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Nonlinear Schrödinger Equation

 NLS: iuz = -Δu - n2|u|2u
 n2 > 0: focusing
 n2 < 0: defocusing
 Integrable in 1 + 1 dimensions (Δ = d2/dx2)

 Models wave envelopes in nonlinear dispersive media
 Nonlinear optics: Describes beam propagation in nonlinear

optics incorporating dispersive and Kerr effects
 Bose-Einstein condensation: Describes mean-field dynamics

at zero temperature
 Focusing NLS in d + 1 dimensions (d ≥ 2) exhibits blow-

up/collapse of pulse solutions



Nonlinearity Management

 NM = periodic variation in nonlinearity coefficient
 Optics: Stabilize pulses using layered media

 Piecewise constant nonlinearity
 Our work: First experimental implementation of NM +

accompanying analysis and direct numerical simulations
 BEC: Use Feshbach resonances to vary interatomic

interactions g and hence nonlinearity coefficient
 Can achieve g = g(t) in numerous labs
 New idea: periodic g = g(x) via “collisionally inhomogeneous”

condensates (see our recent preprint, nlin.PS/0607009)
 Mathematical analyses via Hamiltonian-averaged NLS

equations



Theoretical and Experimental
Frameworks

  u = scaled electric field envelope
  ζ = scaled propagation distance
  l = glass length (1 mm)
  L − l = air length

  1 mm, 1.5 mm, 2 mm

   Laplacian: 2 dimensions
   Nonlinearity vs dispersion:

   n2
(2)/n2

(1) = 0.0001

   n0
(1)/n0

(2) = 1.5
   NLS simulations using
Gaussians from experimental
initial conditions (and
experimental losses from
reflection at slide interfaces)

    No fitting parameters!
   Moment approach yields
ODE whose solutions give
qualitative coarse-grained
dynamics

PRL 97(3): 033903 (2006)



Delaying Blow-up and Collapse

 Plot: Beam width versus
propagation distance (P =
5.9 Pc)
 Diverges in air
 Collapses in glass
 Can propagate in layered

media much longer before
divergence occurs

 Can arrest blow-
up/collapse by alternating
focusing and defocusing
material (has not been
done experimentally)

•   1 mm air gaps
•   Blue curves: experiment
•   Red and green curves:
     NLS simulations



Different powers and air gaps

•    P = 2.3Pc (+, top right),
P = 3.9Pc (*, bottom left), P = 4.9Pc
(∇, bottom right), P = 5.9Pc (°)
•    Black curves: ODE theory
•    1 mm air gaps

•   1 mm air gaps (thin), 1.5 mm gaps
(medium), 2 mm gaps (thick)
•     Top: NLS simulations
•     Bottom: Experiments
•     P = 5.9Pc



Modulational Instability

 MI =  destabilization mechanism
for plane waves due to interplay
between nonlinearity and
dispersion
  ⇒  formation of localized pulses

 Arises ubiquitously; in fluid
dynamics (“Benjamin-Feir”
instability), nonlinear optics,
plasma physics, BEC,etc.

 In uniform media, focusing
nonlinearity ⇒ MI for sufficiently
large plane-wave amplitudes
(given the wavenumber) or
sufficiently small wavenumbers
(given the amplitude)
 i.e.,1 instability band

•    1 mm glass slides
•    2.1 mm or 3.1 mm air gaps
•    reflective coating on slides to
reduce losses at interfaces

nlin.PS/0607069



“New Physics”: Extra MI Bands

 Periodicity in propagation variable ⇒ multiple MI bands (R, |G| > 1)
 Quantitative agreement in band locations (0 fitting parameters!)
 Top: Experiments. Middle: NLS simulations.  Bottom: Analysis
 Left: 2.1 mm air gaps.  Right: 3.1 air gaps.
 R = perturbation growth (measured using relative sizes of Fourier peaks

of wavenumbers); |G| comes from Kronig-Penney equation



MI II: Fourier Peaks

 2.1 mm air gaps
 Left: First MI band. Right:

Second MI band.
 Red: High intensity. Blue:

Low intensity.

   Top: Experiments (intensity)
   Middle: Experiments (Fourier transform)
   Bottom: NLS simulations (Fourier transform).



MI III: Linear Stability Analysis

 D(ζ), N(ζ): management functions
  Here: piecewise constant

  γ(ζ): losses at glass-air interfaces
  Plane wave solutions:

 Perturb from plane waves:



MI III: Linear Stability Analysis

 w = F + iB, k2 = kξ2 + kη2

 F = gD1/2 ⇒ Hill equation
  ⇒ Can apply Floquet-Bloch theory

  Piecewise constant coefficients  ⇒ Kronig-Penney equation
  ⇒ Can solve for MI bands analytically!

  ω is Floquet multiplier; s1, s2 expressed in terms of D, N, k, |u0|
  |G(k)| > 1  ⇒ MI



MI IV: More Propagation Periods

 Perturbations in MI
bands grow
exponentially but those
outside (i.e., the ripples)
saturate

  ⇒ Slight discrepancies
in numerics vs
experiments and theory
(uses ∞ periods) due to
finite number of
propagation periods

   Top: 6 glass, 5 air
   Experimental configuration

   Middle: 11 glass, 10 air
   Bottom: 21 glass, 20 air



Connections to Bose-Einstein
Condensation

 Feshbach resonances can be used for nonlinearity
management in BEC
 Hamiltonian-average over periodic adjustment in scattering

length [g = g(t)] to get an effective NLS:

 We construct solitary wave solutions (“gap solitons”) and
study their stability.

PRE 74: 036610 (2006)



Conclusions

 General theme: Interactions between nonlinearity & periodicity
 Layered optical media

 First experimental implementation of nonlinearity management
 Can delay blow-up/collapse using two focusing media (e.g., glass and

air) with method that is lossless in principle
 Theory: Can prevent it by alternating focusing and defocusing media

 Very good agreement with NLS simulations (zero fitting parameters!)
and coarser features captured by a simplified ODE framework

 Modulational instability: theory, NLS simulations, and experiments
give excellent quantitative agreement for locations of instability
bands (zero fitting parameters!)
 New physics: Only one band in uniform media but multiple bands in

layered media
 Connections to Feshbach resonance management in Bose-Einstein

condensation


