
FULL SIMULATION DETAILS

Simulation details for Fig. 1 and Supplementary Fig. 1

We simulate two different electromyograms (EMGs) (see Methods Section 1.4) of muscle activities
(initial reach and target reach) that each last 0.5 s (see Figs. 1a,f). We use a network of N = 200
neurons and sample transient neuronal firing rates that last 0.5 s following the initial condition x0

of the neuronal activity (see Methods Section 1.1). We fit the readout weights over 100 trials, in
which we add white Gaussian noise to the initial conditionx0 (with a signal-to-noise ratio of 30 dB)
using least-squares regression so that the network output, with all gains set to 1, generates the initial
reach (see Methods Section 1.5). We use the same readout weights throughout all training, and we
use only one readout unit for each simulation.

In Fig. 1c, we plot the dynamics of three example neurons with all gains set to 1 (black) and all
gains set to 2 (blue).

For each training iteration of the neuronal gains (to generate a target movement), we use the initial
condition x0 at time t = 0 (see Methods Section 1.1). We calculate the subsequent network output
as described in Methods Section 1.5, and we update the neuronal gains according to Eqn. (8). We
repeat this process for 18, 000 training iterations (which corresponds to 2.5 hours of training time),
which is enough training time for the error to saturate (see Fig. 1d).

We run 10 independent training sessions on the same target, and we plot these results in Figs. 1d,e.
For each of the 10 trained gain patterns g, we plot the change in the spectral abscissa of W ×
diag(g) (i.e., the largest real part in the spectrum of W × diag(g)) in Supplementary Fig. 1a. We
observe an increase in the spectral abscissa after training. Although this change seems substantial,
the resulting firing-rate activity does not change dramatically (see Supplementary Fig. 1b).

Additionally, we generate 100 network outputs for each of the 10 trained gain patterns using 100
different instances of white Gaussian noise added to the initial condition x0 with a signal-to-noise
ratio of s dB (where we consider values of s between 1 and 30 dB in increments of 1). We then
calculate the square of the Euclidean 2-norm between each network output and the network output
that we obtain when we do not add noise to the initial condition. We call these squared errors e1.
(This vector has 1, 000 entries, with one entry for each network output.) We also generate 1, 000
outputs with all gains set to 1 using 1, 000 different instances of white Gaussian noise added to the
initial condition x0 with a signal-to-noise ratio of s dB. (We again consider values of s between 1
and 30 dB in increments of 1.) We then calculate the square of the Euclidean 2-norm between each
of these network outputs and the network output that we obtain with all gains set to 1 and no noise
added to the initial condition. We call these squared errors e2. For each signal-to-noise ratio s,
we plot the mean and standard deviation of e1 (i.e., the squared error corresponding to the trained
gain patterns) in red and e2 (i.e., the squared error corresponding to all gains set to 1) in blue in
Supplementary Fig. 1d. We obtain very similar errors for both the trained and untrained (i.e., all
gains set to 1) gain patterns, except for large (i.e., approximately larger than 25 dB) signal-to-noise
ratios. For the outputs that we show in Fig. 1f, we add white Gaussian noise to the initial condition

1



x0 with a signal-to-noise ratio of 30 dB using one of the trained gain patterns and with all gains
equal to 1.

To generate the correlation matrices that we show in Supplementary Fig. 1b, we calculate the
Pearson correlation coefficient of the neuronal firing rates between all pairs of neurons in the
recurrent neuronal network. Therefore, each entry in the matrix indicates the extent to which the
neuronal firing rates are similar for a pair of neurons over the duration of the movement (i.e., 0.5 s).
In Supplementary Fig. 1b, we show correlation matrices for examples in which all gains are set to
1 and for two example learned gain patterns. We use the same initial condition x0 that we used
during training.

We also study whether neuronal firing rates correlate more positively with a target movement after
training than before training. To quantify the similarity between the neuronal firing rates and the
target output, we calculate — for each of the 10 training sessions that we used in Fig. 1d — the
Pearson correlation coefficient of the neuronal firing rates between each neuron and the target
output. In Supplementary Fig. 1e, we plot the mean Pearson correlation coefficient across all
neurons for the case in which all gains are set to 1 (i.e., before training) and for each of the 10
learned gain patterns (i.e., after training). There is a significant (with a p-value of p ≈ 0.002)
change in the mean Pearson correlation coefficient before training versus after training using a
paired Wilcoxon signed rank one-sided test. For the gain pattern that produces the largest change in
the mean correlation coefficient (we show this with the grey line in the left panel of Supplementary
Fig. 1e), we plot the distribution of changes in the correlation coefficients for all neurons in the
bottom right panel of Supplementary Fig. 1e. We see that most values are larger than 0, so the
neuronal firing rates become more positively correlated with the target output after learning. We
also show an example of a substantial change in the neuronal firing rate of one neuron in the top
right panel of Supplementary Fig. 1e.

In another computational experiment, we generate 10 different target muscle activities (see Meth-
ods Section 1.4) and, independently for each movement, we train either the neuronal gains, the
recurrent synaptic weight matrix W , the initial condition x0, or a rank-1 perturbation of the re-
current synaptic weight matrix using a gradient-descent training procedure (with gradients that
we obtain from back-propagation [1]). Before training, we use the 200-neuron stability-optimised
network, initial condition x0, and readout weights that we used in Fig. 1. Specifically, before any
training, the network output is the black curve that we show in Fig. 1f. The cost function for the
training procedure is the squared error between the network output and the target movement scaled
by the total sum of squares of the target movement (i.e., Eqn. (7)). We run the gradient-descent
training procedure until the difference between the cost function at successive training iterations
is below 10−5 (i.e., until the cost saturates to a small value). When we train the recurrent synaptic
weight matrixW , after each weight update, we set any positive inhibitory weights to zero and we
set any negative excitatory weights to zero. For the rank-1 perturbation, we independently train
vectors u,v ∈ R200×1 to reduce the error between the network output, which we obtain from the
neuronal firing rates in Eqn. (1) withW replaced byW +uv>, and the target movement. Before
training, the elements of u and v are chosen from a Gaussian distribution with a mean 0 and stan-
dard deviation 0.05. In Supplementary Fig. 1f, we plot the errors for 10 different target movements

2



for each of our 4 different training approaches.

Simulation details for Fig. 2

For this figure, we train neuronal gains on the same task as the one that we showed in Fig. 1d
— that is, we independently train 10 gain patterns to generate the target output that we showed
in orange in Fig. 1f — using 3 alternative models. We use neuron-specific modulation for these
simulations. (This contrasts with our group-based gain modulation.) We fit the readout weights
so that, prior to any training (i.e., with all gains set to 1), the network output is the same in each
model. (See the black curve in Fig. 1f.) We show the mean error during training in Fig. 2a. The red
curve is the same error curve that we plotted in Fig. 1d, but we now use a logarithmic vertical-axis
scale.

We also train the neuronal gains on the same task as above, but now using a ramping input to
the network (to simulate preparatory activity prior to movement onset [2, 3]). We use the same
ramping input function as the one that was used in Ref. [2]. It is exp(t/τon) for t < 0 s and
exp(−t/τoff) after movement onset (t ≥ 0), with an onset time of τon = 400 ms and an offset time
of τoff = 2 ms. Gain changes that result from learning now also affect the neuronal activity at t = 0
(i.e., at movement onset). We again run 10 independent training sessions, and we observe results
that are qualitatively similar to those we saw in Fig. 1d. (See the blue curve in Fig. 2a.)

We also train a ‘chaotic’ [4] variant of our model (see Methods Section 1.3, where we describe
how we construct such a model), and we train on the same target movement that we mentioned
above. We use the first 0.5 s of neuronal activity. We observe a very similar error reduction over
training iterations (see the grey curve in Fig. 2a) as we saw in Fig. 1d. (Compare the grey and red
curves in Fig. 2a.)

Finally, we use an alternative learning rule (see Eqns. (10) and (11)) in which learning stops auto-
matically when the difference between network outputs over successive training iterations becomes
sufficiently small (see Methods Section 1.7). In Fig. 2a, we plot the error reduction using this al-
ternative learning rule in purple. Using this alternative learning rule, we obtain a smaller error for
this task (compare the purple and red curves in Fig. 2a), and learning stops after approximately
10, 000 training iterations on average.

In Fig. 2b, we plot the firing rates of 4 example neurons for each of these 4 models both before and
after training the neuronal gains.

Simulation details for Fig. 3 and Supplementary Fig. 2

For the same task as in Fig. 1, we plot the results of using random and specialized groupings (see
Methods Section 1.9), as well as the neuron-specific result from Fig. 1d, in Supplementary Fig. 2a.
We use the same readout weights that we used in Fig. 1.

3



We now give details for Figs. 3b,c and Supplementary Figs. 2b–d. We generate 5 different target
outputs and run 10 independent training sessions for each target. For the random groupings (see
Methods Section 1.9), we use different independently-generated random groups for each simula-
tion. For the specialized groups (see Methods Section 1.9), for a given number of groups, we use
the same grouping in all simulations. We plot the results of using 10 or 20 groups with either
random or specialized groups in Figs. 3b,c and Supplementary Figs. 2b,c.

We now explain how we determine specialized groups that are shared by multiple movements
(i.e., we use the same grouping for learning multiple movements); see the plots in Fig. 3c and
Supplementary Figs. 2b–d. We apply k-means clustering (where k is the desired number of groups)
across all of the gain patterns that we obtain using neuron-specific modulation for each of the
movements. That is, we apply k-means clustering to a matrix of size N × 10 · q, where N is
the number of neurons and q is the number of movements (and, equivalently, the number of gain
patterns). We also use the specialized grouping that we obtain for 20 groups that is shared across 5
movements (see Supplementary Figs. 2b) to learn 10 hitherto-untrained movements. We plot these
results in Supplementary Fig. 2d.

For the task that we just described above, we consider various different numbers of groups (using
random groupings) for networks with N = 100, N = 200, and N = 400 neurons. We again
perform 10 independent training sessions for each network, target, and number of groups. We fit
the readout weights so that each scenario generates the same network output when all gains are set
to 1. The readout weights remain fixed throughout training. We plot these results in Fig. 3d and
Supplementary Figs. 2e–h.

We now give details for Figs. 3e,f. When we use multiple readout units, we generate 10 different
initial and target outputs for each readout unit. For example, for 2 readout units, we generate
10 different initial and target outputs for each of units 1 and 2. We run independent training
sessions for these 10 sets of target outputs and calculate mean errors across the 10 training sessions.
For a given number of readout units, we use the same sets of initial and target outputs for all 3
network sizes and each number of random modulatory groups. We thus fit readout weights so
that each scenario generates the same output with all gains set to 1. The readout weights remain
fixed throughout training. We use 60, 000 (instead of 18, 000) training iterations to ensure error
saturation.

Simulation details for Figs. 4, 5f, and Supplementary Figs. 3,4

To create libraries of learned movements, we train a network of 400 neurons and 40 random groups
(see Methods Section 1.9) on each of 100 different target movements independently. (In other
words, this generates 100 different gain patterns, with one for each movement.) In Supplementary
Fig. 3a, we plot the distribution of gains that we obtain after training across all 100 gain patterns.
We plot all 100 outputs from these 100 learned gain patterns in Supplementary Fig. 3b. We also
generate 100 new gain patterns by sampling uniformly at random from the distribution in Supple-
mentary Fig. 3a and plot the output of each of these gain patterns in Supplementary Fig. 3c. These

4



outputs are much more homogeneous than the learned gain patterns in Supplementary Fig. 3b, and
they likely would not constitute a good basis set for movement generation.

For library sizes of l ∈ {1, 2, . . . , 50}, we choose 100 samples of l movements (from the learned
gain patterns and their outputs) uniformly at random without replacement for each l. We then fit the
set of movements in each of the 100 sample libraries using least-squares regression for each of 100
hitherto-untrained novel target movements. We constrain the fitting coefficients cj from the least-
squares regression by requiring that cj ≥ 0 for all j and

∑l
j=1 cj = 1. That is, we consider convex

combinations of the coefficients cj . We calculate the fit error (i.e., the error between the fit and the
target), the output error (i.e., the error between the output and the target), and the error between the
fit and the output for each of the 100 novel movements, each of the 100 library samples, and each
l.

For each l and for each randomly-generated combination of library elements (see the paragraph
immediately above), we order the 100 novel target movements based on the error between the
output and the fit, and we select the one that is the 50th smallest (i.e., close to the median error).
We then extract the output and fit errors for this target and repeat this procedure for each of the
100 randomly-generated combinations of library elements and for l = 1, . . . , 50. We plot these
results in Fig. 4c and Supplementary Fig. 3g. In Fig. 4, we plot results for l ∈ {1, 2, . . . , 20}; in
Supplementary Fig. 3, we plot results for l ∈ {1, 2, . . . , 50}. Observe that there is only a small
change in the errors between l = 20 and l = 50.

In Fig. 4b, for an example target (and for l = 2, l = 4, l = 8, and l = 16), we plot the output and
fit that produce the 50th-smallest error between the output and the target across the 100 randomly-
generated libraries. In Supplementary Fig. 3e, we calculate the median error over the 100 target
movements and we plot the distribution of these median errors over the 100 randomly-generated
combinations of library elements for l = 5 and l = 20.

Additionally, for each l and for each of the 100 target movements, we order the 100 combinations
of library elements based on the error between the output and the fit, and we select the one that
is the 50th smallest. We then extract the output and fit errors for this combination and repeat this
procedure for each of the 100 target movements and for l = 1, . . . , 50. We plot these results in
Supplementary Fig. 3h. This indicates that we obtain qualitatively similar results if we average over
the 100 target movements or if we instead average over the 100 combinations of library elements.
In Fig. 4d and Supplementary Fig. 3d, we first calculate the median error over the 100 target
movements for each l and for each of the 100 combinations of library elements. We then plot the
median of these errors over the 100 combinations of library elements for each l.

We also calculate the Pearson correlation coefficient between the output and the fit errors for each
l when taking the 50th-smallest error across the 100 novel target movements (see Supplementary
Fig. 3i) or across the 100 randomly-generated samples (see Supplementary Fig. 3j).

We also repeat these simulations for the baseline rate r0 = 5 Hz in Eqn. (2). We plot the results of
these simulations in Fig. 5f (see the next subsection) and Supplementary Fig. 4, and we note that
we obtain very similar results to those that we obtained for r0 = 20 Hz.

5



Simulation details for Figs. 5a–e

We now describe the details of our simulations when using a baseline rate of r0 = 5 Hz.

For the 200-neuron network that we used in Fig. 1, we plot the (relative to baseline) firing rate f(x)
(see Eqn. (2)) of 20 excitatory and 20 inhibitory neurons in Fig. 5 with (panel (a)) r0 = 20 Hz in
Eqn. (2) and (panel (b)) r0 = 5 Hz. In Fig. 5c, we plot the relative firing rate of all neurons over
time versus the relative firing rate when using a linear gain function (i.e., f(xi; gi) = gixi) for the
cases of (black) r0 = 20 Hz and (blue) r0 = 5 Hz. We set all of the gains to 1 for these simulations.

We also train a recurrent neuronal network on the same task as the one that we showed in Figs. 1d–
f, except with a baseline rate of r0 = 5 Hz. We plot these results in Fig. 5d–e and compare them
to our observations for r0 = 20 Hz. For the 10 noisy initial conditions that we used to generate
the outputs in the inset in Fig. 5d, we add white Gaussian noise to the initial condition x0 with a
signal-to-noise ratio of 30 dB. In other words, we generate noise in the same manner as we did in
Fig. 1f.

Simulation details for Fig. 6 and Supplementary Figs. 5,6,8

We now describe our simulations for learning target activity that lasts longer than 0.5 s. In each
of these simulations, we use a network of 400 neurons and 40 random modulatory groups. (See
Methods Section 1.9 for details on how we determine such groups.) We construct ‘slow’ (2.5 s)
target movements with σ = 550 ms and ` = 250 ms in Eqn. (5). We then construct a ‘fast’ (0.5 s)
variant of each movement. Each movement variant has 500 evenly-spaced points (see Methods
Section 1.4). We sample the fast variant using 100 evenly-spaced points, and we then augment 400
instances of 0 values to the final 2 s of the movement to ensure that both movement variants have
the same length. (See the top right of Fig. 6a.)

Details for Fig. 6b, Supplementary Figs. 5a,c,e, and Supplementary Fig. 8. For Fig. 6b, we fit
readout weights using least-squares regression, such that with all gains set to 1, the network output
approximates the fast variant. We then train gain patterns using our learning rule in Eqns. (8)
and (9) so that the network output generates the slow-movement variant. (The initial condition x0

and readout weights remain fixed.) We use 60, 000 training iterations, and we run 10 independent
training sessions for each of 10 different target movements. We plot one such movement in Fig. 6b,
and we plot results of all simulations in Supplementary Figs. 5a,c. For Supplementary Fig. 8, we
perform the same task except that we scale the amplitude of the slow-movement variant by the
factor 1/25. Scaling the slow-variant target movement by this factor corresponds to the same
actual movement but lasting 5 times longer (see Methods Section 1.4). In Supplementary Fig. 8,
we show results for the same example that we plotted in Fig. 6b.

6



Details for Fig. 6c and Supplementary Figs. 5b,d,f,g. We wish to obtain neuronal dynamics
that are less sensitive to noisy initial conditions than those that we generated from gain patterns
that we obtained from our learning rule (i.e., those that we plot in Supplementary Figs. 5a). For
example, in Fig. 6b, the neuronal firing rates have decayed substantially towards baseline after
approximately 0.75 s, even though the output activity is close to its maximum value. Therefore,
a small change in the initial condition would likely substantially affect the neuronal activity for
times after approximately 0.75 s. We therefore perform the task that we described in the paragraph
above (i.e., generating a slow-movement variant by changing neuronal gains) using a gradient-
descent training procedure with gradients that we obtain from back-propagation [1]. Together with
learning the gain pattern for the slow variant, we jointly optimize a single set of readout weights
(shared by both the fast-movement and slow-movement variants), as we discussed in Methods
Section 1.5, as part of the same training procedure. The gains are still fixed at 1 for the fast variant.
The cost function for the training procedure is equal to the squared Euclidean 2-norm between
actual network outputs and the corresponding target outputs at both fast and slow speeds plus the
Euclidean 2-norm of the readout weights, where the latter acts as a regularizer. We run gradient
descent for 500 iterations, which is well after the cost has stopped decreasing.

Using the target movement from Fig. 6b, we plot the output of the back-propagation training pro-
cedure in Fig. 6c, and we plot results of all simulations in Supplementary Figs. 5b,d on the same
10 target movements as those that we used in Supplementary Fig. 5a. In Supplementary Fig. 5g,
for the outputs in Figs. 6b,c, we add white Gaussian noise with a signal-to-noise ratio of 4 dB to
the initial condition. We observe that the outputs from the back-propagation training procedure are
less sensitive than the outputs from the learning rule to noisy initial conditions.

Details for Supplementary Figs. 5h–j. In these simulations, we train a single gain pattern that
is shared by m different movements, which each last 2.5 s and where each movement corresponds
to a different initial condition (IC). To generate a collection of m such ICs, in which each IC
evokes neuronal activity of approximately equal amplitude with all gains set to 1, we randomly
rotate the top m eigenvectors of the observability Gramian of the matrix W − I [2]. Specifically,
we do this by creating a matrix of m columns — one for each of these m eigenvectors — and
right-multiplying this matrix by a random m × m orthogonal matrix (which we obtain via a QR
decomposition of a random matrix with elements drawn from a normal distribution with mean 1
and standard deviation 1).

Givenm ICs, we uniformly-at-random choosem fast target movements and their slow counterparts
out of a fixed set of 10 different movements. We then train a recurrent neuronal network to generate
the correct fast and slow target movements by optimizing a single set of readout weights (shared
by both fast and slow variants) and a single gain pattern that generates the slow variants (where we
set the gains for each of the fast variants to 1). We train using the same gradient-descent method
with back-propagation that we described above for Fig. 6c. We plot the results as a function of the
number m of movement–IC pairs (see Supplementary Figs. 5h,i) for 10 independent draws of the
ICs that we just described above.

7



Details for Fig. 6d; top panel. For each of the 10 trained movements in Supplementary Figs. 5a,b,
we extract the mean minimum error across all simulations for the outputs that we obtain both from
our learning rule (see Supplementary Fig. 5a) and from training via back-propagation (see Sup-
plementary Fig. 5b). We then linearly interpolate between the learned gain patterns for the fast
and slow outputs, and we and calculate the error (see Methods Section 1.6) between the output
and the target movement at the interpolated speed. We calculate these errors for many interpolated
movement durations between 0.5 s and 2.5 s, and we plot the mean errors for both our learning
rule and the back-propagation training in the top panel of Fig. 6d. We also show an example output
that lasts 1.5 s.

Details for Figs. 6d–f and Supplementary Fig. 6. To demonstrate that gain modulation can
provide effective smooth control of movement speed for multiple initial conditions of the neuronal
activity, we train networks to generate a pair of target movements in response to a corresponding
pair of orthogonal initial conditions (see the above description of Supplementary Figs. 5h–j) at
fast and slow speeds and also at each of 5 intermediate, evenly-spaced speeds in between these
extremes. To do this, we parametrize the gain pattern of speed index s (with s ∈ {1, . . . , 7}) as
a convex combination of a gain pattern gs=1 for fast movements and a gain pattern gs=7 for slow
movements, with interpolation coefficients of λs (with gs = λsgs=1 + (1 − λs)gs=7, λ1 = 1,
and λ7 = 0). We optimize (using back-propagation, as discussed above) over gs=1, gs=7, the 5
interpolation coefficients λs (with s ∈ {2, . . . , 6}), and a single set of readout weights. For a given
speed s, we use the gain pattern gs for both movements.

We plot the 7 learned gain patterns in Fig. 6e, and we plot their corresponding outputs for both
initial conditions in Supplementary Fig. 6. (We call this collection of 7 trained gain patterns the
‘speed manifold’.) We show the linear version of the speed manifold (i.e., interpolating between
the fast and slow gain patterns) in Supplementary Fig. 6b. Interpolating between the fast and slow
gain patterns accurately generates both movements at any intermediate speed. (See the bottom
panel of Fig. 6d.). For both initial conditions, we plot outputs at 5 evenly-spaced speeds by linearly
interpolating between the fast (gs=1) and slow (gs=7) gain patterns in Fig. 6f.

Simulation details for Fig. 7

We simultaneously train gain patterns for controlling different movements (i.e., different move-
ment shapes) and their speed. We train a recurrent neuronal network (using back-propagation, as
we discussed previously) to generate each of 10 different movement shapes at 7 different, evenly-
spaced speeds (ranging from the fast variant to the slow variant) using a single fixed initial condi-
tion x0. To jointly learn gain patterns that control movement shape and speed, we parametrize each
gain pattern as the element-wise product of a gain pattern that encodes shape (which we use at each
speed for a given shape) and a gain pattern that encodes speed (which we use at each shape for a
given speed). We again parametrize (see our details for Figs. 6d–f) the gain pattern that encodes
the speed index s (with s ∈ {1, . . . , 7}) as a convex combination of two common endpoints, gs=1

(which we use for the fast-movement variants) and gs=7 (which we use for the slow-movement

8



variants). We thus optimize over 10 gain patterns for movement shape, 2 gain patterns each for
fast and slow movement speeds, 5 speed-interpolation coefficients (see above), and a single set of
readout weights.

In Fig. 7b, we plot the gain patterns that we obtain for controlling the movement speeds at each
of the 7 trained speeds. In Fig. 7c, we show the mean error between the network output and the
target over the 10 target movements when generating gain patterns for movement speed by linearly
interpolating between the trained fast (gs=1) and slow (gs=7) gain patterns. In Fig. 7d, we plot the
outputs of 6 of the 10 gain patterns for movement shape at each of 5 interpolated speeds between
the fast and the slow gain patterns. In rightmost panel of Fig. 7a, we plot 2 example movement
shapes at 3 interpolated speeds.

Simulation details for Fig. 8 and Supplementary Fig. 7

For these figures, we use the 10 trained gain patterns for movement shapes, as well as the speed
manifold from Fig. 7 (see our simulation details for Fig. 7). Using our learning rule from Eqns. (8)
and (9), we train 10 coefficients c1, . . . , c10 (with one for each shape-specific gain pattern; see
Fig. 8a) to construct a new gain pattern that, together with the speed manifold, generates a new tar-
get movement at the fast and slow speeds. Specifically, we replace the gains gi (for i ∈ {1, . . . , N})
with the coefficients ci (for i ∈ {1, . . . , 10}) in Eqns. (8) and (9). We use the mean of the errors at
the fast and slow speeds. To generate the network output at the fast and slow speeds, respectively,
we calculate the element-wise product between the newly-constructed gain pattern and the fast
and slow gain pattern, respectively, on the speed manifold. We independently train, using 10, 000
training iterations, the coefficients c1, . . . , c10 on each of the 100 target movements that we used
for Fig. 4. In Supplementary Fig. 7, we plot histograms of the errors over the 100 target move-
ments after training for both the fast and slow speeds. We plot the mean error (see the black curve)
over all 100 target movements at interpolated speeds in Fig. 8c. For the output that produces the
50th-smallest summed errors from fast and slow speeds, we plot the error in red in Fig. 8c. As a
control, we calculate the mean error between the network output and the target over the 100 tar-
get movements when choosing one of the 100 newly-learned gain patterns uniformly at random
without replacement. (See the grey curve in Fig. 8c.)

Additionally, instead of learning to combine gain patterns using the method that we described in
the previous paragraph, we determine coefficients c1, . . . , c10 using a least-squares regression by
fitting the 10 learned movements to each of the 100 target movements at the fast and slow speeds
simultaneously and requiring that cj ≥ 0 for all j and

∑10
j=1 cj = 1. (See the black dashed curve

in Fig. 8c.)

Finally, we plot the Pearson correlation coefficient between pairs of target movements versus the
Pearson correlation coefficient between corresponding pairs of learned coefficients c1, . . . , c10. In
our visualization, we plot only 1, 000 of the 4, 950 data points. (We choose these points uniformly
at random.) Note that we are unlikely to observe correlation values close to −1 between pairs of
combination coefficients because the coefficients c1, . . . , c10 are likely to sum to approximately 1

9



(see our discussion of Fig. 4); in fact, we calculate the mean sum of the coefficients to be approxi-
mately 0.91.

REFERENCES

1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

2. G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of transient dynamics in bal-
anced networks supports generation of complex movements,” Neuron, vol. 82, no. 6, pp. 1394–
1406, 2014.

3. M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu,
and K. V. Shenoy, “Neural population dynamics during reaching,” Nature, vol. 487, no. 7405,
pp. 1–8, 2012.

4. D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic neural
networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.

10


