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Nonlinear Schrodinger Equation

e NLS:iu, =-Au - n,lulu
n, > 0: focusing
n, < 0: defocusing

Integrable in 1 + 1 dimensions (A = d?/dx?)

e Models wave envelopes in nonlinear dispersive media

e Nonlinear optics: Describes beam propagation in nonlinear
optics incorporating dispersive and Kerr effects

e Bose-Einstein condensation: Describes mean-field dynamics
at zero temperature

e Focusing NLS ind + 1 dimensions (d = 2) exhibits blow-
up/collapse of pulse solutions



Nonlinearity Management

e NM = periodic variation in nonlinearity coefficient
e Optics: Stabilize pulses using layered media

e Piecewise constant nonlinearity

e Our work: First experimental implementation of NM +
accompanying analysis and direct numerical simulations

e BEC: Use Feshbach resonances to vary interatomic
interactions g and hence nonlinearity coefficient
e Can achieve g = g(t) in numerous labs
e New idea: periodic g = g(x) via “collisionally inhomogeneous”
condensates (see our recent preprint, nlin.PS/0607009)
e Mathematical analyses via Hamiltonian-averaged NLS
equations



Theoretical and Experimental $ss
Frameworks PRL 97(3): 033903 (2006)
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Delaying Blow-up and Collapse

e Plot: Beam width versus
propagation distance (P =
59P,)

Diverges in air
Collapses in glass
Can propagate in layered

media much longer before
divergence occurs

e Can arrest blow-
up/collapse by alternating
focusing and defocusing
material (has not been
done experimentally)
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Different powers and air gaps

€ 100 = E 100 73
= v 7
= STITh = sﬂ.f..ﬁ-/'#'
: :
0 0
0 5 10 0 5 10
Z (mm) Z (mm)
E 100 ~-7] E 100 >
= o = P
E “ - E .-'"f
% EDW(H/ % SD‘W"”
Dﬂ 5 10 Gﬂ 5 10
Z (mm) Z (mm)

P =2.3P_ (+, top right),
P =3.9P, (*, bottom left), P = 4.9P_
(V, bottom right), P = 5.9P_ (°)
Black curves: ODE theory
1 mm air gaps

FWHM (1 m)

FWHM (u m)

=

]

Z (mm)

* 1 mm air gaps (thin), 1.5 mm gaps
(medium), 2 mm gaps (thick)
* Top: NLS simulations

Bottom: Experiments
P=59P,



Modulational Instability
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* 1 mm glass slides
* 2.1 mmor 3.1 mm air gaps

* reflective coating on slides to
reduce losses at interfaces

nlin.PS/0607069

MI = destabilization mechanism
for plane waves due to interplay
between nonlinearity and
dispersion

=> formation of localized pulses

Arises ubiquitously; in fluid
dynamics (“Benjamin-Feir”
instability), nonlinear optics,
plasma physics, BEC,etc.

In uniform media, focusing
nonlinearity = MI for sufficiently
large plane-wave amplitudes
(given the wavenumber) or
sufficiently small wavenumbers
(given the amplitude)

i.e.,1 instability band



“New Physics™: Extra Ml Bands
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Ml [I; Fourier Peaks
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e Top: Experiments (intensity)

e Middle: Experiments (Fourier transform)

e 2.1 mm air gaps

e Left: First Ml band. Right:
Second MI band.

e Red: High intensity. Blue:
Low intensity.

e Bottom: NLS simulations (Fourier transform).



MI Ill: Linear Stability Analysis
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e D(C), N(C): management functions
e Here: piecewise constant

e v(Q): losses at glass-air interfaces
e Plane wave solutions:
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e Perturb from plane waves: u= uo(¢) [1 +w() cos(ke&) cos(kyn)]



MI Ill: Linear Stability Analysis
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e W=F+iB,k®=k?+k?
e F =gD'"2 = Hill equation
e = Can apply Floquet-Bloch theory

e Piecewise constant coefficients = Kronig-Penney equation
e = (Can solve for Ml bands analytically!

cos(wl) = —S;S_;? sin(s1l)sin[so(L — )] 4+ cos(sl) cos[sa(L — )] = G(k)

e  is Floquet multiplier; s,, s, expressed in terms of D, N, k, lu,
o IGK)I>1 = Ml



MI IV: More Propagation Periods
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e Perturbations in Ml

bands grow
exponentially but those
outside (i.e., the ripples)
saturate

=> Slight discrepancies
IN nUMerics vs

experiments and theory
(uses « periods) due to

finite number of
propagation periods



Connections to Bose-Einstein 3T
co"de"satio" PRE 74: 036610 (2006)

e Feshbach resonances can be used for nonlinearity
management in BEC

Hamiltonian-average over periodic adjustment in scattering
length [g = g(t)] to get an effective NLS:

E.'Ut + Upr = € (2 COS("“JJ")H + ﬁ.’:ﬂ'|u|2u - H”f (((|u|z).r)2 + 2|”'|2 (|U’|E)r.r) u)

We construct solitary wave solutions (“gap solitons”) and
study their stability.




Conclusions

e General theme: Interactions between nonlinearity & periodicity
e Layered optical media
e First experimental implementation of nonlinearity management

e Can delay blow-up/collapse using two focusing media (e.g., glass and
air) with method that is lossless in principle

Theory: Can prevent it by alternating focusing and defocusing media

e Very good agreement with NLS simulations (zero fitting parameters!)
and coarser features captured by a simplified ODE framework

e Modulational instability: theory, NLS simulations, and experiments
give excellent quantitative agreement for locations of instability
bands (zero fitting parameters!)

e New physics: Only one band in uniform media but multiple bands in
layered media

e Connections to Feshbach resonance management in Bose-Einstein
condensation



