (Taylor et al. 2017,
2021), we vary the interlayer-coupling strength w to adjust how rapidly centralities
change with time. In the present work, our primary focus is investigating the effects
on supracentralities of undirected and directed interlayer coupling. See Egs. (17.1)
and (17.2) for the definitions of these interlayer-coupling schemes, and see Fig. 17.1
for visualizations of these two types of interlayer coupling.

We first consider undirected interlayer coupling, so we define A by Eq. (17.1).
In Fig. 17.3, we plot the joint and conditional centralities for the five universities.
The columns show results for interlayer-coupling strengths € {1, 10, 102, 103}.
In the bottom row, we see that progressively larger values of w yield progressively
smoother conditional-centrality trajectories. In the top row, we observe that as one
increases w, the joint centrality appears to limit to one arc of a sinusoidal curve. We
prove this result in Sect. 17.5. The most striking results appear in the bottom row of
the third column. Based on conditional node centrality, we see that MIT becomes the
top-ranked university in the 1950s and then remains so in our data set. Stanford and
UC Berkeley gradually develop larger conditional centralities over the 64 years in
the data set, whereas the conditional centralities of Princeton and Harvard decrease
gradually over this period. The conditional centralities of these five universities are in
the top-10 values among all universities in all years of the data set. This is consistent
with our results in Taylor et al. (2017, 2021).

We now examine directed interlayer coupling, and we let A encode a directed
chain with layer teleportation. See Eq. (17.2) for the specific formula and the bot-
tom row of Fig. 17.1 for an associated visualization. In each panel of Fig.17.4, we
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Fig. 17.3 Trajectories of node centralities using undirected interlayer coupling for mathematical-
sciences Ph.D. programs at five top universities. The top and bottom rows illustrate joint centralities
and conditional node centralities, respectively, that we compute with PageRank centrality matrices
with a node-teleportation parameter of o = 0.85 and undirected interlayer-adjacency matrix A
given by Eq. (17.1) with w € {1, 10, 100, 1000}. The dotted black curve in the rightmost top panel
is the result of an asymptotic approximation that we present in Sect. 17.5

plot the joint centralities and conditional node centralities. The columns give results
for interlayer-coupling strengths w € {0.1, 1, 10, 100}, and the three panels indicate
different layer-teleportation probabilities: (a) y = 0.0001; (b) y = 0.001; and (c)
y = 0.01. The dotted black curves in the rightmost column indicate large-w asymp-
totic approximations that we will present in Sect. 17.5.

To understand the main effect of directed interlayer coupling, we first compare the
joint centralities in Fig. 17.4 to those in Fig. 17.3. To help our discussion, we focus
on the rightmost column of the two figures. We observe that the joint-centrality
trajectories tend to decay with time for directed interlayer coupling, whereas they
have peaks and attain their largest values near t = 1978 for undirected interlayer
coupling. Therefore, directed interlayer coupling tends to “boost’ the joint centralities
of earlier time layers in comparison to undirected coupling. Comparing panels a—c
of Fig. 17.4 (and again focusing on the rightmost column), we observe that the decay
is fastest for y = 0.0001 (panel a) and slowest for y = 0.01 (panel c).

The conditional centralities are also affected by directed interlayer coupling. Con-
sider w = 10 in Fig. 17.3, and observe that the conditional centrality of Princeton
decreases monotonically with time. By contrast, observe in Fig. 17.4a,b for v = 10
that the conditional centrality of Princeton now decreases between ¢ = 1946 and
about r = 1988, but then it increases.

For our last experiment, we examine how reversing the direction of the interlayer
edges changes the results of our supracentrality calculations. We repeat the previous
experiment with directed interlayer edges, except that we set A to be the transpose of
the matrix that we defined by Eq. (17.2). One motivation is that for some applications,
the most recent time layers are more important than the earliest time layers. One can
incorporate this idea into our supracentrality framework by reversing the direction of
the interlayer edges. In Fig. 17.5, we plot the same quantities as in Fig. 17.4, except
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Fig. 17.4 Trajectories of node centralities using directed interlayer coupling for mathematical-
sciences Ph.D. programs at five top universities. This figure is similar to Fig. 17.3, except that the
interlayer-adjacency matrix A is now given by Eq. (17.2), which corresponds to a directed chain with
layer teleportation with probability y. Panels a, b, and ¢ show results for y = 0.0001, y = 0.001,
and y = 0.01, respectively. The dotted black curves in the rightmost top subpanels of panels a—c
are results of an asymptotic approximation that we present in Sect. 17.5. For sufficiently large @
and sufficiently small y, the joint centralities decrease with time
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that now we take the directed interlayer edges to have the opposite direction (so
we have reversed the arrow of time). Observe that the joint centralities now tend to
increase with time; by contrast, in Fig. 17.4, they tend to decrease with time. These
trends are most evident in the rightmost columns. We also observe differences in
the conditional centralities. For example, focusing on @ = 10 in the third column
of Fig.17.5, we see that Princeton never has the largest conditional centrality. By
contrast, for w = 10 in Figs. 17.3 and 17.4a,b, Princeton has the largest conditional
centrality for the earliest time steps (specifically, for t € {1946, ..., 1954}).

Understanding how the weights, topologies, and directions of interlayer coupling
affect supracentralities is essential to successfully deploying supracentrality analysis
to reveal meaningful insights. The above experiments highlight that one can tune the
weights and topology of interlayer coupling to emphasize either earlier or later time
layers. Specifically, one can adjust the parameters w and y, as well as the direction
of the interlayer edges, to cater a study to particular data sets and particular research
questions. In our investigation in this section, we considered both the case in which A
is given by Eq. (17.2) and the case in which it is given by the transpose of the matrix
that we determine from Eq. (17.2). It is worth considering how these different choices
of interlayer edge directions are represented in the supracentrality matrix C(w) and
the consequences of these choices. Specifically, each layer’s PageRank matrix C® is
defined in Eq. (17.3) using the transpose of the layer’s adjacency matrix A, yet when
coupling the centrality matrices, we do not take the transpose of A when defining
C(w) in Eq. (17.5). Accordingly, one may worry that the matrix C(w) effectively
acts in the forward direction for the intralayer edges but in the opposite direction
for the interlayer edges. However, this does not lead to any inherent contradiction,
as the meanings of the directions of these two types of edges are fundamentally
different. The direction of the intralayer edges dictates the flow of random walkers,
whereas the direction of the interlayer edges couples the centralities of the different
layers. In other applications, it may be necessary to encode the directions of the
interlayer and intralayer edges in the same way, but there is no reason why one
cannot encode the directions of interlayer and intralayer edges in different ways in a
supracentrality formalism. As we have demonstrated by considering both A and its
transpose—and thus by treating the effect of the interlayer edges in opposite ways in
these two calculations—both uses are meaningful. They also probe different aspects
of temporal data.

17.5 Asymptotic Behavior for Small and Large
Interlayer-Coupling Strength

In this section, we summarize the asymptotic results from Taylor et al. (2021) that
reveal the behavior of supracentralities in the limit of small and large w. In our present
discussion, we focus on dominant right eigenvectors.
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Fig. 17.5 Trajectories of node centralities using reversed directed interlayer coupling for
mathematical-sciences Ph.D. programs at five top universities. This figure is identical to Fig. 17.4,
except that A is now given by the transpose of the matrix from Eq. (17.2), such that the directed
chain points backwards in time. For sufficiently large w and sufficiently small y, the joint centralities

now increase with time
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To motivate our asymptotic analysis, consider the top-right subpanels in each
panel of Figs.17.3, 17.4, and 17.5. In each of these subpanels, we plot (in dotted
black curves) the results of an asymptotic analysis of the dominant right eigenvector
¥ of A for the joint centrality of MIT in the limit of large w. We observe excel-
lent agreement with our numerical calculations. Therefore, for sufficiently large w,
one can understand the effects of both undirected and directed interlayer couplings
(as encoded in an interlayer-adjacency matrix A) by examining the dominant right
eigenvector of A. For large values of w, this eigenvector captures the limit of the joint
centralities as a function with a peak for undirected coupled (see Fig. 17.3), decay in
time for directed coupling (see Fig. 17.4), and growth in time for directed coupling
when reversing the arrow of time (see Fig. 17.5).

17.5.1 Layer Decoupling in the Limit of Small »

We begin with some notation. Let ft; be the dominant eigenvalue (which we assume
to be simple) of A, and let " and 9V denote its corresponding left and right
eigenvectors. Given a set {C”} of centrality matrices, we let ,uY) be the dominant
eigenvalue (which we also assume to be simple) of C*; the vectors u"") and v:V
are the corresponding left and right eigenvectors. Let { /LY)} denote the set of spectral
radii, where A, (0) = max; u(ll) is the maximum eigenvalue over all layers. (Recall
that Ayax (@) is the dominant eigenvalue of the supracentrality matrix C(w).) Let
P ={r: NY) = Amax(0)} denote the set of layers whose centrality matrices have an
eigenvalue that achieves the maximum. When the layers’ centrality matrices {C"}
are PageRank matrices given by Eq. (17.3), it follows that u?) =1 for all ¢ (i.e.,
P ={l1,...,T}), the corresponding left eigenvector isu'’"” = [1,..., 1] /N, and
v(1:1 is the PageRank vector for layer ¢. Furthermore, for each ¢, we define the length-
NT “block” vector v = e® @ v(1:), which consists of zeros in all blocks except
for block ¢, which equals v(:*). The vector e is a length-T unit vector that consists
of zeros in all entries except for entry ¢, which is 1.

We now present a theorem from Taylor et al. (2021), although we restrict our
attention to the part of it that pertains to the right dominant eigenvector.

Theorem 17.2 (Weak-Coupling Limit of Dominant Right Eigenvectors (Taylor
etal. 2021)) Let v(w) be the dominant right eigenvector of a supracentrality matrix
that is normalized using the 1-norm and satisfies the assumptions of Theorem 17.1.
Additionally, let &2 = {t : ugt) = Amax (0)} denote the set of indices associated with
the eigenvalues of C that equal the largest eigenvalue A (0) of C(0). We assume
that each layer’s dominant eigenvalue /L(]t) is simple. It then follows that the  — 07
limit of v(w) satisfies

v(w) > Y v, (17.10)
te?
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where the vector o = [, ..., ar]T has nonnegative entries and is the unique solu-
tion of the dominant eigenvalue equation

Xa = Ma. (17.11)

The eigenvalue )| needs to be determined, and the entries of X are

(0 g

Xiv = Avr o ity

x@Ox (), (17.12)

where x(t) = Zt,e@ 8 is an indicator function: x(t)=1ift € & and x(t)=0
otherwise. The vector o must also be normalized to ensure that the right-hand
side of Eq. (17.10) is normalized (by setting |lat||, = 1 for normalization using a
p-norm).

17.5.2 Layer Aggregation in the Limit of Large ®

To study the @ — oo limit, it is convenient to divide Eq. (17.6) by w and define
¢ = 1/w to obtain 3 o
Ce) =eC(e™") =eC+A, (17.13)

which has right eigenvectors v(¢) that are identical to those of C(w) (specifically,
T(e) = v(e™"). Its eigenvalues {;} are scaled by ¢, so A;(g) = eA;(e71).

Before presenting results from Taylor et al. (2021), we define a few additional
concepts. Let 7(/) = &/ ® 5V denote a block vector that consists of zeros in all
blocks except for block j, which equals the dominant right eigenvector 3 of A.
The vector &) is a length-N unit vector that consists of zeros in all entries except
for entry j, which is 1. We also define the stride permutation matrix
1, I=Tk/N1+T[(k—1)mod N]

Pu = {O, otherw/ise, 1719

where the ceiling function [67] denotes the smallest integer that is at least 6 and
‘mod’ denotes the modulus function (i.e., @ mod b = a — b[a/b — 17).

Theorem 17.3 (Strong-Coupling Limit of Dominant Eigenvectors (Taylor et al.
2021)) Let ;l i, ft(l), and 3V be defined as above, with the same assumptions
as in Theorem 17.1. It then follows that the dominant eigenvalue ):max(s) and the
associated eigenvector v(g) of C(g) converge as ¢ — 0% to the following expres-
sions:
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Xmax(g) - lal )

T(e) > Y a;Py", (17.15)

where the constants {&;} solve the dominant eigenvalue equation
Xa& = jua, (17.16)

with

~(1) ~(1)

s )y Ui Vg
Xij=Y Cf TEROS (17.17)
t 9

We normalize the vector a to ensure that the right-hand side of Eq. (17.15) is nor-
malized.

Equation (17.17) indicates that the strong-coupling limit effectively aggregates
the centrality matrices {C®} across time via a weighted average, with weights that
depend on the dominant left and right eigenvectors of A. When A encodes an undi-
rected chain (see Eq. (17.1) and the top row of Fig. 17.1), it follows that (Taylor et al.
2017)

X = Z sin” (747) ) (17.18)
1 Zz j Sin ((T+l))

The dotted black curve in the top-right subpanel of Fig. 17.3 shows a scaled version
of 'V, which is defined by the normalized sinusoidal weightings in Eq. (17.18). The
dotted black curves in the top-right subpanels of each panel of Figs. 17.4 and 17.5 also
show " (with A given by Eq. (17.2) and by the transpose of the matrix that we obtain
from Eq. (17.2), respectively), which we scale to normalize the joint centralities.

17.6 Discussion

We presented a supracentrality framework to study how the importances of the nodes
of a temporal network change with time. Our approach involves representing a tem-
poral sequence of networks as time layers of a multiplex network and using the
strength and topology of coupling between time layers to tune centrality trajectories.
A key feature of our approach is that it simultaneously yields the centralities of all
nodes at all times by computing the dominant right eigenvector of a supracentrality
matrix.

Inspired by ideas from probability theory, we examined three types of eigenvector-
based supracentralities:
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(i) the joint centrality of a node-layer pair (i, ¢); this captures the combined impor-
tance of node i and time layer ¢#;
(ii) the marginal centrality of a node i or time ¢; these capture separate importances
of a node or a time layer; and
(iii) the conditional centrality of a node i at time ¢; this captures the importance of
a node relative only to other nodes at that particular time.

Because our approach involves analyzing the dominant eigenvector of a central-
ity matrix, it generalizes eigenvector-based centralities, such as PageRank, hub and
authority centralities, and (vanilla) eigenvector centrality. Naturally, it is desirable
to extend supracentralities to analyze networks that are both temporal and multiplex
(Kiveld et al. 2014). Another important generalization of centrality analysis is the
study of continuous-time temporal networks and streaming network data (Grindrod
and Higham 2014; Ahmad et al. 2021), and it will be insightful to extend supracen-
tralities to such situations.
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