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I. History



Dissection congruence

Two polygons are dissection congruent if we can cut the first
into finitely many polygons which we can rearrange to get the
second (ignoring boundaries). This idea dates back to Euclid.
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Dissection congruence and equal area

If two polygons are dissection congruent, they have the same area.

Theorem (Wallace-Bolyai-Gerwein, 1807, 1833)

Any two polygons of the same area are dissection congruent.

P is dissection congruent to Q and Q is dissection congruent to R
implies P is dissection congruent to R.

So it is enough to show that any polygon is dissection congruent to
a square of the same area.
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Proving the Wallace-Bolyai-Gerwein theorem

To show a polygon is dissection congruent to a square:
Chop the polygon into triangles.

Dissect each triangle into a parallelogram

Dissect each rectangle into a square

Combine these squares using our Pythagorean proof.
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Hilbert’s third problem
Hilbert’s third problem: show any two polytopes of the same
volume in three dimensions are dissection congruent.

Theorem (Dehn, 1902)

A cube and a regular tetrahedron are not dissection congruent.

Indeed, if P is a polyhedron with edge lengths `i and edge dihedral
angles θi , then the Dehn invariant∑

i

`i ⊗ θi

(taking values in the tensor product R⊗Z R/2πZ) is an invariant
of dissection congruence.

Theorem (Sydler, 1965)

Two polyhedra are dissection congruent if and only if they have
the same volume and Dehn invariant.
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The foundations of measure theory

The existence of Vitali sets implies that for all n ≥ 1, there is no
extension of Lebesgue measure to the full powerset P(Rn) which is

1. invariant under isometries, and

2. countably additive.

Dropping condition (1) leads to real valued measurable cardinals.

If we weaken condition (2) to finite additivity, there is no such
measure for n ≥ 3 because of the Banach-Tarski paradox (1924).
In contrast, for n ≤ 2 there are finitely additive isometry invariant
measures extending Lebesgue measure on Rn. These are called
Banach measures.

(The difference hinges on the fact that if n ≥ 3, the isometry
group of Rn contains a free group on two generators. If n ≤ 2 it
does not.)
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Tarski’s circle squaring problem
A,B ⊆ Rn are equidecomposable if A can be partitioned into
finitely many pieces which can be rearranged by isometries to
partition B.

Central question: what is the relationship between
equidecomposability and measure?

Question (Tarski’s circle squaring problem, 1925)

Are a disc and square in R2 (necessarily of the same area)
equidecomposable?

?

The disc and square must have the same area because of the
existence of Banach measures.
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A square and disc are not scissors congruent
A and B are scissors congruent if A can be cut into finitely
pieces–each of which is homeomorphic to a disc and bounded by a
curve of finite length–which can be rearranged to form B (ignoring
boundaries).

In scissors congruence, any time a section of convex circular
perimeter is created or destroyed it cancels with a corresponding
pieces of concave circular perimeter. So

convex circular perimeter− concave circular perimeter

is an invariant of scissors congruence.

Corollary (Dubins-Hirsch-Karush, 1964)

A square and disc are not scissors congruent.
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II. Laczkovich’s solution



Laczkovich’s circle squaring

Theorem (Laczkovich, 1990 (AC))

Tarski’s circle squaring problem has a positive answer!

More generally,

Theorem (Laczkovich, 1992 (AC))

If A,B ⊆ Rk are bounded sets with the same positive Lebesgue
measure whose boundaries have upper Minkowski dimension less
than k , then A and B are equidecomposable.
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Laczkovich’s proof

First idea: Work in the torus
Fix sets A,B. Scale and translate A and B so that they lie in
[0, 1)k which we identify with the k-torus Tk = (R/Z)k . Then A
and B are equidecomposable by translations as subsets of Tk iff
they are equidecomposable by translations in Rk .
(Though perhaps using more pieces).
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Use random translations

x

(1, 0) · x

(0, 1) · x

(1, 1) · x
x (1, 0) · x

(0, 1) · x (1, 1) · x

Fix a sufficiently large d , and random u1, . . . , ud ∈ Tk . Obtain a
random action of Zd on Tk by translations:

(n1, . . . , nd) · x = n1u1 + . . .+ ndud + x

This action is almost surely free. We can visualize each orbit as a
copy of Zd .



Use random translations

Let G be the graph with vertex set Tk where x , y ∈ Tk are
adjacent if there is g ∈ Zd such that g · x = y where |g |∞ = 1.

To show A and B are equidecomposable, it suffices to find a Borel
bijection f : A→ B of bounded distance in G . (For some fixed N,
for all x ∈ A, dG (x , f (x)) ≤ N).

Then if Ag = {x : f (x) = g · x}, the sets {Ag}|g |∞≤N partition A,
and the sets {g · Ag}|g |∞≤N will partition B.
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A picture of an equidecomposition viewed inside a single orbit of
the action.
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For an equidecomposition to exist, any sufficiently large “square”
SN(x) = {(n1, . . . , nd) · x ∈ Zd : 0 ≤ ni < N} in the orbit must
contain roughly the same number of elements of A and B.

By the ergodic theorem, we would expect |SN(x) ∩ A| ≈ λ(A)Nd .
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Laczkovich’s key lemma
The key to Laczkovich’s proof is a strong quantitative refinement
of the ergodic theorem for translation actions, using ideas from
Diophantine approximation and discrepancy theory.

Lemma (Laczkovich 1992 after Schmidt, Niederreiter-Wills)

For A,B and the action as above, ∃ε > 0 and M such that for
every x and N, ∣∣∣SN(x) ∩ A− λ(A)Nd

∣∣∣ ≤ MNd−1−ε

and ∣∣∣SN(x) ∩ B − λ(B)Nd
∣∣∣ ≤ MNd−1−ε

Roughly, every square SN(x) contains very close to λ(A)Nd many
elements of A and B.

Laczkovich combines this estimate with compactness and Hall’s
matching theorem to find an equidecomposition.
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III. A constructive solution



A constructive solution

Question (Wagon, 1986)

Is it possible to explicitly describe a way to square the circle (using
Borel pieces)?

Theorem (M.-Unger 2016)

Yes – there is a Borel solution to Tarski’s circle squaring problem.

(Building on earlier work of Grabowksi-Máthé-Pikhurko, 2015).

Theorem (M.-Unger 2016)

If A,B ⊆ Rk and B are bounded Borel sets with the same positive
Lebesgue measure whose boundaries have upper Minkowski
dimension less than k , then A and B are equidecomposable using
Borel pieces.

So for sets whose boundaries aren’t wildly fractal, having the same
measure is equivalent to having an explicit equidecomposition.
This gives a “Borel solution” to Hilbert’s third problem.
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The nonconstructive part of Laczkovich’s solution

The only nonconstructive part of Laczkovich’s proof is at the end
where he uses a compactness argument and Hall’s matching
theorem to find the equidecomposition.

There is a quickly growing field of “Borel graph combinatorics” in
descriptive set theory. This area studies the problem of when
definable graphs have definable solutions to combinatorial
problems on them. For example, what definable graphs have
definable perfect matchings?

But after spending a couple years on the problem thinking just in
terms of definable matchings, we were still quite far from a
solution.
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Ingredients in our solution

I Flows in infinite networks.

I the “error” in constructing a flow can continuously approach 0
whereas the error in a perfect matching is discrete.

I The average of flows is a flow
I There are well known combinatorial equivalences between flows

and matchings. (E.g. Hall’s theorem can be proved using
max-flow min-cut).

I Recent progress in ergodic theory and descriptive set theory
on hyperfiniteness of actions of abelian groups. We use a
detailed descriptive-set-theoretic analysis of the translation
action on the torus.
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Flows in graphs
Suppose G is a graph (symmetric irreflexive relation) on a vertex
set X . If f : X → R is a function, then an f -flow of G is a
function φ : G → R such that

I For every edge (x , y) ∈ G , φ(x , y) = −φ(y , x), and
I For every vertex x ∈ X :

f (x) =
∑

(x ,y)∈G

φ(x , y) (Kirchoff’s law).

If instead φ satisfies the weaker condition∣∣∣∣∣∣f (x)−
∑

(x ,y)∈G

φ(x , y)

∣∣∣∣∣∣ < ε

then we say φ is an f -flow with error ε.

In finite graph theory, flows are usually studied with a single source
and sink (e.g. max-flow min-cut). For finite graphs, the above
type of flow problem is equivalent to one with a single source and
sink (by adding a “supersource” and “supersink” to the graph).
For infinite graphs, there is not such an equivalence.
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∑

(x ,y)∈G

φ(x , y)

∣∣∣∣∣∣ < ε

then we say φ is an f -flow with error ε.

In finite graph theory, flows are usually studied with a single source
and sink (e.g. max-flow min-cut). For finite graphs, the above
type of flow problem is equivalent to one with a single source and
sink (by adding a “supersource” and “supersink” to the graph).
For infinite graphs, there is not such an equivalence.
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The first step of our proof

As in Laczkovich’s proof, fix a sufficiently large d and a random
translation action of Zd on Tk . Once again let G be the graph
with vertex set Tk where x , y ∈ Tk are adjacent if there is g ∈ Zd

such that g · x = y where |g |∞ = 1.

Let f = χA − χB . The first step of our proof is to give an explicit
construction of an f -flow for G .

(We can interpret such a flow as a “continuous” equidecomposition
from A to B. That is, each point of A has charge 1, and this
charge can be split into finitely many pieces. After rearranging, we
must obtain a charge of 1 at every point of B.)
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We’ll describe an algorithm for constructing a real-valued f -flow in
the connected component of some x ∈ Tk . We draw pictures with
d = 2.



Our flow will be constructed in ω many steps in which the error
will approach 0.



Step 1: The idea is to spread out the error in the flow evenly over
each 2× 2 square. Each point contributes 1/4 of its f -value to the
other 3 points.



Step 1: The idea is to spread out the error in the flow evenly over
each 2× 2 square. Each point contributes 1/4 of its f -value to the
other 3 points.



The error in the flow after step 1 is the average of f over the 2× 2
square.



We do this for every 2× 2 square in the orbit.



So the error in the flow after step 1 is the average of f on its 2× 2
square.



Now we use roughly the same idea in each 4× 4 square, but
dealing with 4 points at a time in the way given above.
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We add to the flow already constructed at the previous step.
Once again, each point contributes 1/4 of its error to the other 3
points.



After this second step, the error at each point will be the average
of f over its 4× 4 square.
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Constructing a flow from A to B

After step n, the error in our flow at each point will be the average
value of f over the 2n × 2n square containing the point. Since
f = χA − χB , and each 2n × 2n square contains nearly the same
number of points of A and B, this error is very small.

An easy calculation using Laczkovich’s discrepancy estimates
shows that this construction converges to a bounded f -flow (with
error 0 everywhere).

However, we cannot pick a single x in each orbit to be a “starting
point” for this construction (since this would be a nonmeasurable
Vitali set).

To fix this problem, we use an averaging trick (the average of flows
is a flow!).
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Constructing a flow from A to B
Essentially, we average this construction over every possible way of
choosing 2× 2 grids, 4× 4 grids, 8× 8 grids, etc. that fit inside
each other. The result is invariant of our starting point.

Formally, for every i > 0, let πi : Zd/(2iZ)d → Zd/(2i−1Z)d be
the canonical homomorphism. This yields the inverse limit

Ẑd = lim←−
i≥0

Zd/(2iZ)d

For each x ∈ Tk and h ∈ Ẑd , our above construction yields a flow
φ(x ,h) of the connected component of x , using the grids given by h.

The construction is such that if g ∈ Zd , then φ(x ,h) = φ(g ·x ,−g+h).
Hence, the average value of this construction is invariant of our
starting point (h 7→ −g + h is measure preserving):∫

h
φ(x ,h) dµ(h) =

∫
h
φ(γ·x ,−γ+h) dµ(h) =

∫
h
φ(γ·x ,h) dµ(h)

This average value is our real-valued Borel χA − χB flow!
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Finishing the proof

To finish the proof, we need to modify the flow so it takes integer
values. We digress . . .

Definition

An action of a group G on a set X is said to be amenable if there
is a finitely additive probability measure on P(X ) which is invariant
under the action of G . A group is amenable if the translation
action of the group on itself is amenable.

For instance, the action of the group of isometries on Rn is
amenable if and only if n ≤ 2.

This definition has become extremely important in dynamics.
Amenability forms a crucial dividing line in the subject; amenable
actions are often tame, classifiable, etc. whereas nonamenable
actions are wild, unclassifiable, paradoxical, etc.
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Hyperfiniteness

A major program in modern descriptive set theory is to understand
the complexity of Borel actions of countable groups from the
perspective of Borel reducibility.

Definition

A Borel action of a group G on a set X is hyperfinite if there are
Borel equivalence relations F0 ⊆ F1 ⊆ . . . all of whose classes are
finite such that their union

⋃
i Fi is the orbit equivalence relation of

the action.

By the Glimm-Effros dichotomy of Harrington-Kechris-Louveau
(1990), the simplest nontrivial actions are the hyperfinite ones.



Progress on the hyperfiniteness problem
A central open problem is the following:

Open Problem (Weiss, 1984)

Is every Borel action of a countable amenable group hyperfinite?

Theorem (Slaman-Steel, 1988, Weiss)

Every Borel action of Z is hyperfinite.

Theorem (Gao-Jackson, 2015)

Every Borel action of a countable abelian group is hyperfinite.

(Seward-Schneider have improved this to locally nilpotent groups.)

Our proof uses a refinement of Gao-Jackson due to
Gao-Jackson-Krohne-Seward (2015); special types of witnesses to
the hyperfiniteness of actions of Zd which are well suited to
meshing with combinatorial constructions.
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Finishing the proof

We use the hyperfiniteness of the translation action on the torus to
run a “local” version of the Ford-Fulkerson algorithm to convert
our real-valued flow to be integer. Our proof also relies on work of
Timár (2013) on the connectivity of boundaries of finite regions in
Zd for d ≥ 2.

After converting the flow to be real-valued we use machinery of
Gao-Jackson to find a Borel tiling of the action. Finally, we use the
integer valued flow between A and B to compute how many points
of A to move to points of B inside each tile.
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What does our circle squaring look like?

It uses about 10200 pieces that are finite Boolean combinations of
Σ0
4 sets.
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Thanks!


