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Abstract. We generalize Brooks’s theorem to show that if G is a Borel
graph on a standard Borel space X of degree bounded by d ≥ 3 which
contains no (d + 1)-cliques, then G admits a µ-measurable d-coloring
with respect to any Borel probability measure µ on X, and a Baire
measurable d-coloring with respect to any compatible Polish topology
on X. The proof of this theorem uses a new technique for constructing
one-ended spanning subforests of Borel graphs, as well as ideas from the
study of list colorings. We apply the theorem to graphs arising from
group actions to obtain factor of IID d-colorings of Cayley graphs of
degree d, except in two exceptional cases.

1. Introduction

We begin by recalling a classical theorem of Brooks from finite combina-
torics.

Theorem 1.1 (Brooks’s Theorem [9, Theorem 5.2.4]). Suppose G is a finite
graph with vertex degree bounded by d. Suppose further that G contains no
complete graph on d+1 vertices, and if d = 2 that G contains no odd cycles.
Then G has a (proper) vertex d-coloring.

It is easy to see that if a graph G has vertex degree bounded by d, then G
has a (d+ 1) coloring: greedily color the vertices one by one, using the least
color not already assigned to a neighboring vertex. One way of regarding
Brooks’s theorem is that it is a complete characterization of the graphs
for which this obvious upper bound cannot be improved: odd cycles and
complete graphs.

Brooks’s theorem is a fundamental result of graph coloring which has been
generalized in a variety of different settings. See [8] for a recent survey. This
paper examines measurable generalizations of Brooks’s Theorem. While a
straightforward compactness argument extends Brooks’s Theorem to infinite
graphs, such an argument cannot in general produce a coloring with desirable
measurability properties such as being µ-measurable with respect to some
probability measure, or being Baire measurable with respect to some Polish
(separable, completely metrizable) topology. Recall that a standard Borel
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space is a set X equipped with a σ-algebra generated by a Polish topology.
The graphs we will consider are Borel graphs where the vertices of the graph
are the elements of some standard Borel space X, and whose edge relation
is Borel as a subset of X ×X.

In studying Borel graphs, Kechris, Solecki, and Todorcevic [16, Proposi-
tion 4.6] have shown that every Borel graph of vertex degree bounded by a
finite d admits a Borel (d+1)-coloring, in analogy to the fact above. Hence,
we can ask again for which exceptional cases this obvious bound can not be
improved. Marks [19, Theorem 1.3] has shown that for every finite d, there is
an acyclic Borel graph of degree d with no Borel d-coloring. Hence, to obtain
a reasonable measurable analog of Brooks’s theorem as in Theorem 1.2, we
must consider measurability constraints weaker than Borel measurability. In
this paper we focus on Baire measurability with respect to some compatible
Polish topology and µ-measurability with respect to some Borel probability
measure µ.

Still, the obvious analogue of the d = 2 case of Brooks’s Theorem does not
hold for either of these measurability notions. Let S : T→ T be an irrational
rotation of the unit circle T, and let GS be the graph on T rendering adjacent
each point x ∈ T and its image S(x) under S so GS is acyclic and each
vertex has degree 2. Now an easy ergodicity argument shows that GS has
no Lebesgue measurable 2-coloring: since S is measure preserving, the two
color sets would have to have equal measure, but since S2 is ergodic, the
color sets would each have to be null or conull. Similarly, GS has no Baire
measurable 2-coloring (see Section 6). This example may be considered an
infinite analog of the odd cycle exemption in 1.1.

Our main result is the following measurable analogue of Brooks’s theorem
for the case d ≥ 3.

Theorem 1.2. Suppose that G is a Borel graph on a standard Borel space
X with vertex degree bounded by a finite d ≥ 3. Suppose further that G
contains no complete graph on d+ 1 vertices.

(1) Let µ be any Borel probability measure on X. Then G admits a
µ-measurable d-coloring.

(2) Let τ be any Polish topology compatible with the Borel structure on
X. Then G admits a Baire measurable d-coloring.

This improves a prior result of Conley and Kechris who proved an anal-
ogous theorem for approximate colorings where one is allowed to discard a
set of arbitrarily small measure [6, Theorems 2.19, 2.20].

Our proof of Theorem 1.2 uses ideas from the study of list colorings in
graph theory. Recall that if G is a graph on X and L is a function mapping
each x ∈ X to a set L(x), then a coloring of G from the lists L is a coloring c
of X such that for every x, c(x) ∈ L(x). Given a function f : X → N, we say
X is f -list-colorable if for every function L on X with |L(x)| = f(x), there
is a coloring of G from the lists L. We say G is degree-list-colorable if it is f -
list-colorable for the function f(x) = degG(x), where degG(x) is the degree
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of x. Borodin [2] and Erdős-Rubin-Taylor [10] independently generalized
Brooks’s theorem to list colorings by classifying the finite graphs G which
are not degree-list-colorable. Of course, if a graph G has degree bounded
by d, then being degree-list-colorable implies that G is d-colorable since we
can color from the lists L(x) = {1, . . . ,degG(x)} for every x. For degree-
list-coloring, the exceptional graphs are the finite Gallai trees:

Theorem 1.3 (Borodin [2], Erdős-Rubin-Taylor [10]). A finite connected
graph is degree-list-colorable iff it is not a Gallai tree.

Recall here that a set S of vertices from a graph G is biconnected if the
induced subgraph G � S remains connected after removing any single vertex
from S. A block of a graph is a maximal biconnected set and a Gallai tree
is a connected graph whose blocks are complete graphs or odd cycles.

In addition to making key use of this result, we also generalize it to Borel
graph colorings. Recall that if Y is a set, we use [Y ]<∞ to denote the
collection of finite subsets of Y , and if Y is a standard Borel space then
so is [Y ]<∞ with the Borel structure induced as a quotient of

⊔
n∈N Y

n.
Say that a locally finite Borel graph G on X is Borel degree-list-colorable if
for every Polish space and every Borel function L : X → [Y ]<∞ such that
|L(x)| = degG(x), there is a Borel coloring c : X → Y of G from the lists L.

Theorem 1.4. Suppose that G is a locally finite Borel graph on a standard
Borel space X, and that no connected component of G is a Gallai tree. Then
G is Borel degree-list-colorable.

Recall that if G is a locally finite graph on X, then two rays (xi)i∈N
and (yi)i∈N in G are end-equivalent if for every finite set S ⊆ X, the rays
eventually lie in the same connected component of G � (X \ S). If G is an
acyclic graph, this is equivalent to (xi) and (yi) being tail equivalent. An
end of a graph is an end-equivalence class of rays. A one-ended spanning
subforest of G is a acyclic graph T ⊆ G on X such that every x ∈ X
is incident on some edge in T , and every connected component of T has
exactly one end.

The other tool we use to prove Theorem 1.2 is a new technique for con-
structing µ-measurable and Baire measurable one-ended spanning subforests
of acyclic Borel graphs. In the case where the connected components of G
are Gallai trees and we cannot apply Theorem 1.4, we use a one-ended sub-
forest of the Gallai tree to give a skeleton along which we may color the
graph to prove Theorem 1.2.

Theorem 1.5. Suppose that G is a locally finite acyclic Borel graph on a
standard Borel space X such that no connected component of G has 0 or 2
ends.

(1) Let µ be a Borel probability measure on X. Then there is a µ-conull
Borel set B and a one-ended Borel function f : B → X whose graph
is contained in G.
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(2) Let τ be a compatible Polish topology on X. Then there is a τ -
comeager Borel set B and a one-ended Borel function f : B → X
whose graph is contained in G.

We also discuss a version of Theorem 1.5.1 for locally countable graphs
in Section 3.

In Section 5 we apply Theorem 1.2 to graphs arising from group actions,
and we apply the methods of Section 3 along with results from probability
to obtain factor of IID d-colorings of Cayley graphs of degree d, apart from
two exceptional cases.

Finally, in the case d = 2 we show that the ergodic-theoretic obstruction
discussed above is in a sense the only counterexample to Brooks’s theorem.

Theorem 1.6. Suppose G is a Borel graph on a standard Borel space X
with vertex degree bounded by d = 2 such that G contains no odd cycles.
Let E2,G be the equivalence relation on X where x E2,G y if x and y are
connected by a path of even length in G.

(1) Let µ be a G-quasi-invariant Borel probability measure on X. Then
G admits a µ-measurable 2-coloring if and only if there does not exist
a non-null G-invariant Borel set A such that every E2,G-invariant
Borel subset of A differs from a G-invariant set by a nullset.

(2) Let τ be a G-quasi-invariant Polish topology compatible with the
Borel structure on X. Then G admits a Baire measurable 2-coloring
if and only if there does not exist a non-meager G-invariant Borel
set A so that every E2,G-invariant Borel subset of A differs from a
G-invariant set by a meager set.

2. Preliminaries

A (simple, undirected) graph on a set of vertices X is a symmetric ir-
reflexive relation on X. Given a graph G on X, we say that two points
x, y ∈ X are neighbors or are adjacent in G if x G y. The (G-)degree of a
vertex x, denoted degG(x), is the number of neighbors of x and a graph G
has bounded degree d if every vertex has degree at most d. We say that G
is locally finite (resp. locally countable) if the degree of every vertex in G is
finite (resp. countable). A set A ⊆ X of vertices of G is (G-)independent if
for every x, y ∈ A it is not the case that x G y. If f : X → X is a function,
then the graph Gf generated by f is defined by x Gf y if x 6= y and either
f(x) = y or f(y) = x.

A (simple) path in a graph G is a finite sequence x0, . . . , xn of distinct
vertices such that x0 G x1 G . . . G xn. We say that such a path has length
n. A (simple) ray is an infinite sequence (xi)i∈N of distinct vertices such that
xi G xi+1 for every i ∈ N, and a line is a bi-infinite sequence (xi)i∈Z such
that xi G xi+1 for every i ∈ Z. If G is a graph on X, then the graph metric
dG : X2 → N∪{∞} on G maps (x, y) ∈ X2 to the length of the shortest path
connecting x and y, if such a path exists; otherwise we set dG(x, y) =∞. A
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cycle in a graph G is a sequence of vertices x0 G x1 G x2 G . . . G xn = x0

such that n > 2, and xi 6= xj for all i < j < n. We say the length of such a
cycle is n. We say that a graph is acyclic if it does not contain any cycles.
If G is a graph on X, then we let EG be the connectedness relation of G,
where x EG y if there is a path in G from x to y. We say that a set A ⊆ X is
G-invariant if it is EG-invariant, that is, a union of connected components
of G.

A Borel graph is a graph whose vertices are the elements of a standard
Borel space X, and whose edge relation is Borel as a subset of X ×X. The
restriction G � A of G to a set A ⊆ X is the graph on A is the induced
subgraph obtained by restricting the relation G to A. If G is a Borel graph,
and A is a Borel set, then since A inherits the standard Borel structure of
X, we see that G � A is also a Borel graph.

Let X and Y be standard Borel spaces. Let µ be a Borel probability
measure on X. We say that a function f : X → Y is µ-measurable if it is
measurable for the completion of µ. Let τ be a compatible Polish topology
on X (by compatible we mean that the σ-algebra generated by the τ -open
sets coincides with the given Borel σ-algebra on X). We say that a function
f : X → Y is Baire measurable (with respect to τ) if it is measurable for
the σ-algebra of sets which have the Baire property with respect to the
completion of τ ; the smallest σ-algebra containing the Borel sets and all
τ -meager sets.

There is an equivalence between the admitting a µ-measurable or Baire
measurable coloring, and admitting a Borel coloring modulo an invariant
null or meager set:

Proposition 2.1. Suppose G is a locally countable Borel graph on a stan-
dard Borel space X. Suppose that G admits some n-coloring.

(1) Let µ be any Borel probability measure on X. Then G admits a µ-
measurable n-coloring if and only if there is a µ-conull G-invariant
Borel set A ⊆ X such that G � A has a Borel n-coloring.

(2) Let τ be any Polish topology compatible with the Borel structure on
X. Then G admits a Baire measurable n-coloring if and only if there
is a comeager G-invariant Borel set A ⊆ X such that G � A has a
Borel n-coloring.

Proof. We begin with the direction ⇒ of 1. Suppose c is a µ-measurable
n-coloring of G. By the Feldman-Moore theorem [15, Theorem 1.3], let
{Ti}i∈N be a set of Borel automorphisms of X so that EG =

⋃
i∈N Ti. Now

for each i, since c ◦ Ti is µ-measurable, there is a µ-conull set Ai such that
c ◦ Ti � Ai is Borel. Thus, if A = [

⋂
i∈NAi]EG

, then A is µ-conull, and c � A
is Borel. This is because for all x ∈ A, if i is least such that T−1

i (x) ∈ Ai,

then c(x) = (c ◦ Ti)(T−1
i (x)).

The direction ⇐ of 1 is straightforward. Given a Borel n-coloring c of
G � A where A is a µ-conull G-invariant set, let c′ be an arbitrary n-coloring
of G � (X \A). Then c ∪ c′ is a µ-measurable coloring of G.
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The proof of part 2 is identical to the above. Simply replace the phrase
µ-conull with comeager (with respect to τ), and µ-measurable with Baire
measurable (with respect to τ). �

While we have stated our main results in terms of the existence of µ-
measurable and Baire measurable colorings, throughout the paper we will
mostly work with the equivalent formulations given by Proposition 2.1 above.
Note here that the classical Brooks’s theorem shows the existence of the
requisite d-coloring that we will need to apply the above proposition. An
analogous fact is also true for list-coloring.

Suppose G is a locally countable Borel graph on a standard Borel space
X, and µ is a Borel probability measure on X. Then we say that µ is G-
quasi-invariant if every µ-null set is contained in a G-invariant µ-null set.
Now for every Borel probability measure µ on X, there exists a G-quasi-
invariant Borel probability measure µ′ on X such every µ′-null set is µ-null
(that is, µ′ dominates µ). This follows from the Feldman-Moore theorem
[15, Theorem 1.3] by letting {Ti}i∈N be a set of Borel automorphisms of X
such that EG =

⋃
i graph(Ti), and then setting µ′(A) =

∑
i≥1 2−nν(Ti(A))

(see [15, Section 8]). A key property of a quasi-invariant measure is that if A
is µ′-conull, then it contains a G-invariant µ′-conull set. This is because the
set {x : x /∈ A ∧ x ∈ [A]EG

} is null since it is contained in the complement
of A, and hence is saturation is null.

Similarly, suppose G is a Borel graph on X, and τ is a compatible Polish
topology for X. Then we say that τ is G-quasi-invariant if every τ -meager
set is contained in a G-invariant τ -meager set. It follows from a result of
Zakrzewski [23] that if G is a locally countable Borel graph, then for every
compatible Polish topology τ on X there is a G-quasi-invariant compatible
Polish topology τ ′ such that every τ ′-meager set is τ -meager.

The combination of the above discussion and Proposition 2.1 justifies
our assumption from now on that our measures and topologies are quasi-
invariant with respect to the graphs we consider. This is because Proposi-
tion 2.1 allows us to reformulate Theorems 1.2 and 1.6 to state the existence
of a Borel d-coloring of G � A for some G-invariant Borel A which is conull
or comeager. Thus, the assumption of quasi-invariance is harmless since we
may always pass to a quasi-invariant measure or topology without adding
any new conull or comeager sets. Our assumption of quasi-invariance is
helpful because it frees us from talking constantly about invariant sets when
we discard null or meager set, since in this case a null set or meager set of
vertices is always contained in a null set or meager G-invariant set respec-
tively.

3. One-ended subforests

This section focuses on definably isolating one-ended subforests of vari-
ous classes of locally finite acyclic graphs. These subforests will subsequently
provide a skeleton along which to construct a coloring. A few of our results
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in this section generalize to locally countable graphs and in these cases we
indicate what changes need to be made in our arguments to work in this
greater generality. It is worth noting that since the graphs under investiga-
tion are acyclic, the two natural definitions of end-equivalence in terms of
deleting vertices and deleting edges in fact coincide.

Suppose G is an acyclic graph on X and every connected component of
G has one end. We can form a function f : X → X as follows. For each
x ∈ X, there is a unique infinite G-ray (xi)i∈N such that x = x0. Then define
f(x) = x1, so f points “towards” the unique end in the graph. Note that
f generates G, and since G is everywhere one-ended, there is no infinite
descending sequence x0, x1, . . . ∈ X with f(xi+1) = xi for every i. That
is, as a relation, f is well-founded. Conversely, suppose f : X → X is a
function containing no infinite descending sequence (in particular, no fixed
points). Then the graph Gf generated by f has one end in every connected
component. Thus, if H is an graph on X, finding a one-ended spanning
subforest of H is equivalent to finding a function f : X → X contained in
H admitting no infinite descending sequences.

Now suppose f : X → X is a partial function. We say that f is one-ended
if there is no infinite descending sequence x0, x1, . . . ∈ X in f . Note that
if f is a one-ended partial function, then any connected component of Gf

containing a point y not in the domain of f will contain 0 ends (and not one
end!). Our terminology here is inspired by regarding such a y /∈ dom(f) as a
“point at infinity”. In the case where f is finite-to-one, by König’s lemma, f
is one-ended if and only if all of its backward orbits f−N(x) =

⋃
n∈N f

−n(x)
are finite.

Proposition 3.1. Suppose that G is a locally finite Borel graph on a stan-
dard Borel space X, and A ⊆ X is Borel. Then there is a one-ended Borel
function f : [A]EG

\A→ [A]EG
whose graph is contained in G.

Proof. Without loss of generality we may assume that [A]EG
= X since

G � [A]EG
is a Borel graph. Let B be the set of x ∈ X \ A such that

there exists a G-ray (xi)i∈N with x0 = x and d(xi+1, A) > d(xi, A) for
all i ∈ N. Note that B is Borel by König’s lemma. By Lusin-Novikov
uniformization [14, Theorem 18.10], there is a Borel function f : X \A→ X
such that

(1) if x ∈ B, then f(x) is a neighbor of x such that f(x) ∈ B and
d(f(x), A) > d(x,A).

(2) if x /∈ B, then f(x) is a neighbor of x such that d(f(x), A) < d(x,A).

To see that f is as desired, suppose first that x /∈ B. Then f−N(x) ⊆ X \B,
and if f−N(x) were infinite an application of König’s lemma would allow the
construction of an injective G-ray as in the definition of B, contradicting
the fact that x /∈ B. On the other hand, if x ∈ B then f−N(x) ∩B is finite
and is in fact contained in

⋃
i<d(x,A) f

−i(x). Consequently f−N(x) is the
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union of this finite set with
⋃

i≤d(x,A){f−N(y) : y ∈ f−i(x) \ B}, which by

the previous case is a finite union of finite sets. �

We note that in the case where G is a locally countable Borel graph, the
same function f is one-ended. However, the function f will not be Borel in
general since while B is analytic it may not be Borel. Nevertheless, f will be
σ(Σ1

1)-measurable, where σ(Σ1
1) is the σ-algebra generated by the analytic

sets. Hence, the function f is Borel after discarding an appropriate null or
meager set.

Iteratively applying Proposition 3.1 can be used to find one-ended Borel
functions whose domains are G-invariant.

Lemma 3.2. Suppose G is a locally finite Borel graph on X, and there is
a decreasing sequence A0 ⊇ A1 ⊇ . . . of Borel sets with empty intersection
such that Ai+1 meets each connected component of G � Ai. Then there is a
one-ended Borel function f : [A0]EG

→ [A0]EG
whose graph is contained in

G.

Proof. We may assume A0 is G-invariant by replacing A0 with [A0]EG
. Ap-

ply Proposition 3.1 to find a one-ended Borel functions fi : (Ai \Ai+1)→ Ai

whose graph is contained in G. Then let f =
⋃

i fi. The function f will be
one-ended since any decreasing sequence in f would contain a subsequence
which is decreasing in some fi. �

Indeed, the hypothesis of Lemma 3.2 is equivalent to the existence of a
Borel one-ended function whose graph is contained in G; if f is a one-ended
Borel function, then let An = fn[X].

Next, we use Lemma 3.2 to construct one-ended Borel functions with
conull domain in bounded degree acyclic Borel graphs with an additional
property that we call ampleness.

Definition 3.3. We say that a graph G on X is ample if every vertex
has degree at least 2, and for all x ∈ X every connected component of
G � (X \ {x}) contains a vertex of degree at least 3.

Geometrically, an acyclic locally finite graph is ample if it contains no
isolated ends. Equivalently, an acyclic locally finite graph G is ample if it
can be obtained from an acyclic graph with each vertex of degree at least 3
by “subdividing” each edge by adding some vertices of degree 2.

Lemma 3.4. Suppose that G is a bounded-degree acyclic Borel graph on
a standard Borel space X. Suppose moreover that G is ample. Let µ be a
Borel probability measure on X. Then there is a µ-conull Borel set B and
a one-ended Borel function f : B → X whose graph is contained in G.

Proof. Fix d bounding the degree of vertices of G, so d ≥ 3. The heart of
the construction rests in the following claim.

Claim. There is a Borel subset A ⊆ X meeting each connected component
of G and with µ(A) ≤ 1− d−3, such that G � A is ample.
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Proof of the claim. Let X ′ = {x ∈ X : degG(x) ≥ 3} and define an auxiliary
graph G′ on X ′ by putting x G′ y if x EG y and the unique G-path from
x to y contains no other points of X ′. Define a Borel map π : X → X ′

selecting for each x a closest element of X ′ with respect to the graph metric
on G. Let ν = π∗µ be the pushforward measure of µ on X ′ under π, so
ν(B) = µ(π−1(B)) for all Borel B.

Finally, letH be the distance≤ 3 graph associated withG′, so two distinct
points of X ′ are H related if they are connected by a G′ path of length at
most 3. Now H has degree bounded by d3−1, and hence by [16, Proposition
4.6] a Borel coloring in d3 colors. Consequently, there is an H-independent
Borel set C ′ ⊆ X ′ with ν(C ′) ≥ d−3.

Define C ⊆ X by x ∈ C if x ∈ C ′ or x ∈ X \X ′ and can be connected to
a point in C without using any other points of X ′. Note that π−1(C ′) ⊆ C,
so in particular µ(C) ≥ d−3. We then set A = X \ C, and check that A
satisfies the conclusion of the claim.

The G′-independence of C (in conjunction with the ampleness of G) im-
plies that A meets each G-component. The only thing remaining to check
is that G � A is ample. Note that the only way a vertex x in X ′ can have
(G � A)-degree less than three is if it is G′-adjacent to an element of C. So
the fact that distinct points of C have G′ distance at least four implies that
x has two G′ neighbors in X ′ whose (G � A)-degree remains 3. In particular,
the degree of x is two. Moreover, if x were used to witness the ampleness
condition of one of its neighbors, the condition can be witnessed instead by
the other neighbor. So G � A is ample and the claim is proved. �

By iterating the claim, we may build a decreasing sequence A0 ⊇ A1 ⊇ . . .
of Borel sets so that A0 = X, Ai+1 meets each component of G � Ai,
and µ (

⋂
iAi) = 0. Since we may assume that G is µ-quasi-invariant, after

discarding the µ-null saturation of
⋂

iAi, we can then apply Lemma 3.2. �

The same idea works in the context of Baire category, even in the more
general context where G is not bounded degree.

Lemma 3.5. Suppose that G is a locally finite acyclic Borel graph on a
standard Borel space X. Suppose moreover that Y is a Borel set and G � Y
is ample. Let τ be a Polish topology compatible with X. Then there is a
G-invariant Borel set B ⊆ Y such that Y \B is τ -meager and a one-ended
Borel function f : B → X whose graph is contained in G.

Proof. The proof is very similar to Lemma 3.4 above. The statement to
prove in place of the above claim is the following: (∗) For any non-empty τ -
open set U there is a Borel subset A ⊆ Y meeting each connected component
of G � Y and with U \ A non-meager, such that G � A is ample. The
proof of (∗) is the same as the proof of the claim except that we choose
the H-independent Borel set C ⊆ X3 with U ∩ π−1(C) non-meager. Then
we fix a countable base {Uk}k∈N of open sets for τ and, as in part 1., we
iteratively apply (∗) to build a decreasing sequence (Ai)i∈N of Borel sets
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so that A0 = X, Ai+1 meets each component of G � Ai, and with Ui \ Ai

non-meager. It follows that Uk \
⋂

iAi is non-meager for all k ∈ N, and
therefore

⋂
iAi is meager. The rest of the proof is as before. �

Next, we show that we can reduce the problem of proving Theorem 1.5
to the case of ample graphs.

Lemma 3.6. Suppose G is a locally finite acyclic Borel graph on a standard
Borel space X and no connected component of G has 0 or 2 ends. Then
there is a Borel set B such that G � B is ample, and there is a one-ended
Borel function f : (X \ [B]EG

) → (X \ [B]EG
) contained in the graph of

G � (X \ [B]EG
).

Proof. Let A be the set of x ∈ X such that there are disjoint rays (yi)i∈N
and (zi)i∈N such that y0 and z0 are neighbors of x. Note that A is Borel
by König’s lemma. Now every vertex in the induced subgraph G � A has
degree at least 2. Furthermore, every connected component of G � A has at
least 3 ends, since A does not meet any connected component of G with 1
end, G contains no connected components with 0 or 2 ends.

Consider the set X \ [A]EG
of connected components that do not contain

any element of A. This is the set of connected components of G that each
have 1 end. Clearly G � X \ [A]EG

has a Borel one-ended subforest on this
set: map each x to the unique neighbor y such that there is an injective
G-ray (zi) with z0 = x and z1 = y.

For each i ∈ N, let An be the set of x ∈ A such that x has distance at
least n from every vertex y with degG�A(y) ≥ 3, and x is contained in an
isolated end of G � A. Here by x being contained in an isolated end, we
mean that there is an injective (G � A)-ray (xi)i∈N such that x = x0, and
every xi has degree 2. Note that each An is a Borel set. Now applying
Lemma 3.2 to the sequence A0 ⊇ A1 ⊇ . . . we can find a one-ended Borel
function of G � [A0]EG

.
Let B = A \ [A0]EG

. Then clearly G � (X \ [B]EG
) has a Borel one-

ended spanning subforest (since G � (X \ [A]EG
) and G � [A0]EG

both do).
Furthermore, G � B is ample, since every vertex of G � A has degree at least
2, and G � B has no isolated ends by the definition of A0. �

We note that Lemma 3.6 generalizes to locally countable graphs, but
where B is analytic, and the one-ended subforest of G � (X \ [B]EG

) will be
σ(Σ1

1)-measurable.
We are now ready to prove Theorem 1.5.

Theorem 3.7. Suppose that G is a locally finite acyclic Borel graph on a
standard Borel space X, such that no connected component of G has 0 or 2
ends.

(1) Let µ be a Borel probability measure on X. Then there is a µ-conull
Borel set B and a one-ended Borel function f : B → X whose graph
is contained in G.
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(2) Let τ be a compatible Polish topology on X. Then there is a τ -
comeager Borel set B and a one-ended Borel function f : B → X
whose graph is contained in G.

Proof. 2 follows directly from Lemma 3.6 and then Lemma 3.5 and Propo-
sition 3.1.

We prove 1. By Lemma 3.6 we may assume that G is ample. By
Lemma 3.4 and Proposition 3.1 the theorem is true when G has bounded
degree.

By [16, Proposition 4.10], we may find a Borel edge coloring of G with
N colors. Let Gn be the subgraph of G consisting of all edges assigned a
color ≤ n so that Gn is a bounded degree Borel graph. Let An = {x ∈
X : Gn � [x]EGn

does not have 0 or 2 ends}. Then the graph Gn � An is
bounded degree, and so we can find a Borel one-ended subforest of each
Gn � An modulo a nullset, by our observation about bounded degree graphs
above.

Thus, modulo a nullset, we can find a Borel one-ended subforest of each
G � [An]EG

via Proposition 3.1, and hence a Borel one-ended subforest of
G � [

⋃
nAn]EG

.
So we need only need to construct our one-ended subforest on the graph

G � (A \ [
⋃

nAn]EG
). Now each Gn � (X \An) is either 0 or 2-ended. Thus,

each Gn � (X \An) is µ-hyperfinite since connected components with 0 ends
are finite, and for those with 2 ends we can apply [13, Lemma 3.20]. Hence
G � (A \ [

⋃
nAn]EG

) is an increasing union of µ-hyperfinite graphs and is
hence also µ-hyperfinite by [15, Theorem 6.11]. Thus, by a result of Adams,
[13, Lemma 3.21], there is a Borel assignment of one or two ends to each
equivalence class of the graph G � (A\ [

⋃
nAn]EG

), modulo a nullset. Let C1

be set where there is a Borel assignment of one end, and C2 be the subset
where there is a Borel assignment of two ends.

Since G is acyclic, any two ends in a connected component of G are jointed
by a unique line. Let Bn ⊆ C2 be the set of points of distance at least n
from this distinguished line. Since G � C2 is acyclic, each point has degree
at least 2, and each connected component does not have 2 ends, Bn+1 meets
each connected component of G � Bn and hence we can apply Lemma 3.2 to
the sequence B0 ⊇ B1 to find a one-ended function contained in the graph
of G � C2.

On the set C1, there is a Borel function g : C1 → C1 generating G � C1

corresponding to the unique choice of end. In particular, for every x, y ∈ C
there are n,m ∈ N such that fn(x) = fm(y). By Lusin-Novikov uniformiza-
tion [14, Theorem 18.10], we can find a Borel function h : C1 → C1 such that
for every x ∈ X, g(h(x)) = x. Consider the set C∗ ⊆ C1 of connected com-
ponents in G � C1 on which h is not one-ended. Then the set of x such that
h(g(x)) = x forms a unique bi-infinite line in C∗, and hence we can find a
one-ended Borel function on C∗ as we did above on the set C2. On C1 \C∗,
the function h is one-ended, so we are done. �
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We note here that (1) in Theorem 1.5 can be generalized to locally count-
able graphs. Several of the functions and sets that we have used in our
argument will be analytic and σ(Σ1

1)-measurable, but these will become
Borel after discarding a nullset. The only other modification we need to
make is that in the proof above, locally countable acyclic graphs with 0
ends are not necessarily finite, but they are smooth by [20, Theorem A],
and hence hyperfinite.

In recent work joint with Damien Gaboriau, the authors have extended
Theorem 1.5 to characterize exactly when a (not necessarily acyclic) measure
preserving locally finite graph G has a one-ended spanning subforest.

Now we use the ability to find one-ended functions inside a graph to help
definably color the graph.

The following proposition is a trivial modification of [16, Proposition 4.6].
It is proved by partitioning the set B into countably many G-independent
Borel sets A0, A1, . . . and then coloring each vertex the least color in L(x)
(with respect to a Borel linear ordering of Y ) not already used by one of its
neighbors.

Proposition 3.8. Suppose G is a locally finite Borel graph on a standard
Borel space X and B ⊆ X is Borel. Then if Y is a Polish space and
L : B → [Y ]<∞ is a Borel function such that for every x ∈ B, dG�B(x) <
|L(x)|. Then G � B has a Borel coloring from the lists L.

We now have the following lemma which is essentially identical to [6,
Lemma 2.18].

Lemma 3.9. Suppose that G is a locally finite Borel graph on a standard
Borel space X, B is a Borel subset of X and f : B → X is a one-ended
Borel function whose graph is contained in G. If Y is a Polish space and
L : B → [Y ]<∞ is a Borel function such that L(x) ≥ degG(x) for every
x ∈ B, then G � B has a Borel coloring from the lists L.

Proof. Let Bi = B ∩ (f i[B] \ f i+1[B]) so that Bi consists of the points in B
that have rank i in the graph generated by f . Note that B is the disjoint
union of B0, B1, . . .. We will define a coloring c of G � B from the lists L.
Let L0 = L. Now iteratively apply Proposition 3.8 to color G � Bi from
the lists Li, and then define Li+1(x) = Li(x) \ {c(y) : y ∈ N(x) ∧ (∃j <
i)y ∈ Bj}. Note that since each x ∈ Bi has at least one neighbor f(x) not
in B0, . . . , Bi−1, that dG�Bi(x) < Li(x). �

Corollary 3.10. Suppose that G is a locally finite Borel graph on a standard
Borel space X and there exists a one-ended Borel function f : X → X whose
graph is contained in G. Then G is Borel degree-list-colorable.

We note that this implies that for every finite d there is an acyclic Borel
graph G on X of degree d such that there is no one-ended Borel function
f : X → X whose graph is contained in G. This is because by [19, Theorem
1.3] for every finite d, there is an acyclic Borel graph of degree d with no
Borel d-coloring.
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4. A proof of the measurable Brooks’s theorem

We are now ready to prove Theorem 1.4 from the introduction.

Theorem 4.1. Suppose that G is a locally finite Borel graph on a stan-
dard Borel space X and let B be the set of vertices contained in connected
components of G that are not Gallai trees. Then G � B is Borel degree-list-
colorable.

Proof. Let [EG]<∞ ⊆ [X]<∞ be the finite subsets S of X that are contained
in a single connected component of G. Let GI be the intersection graph on
[EG]<∞ so R GI S if R ∩ S 6= ∅. Then GI has a Borel N-coloring cI (see
[15, Lemma 7.3] and [7, Proposition 2]).

If S ⊆ X is a finite set, its boundary in G is ∂S = {y /∈ S : ∃x ∈ S(x G
y)}. Let A ⊆ [EG]<∞ be collection of finite sets S such that each connected
component of G � S is not a Gallai tree. Let A′ ⊆ A be the set of S ∈ A
such that cI(S ∪ ∂S) ≤ cI(R ∪ ∂R) for all R ∈ A in the same G-component
as S. Let B′ =

⋃
A′, so B′ ⊆ B, and each connected component of G � B′

is finite and not a Gallai tree, and B′ meets each connected component of
G � B.

Let L : X → [Y ]<∞ be an assignment of lists to each element of x so that
degG(x) = |L(x)|. By Proposition 3.1, we can find a one-ended function
f : B \B′ → B, and by Lemma 3.9 we can find a coloring c of G � (B \B′)
from the lists L. Now let L′ : B′ → [Y ]<∞ be defined by L′(x) = L(x)\{c(y) :
y G x and y ∈ B \ B′}. To finish, there is at least one coloring of each
connected component of G � B′ from the lists L′. Hence, by Lusin-Novikov
uniformization [14, Theorem 8.10] we can extend c to a coloring of G � B
from the lists L. �

We are now ready to prove a version of Theorem 1.2 for list colorings.

Theorem 4.2. Suppose that G is a locally finite Borel graph on a standard
Borel space X and G contains no connected components that are finite Gallai
trees, and no infinite connected components that are 2-ended Gallai trees.

(1) Let µ be any Borel probability measure on X. Then there is a µ-
conull G-invariant Borel set B so that G � B is Borel degree-list-
colorable.

(2) Let τ be any Polish topology compatible with the Borel structure on
X. Then there is a G-invariant comeager Borel set B so that G � B
is Borel degree-list-colorable.

Proof. The theorem follow by combining Theorem 4.1, Theorem 1.5, and
Corollary 3.10.

Let A be the set of vertices contained in connected components of G that
are not Gallai trees. Then G � A is Borel degree-list-colorable by Theo-
rem 4.1. Hence, we may as well assume that every connected component of
G is an infinite Gallai tree.
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Now let Y ⊆ [X]<∞ be the Borel set of blocks of G, and consider the
intersection graph GI � Y on blocks so that two distinct blocks R,S ∈ Y
are adjacent if R∩S 6= ∅. Since these blocks are maximal biconnected com-
ponents of G, there cannot be any cycles in GI , since such a cycle would
imply its constituent blocks were not maximal biconnected components of G.
Similarly, any two blocks intersect at a unique vertex. Finally, since no con-
nected components of G are 2-ended Gallai trees, no connected components
of GI � Y have 0 or 2 ends.

Thus, by Theorem 1.5 we can find a Borel one-ended subforest of GI � Y
modulo a null or meager set induced by a function f . The function f then
“lifts” to a one-ended function f̂ contained in G as follows. Fix a Borel linear
orderings <X of X and <Y of Y . Now given a vertex x, since each connected
component of G is a locally finite infinite Gallai tree, x is contained at least
one and at most finitely many blocks of G. Let g(x) be the <Y -least block
containing x. Now define a Borel function g′(x) by letting g′(x) = g(x) if
x is not contained in f(g(x)), and g′(x) = f(g(x)) otherwise. Hence, g′(x)
maps each vertex x to a block containing x so that x is not in f(g′(x)). Now

let the function f̂ map each x to the next vertex along the <X -lex least path
from x to an element of f(g′(x)).

We then finish the proof of the theorem by applying Corollary 3.10 to
f̂ . �

We note that one application of the above theorem is a new way of con-
structing antimatchings (see [19]). Recall that an antimatching of a graph
G on a set X is a Borel function f : X → X contained in the graph of G
such that for every x, we have f(f(x)) 6= x. If G is a locally finite graph,
then we can map each x to the set L(x) of edges in G incident to x. Then
a coloring c of G from the lists L can be used to define an antimatching, by
letting f(x) be the unique neighbor y of x in the edge c(x) = {x, y}.

We can now prove Theorem 1.2 from the introduction:

Proof of Theorem 1.2: Suppose G is a Borel graph of bounded degree at
most d, and G does not contain a complete graph on d+ 1 vertices. Let A
be the set of vertices of degree strictly less than d. We begin by d-coloring
the connected components [A]EG

contain an element of A. Our idea is to
color some element of A′ “last.”

To begin, let A′ ⊆ A be G-independent Borel set that meets every con-
nected component of G � [A]EG

. Such an A′ exist by taking a Borel (d+ 1)-
coloring of G by [16, Proposition 4.6] and then letting A′ be the elements of
A assigned the least color among all elements of A′ in the same connected
component. Now apply Proposition 3.1, and Lemma 3.9 to obtain a Borel
d-coloring of G � [A]EG

\A′, and then color each element of A′ the least color
not already used by one of its neighbors.

To finish, we need to color the remainder G � (X \ A) and so it suffices
to show that Theorem 1.2 is true for d-regular graph. But this follows from
Theorem 4.2 since the only finite Gallai trees that are d-regular are complete
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graphs on d+1 vertices, and the only infinite regular two-ended Gallai trees
are bi-infinite lines. �

We briefly discuss an alternate way of proving Theorem 1.2. The case
d = 3 of the theorem is fairly easy to analyze directly. One can then reduce
to the case d = 3 by iteratively removing maximal independent sets meeting
every d-clique using the following proposition.

Proposition 4.3. Suppose G is a Borel graph on a standard Borel space X
of finite bounded degree ≤ d, where d ≥ 3. Suppose further that G contains
no cliques on d+ 1 vertices.

(1) Let µ be any Borel probability measure on X. Then there is a µ-
measurable maximal independent set A ⊆ X that meets every d-
clique contained in G.

(2) Let τ be any Polish topology compatible with the Borel structure on
X. Then there is a Baire measurable maximal independent set A ⊆
X that meets every d-clique contained in G.

Of course, this proposition follows from Theorem 1.2 by extending one of
the colors in a d-coloring (which must meet every d-clique) to a maximal
independent set. However, it is also simple to prove this proposition directly.
Let Y ⊆ X be the vertices that are contained in a unique d-clique. Then let
E and F be the relations on Y where x E y if the unique d-cliques containing
x and y are equal and x F y if x = y or x and y are adjacent in G and are
not E-related. One can then use [19, Lemma 4.4.1] to find a µ-measurable
or Baire measurable set A meeting every E-class in exactly one point and
every F -class in at most one point. From here, extending A to the desired
set is straightforward.

5. Applications to group actions

We consider now (almost everywhere) free, measure-preserving actions of
a finitely generated group Γ on a standard probability space (X,µ). Denote
by FR(Γ, X, µ) the set of such actions. With each a ∈ FR(Γ, X, µ) and finite,
symmetric generating set S of Γ not containing the identity we may associate
a graph G(S, a) on X by declaring x and y adjacent if there exists s ∈ S
with s · x = y. Freeness of the action implies that almost every connected
component of G(S, a) is isomorphic to the Cayley graph Cay(Γ, S).

In [5, Theorem 6.1] it is shown that for finitely generated infinite groups
Γ, any a ∈ FR(Γ, X, µ) is weakly equivalent to some b ∈ FR(Γ, X, µ) whose
associated graph G(S, b) is measure-theoretically |S|-colorable. Theorem
1.2 eliminates the need to pass to a weakly equivalent action for almost all
groups.

Corollary 5.1. Suppose that Γ is an infinite group with finite, symmetric
generating set S such that |S| ≥ 3. Then for any a ∈ FR(Γ, X, µ) the graph
G(S, a) admits a Borel |S|-coloring on a conull set.
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Remark 5.2. The only infinite groups with symmetric generating sets S
satisfying |S| < 3 are Z with S = {±1} and (Z/2Z) ∗ (Z/2Z) = 〈a, b | a2 =
b2 = id〉 with S = {a, b}. Indeed, no graph associated with a free mixing
action of either group admits a Borel 2-coloring on a conull set.

Finally, the methods of section 3 may be used in conjunction with some
techniques from probability to improve known bounds on the colorings of
Cayley graphs attainable by factors of IID. We consider the Bernoulli shift
action of a countable group Γ on the space [0, 1]Γ equipped with product
Lebesgue measure µ, where γ ·x(δ) = x(γ−1δ). Denote by G(Γ, S) the graph
associated with the Bernoulli shift and generating set S. For convenience we
sometimes work instead with the shift action of Γ on [0, 1]E , where E is the
edge set of the (right) Cayley graph Cay(Γ, S) (and as usual Γ acts by left
translation on the Cayley graph). We denote the corresponding graph on
[0, 1]E by G′(Γ, S). Since the shift action on [0, 1]E is measure-theoretically
isomorphic to the Bernoulli shift on [0, 1]Γ, we lose nothing by working with
G′(Γ, S) rather than G(Γ, S).

We may use each x ∈ [0, 1]E to label the edges of its connected com-
ponent in G′(Γ, S), assigning (γ · x, sγ · x) the label x(γ−1, γ−1s−1). The
structure of the action ensures that this labeling is independent of the par-
ticular choice of x, and in particular this labeling is a Borel function from
G′(Γ, S) to [0, 1]. Following [18] we obtain the wired minimal spanning for-
est, WMSF(G′(Γ, S)), by deleting those edges from G′(Γ, S) which receive
a label which is maximal in some simple cycle or bi-infinite path. By con-
struction, WMSF(G′(Γ, S)) is acyclic.

Theorem 5.3 (Lyons-Peres-Schramm). Suppose that Γ is a nonamenable
group with finite symmetric generating set S, and consider the graph G′(Γ, S)
defined above. There is a conull, G′(Γ, S)-invariant Borel set B ⊆ [0, 1]E on
which each connected component of WMSF(G′(Γ, S)) has one end.

Proof. See [18, Theorem 3.12], which says WMSF(G′(Γ, S)) is almost surely
one-ended provided the Cayley graph of Γ has no infinite clusters at critical
percolation. This holds for nonamenable Cayley graphs by [3, Theorem
1.1]. �

Let AutΓ,S be the automorphism group of the Cayley graph Cay(Γ, S).
Given a group Γ with generating set S and a natural number k, we may view
the space Col(Γ, S, k) of k-colorings of the (right) Cayley graph Cay(Γ, S)
as a closed (thus Polish) subset of kΓ. The action of Γ by left transla-
tions on Cay(Γ, S) induces an action on Col(Γ, S, k). An automorphism-
invariant random k-coloring of Cay(Γ, S) is a Borel probability measure on
Col(Γ, S, k) invariant under this AutΓ,S action. Such a random k-coloring

is a factor of IID if it is a factor of the Bernoulli shift of AutΓ,S on [0, 1]Γ.
That is, letting λ be Lebesgue measure on [0, 1], a random k-coloring ν is a
factor of IID if there is a µ-measurable equivariant function f : [0, 1]Γ → kΓ

such that ν is the pushforward of the product measure µΓ under f .
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In Section 5 of [17] it is asked for which k can automorphism-invariant
random k-colorings of Cayley graphs be attained as IID factors (see also
[1, Question 10.5]). In [5, Corollary 6.4] translation-invariant random d-
colorings of Cayley graphs are constructed, where as usual d is the degree
of the graph, but this involves passing to actions weakly equivalent to the
Bernoulli shift (or alternatively taking weak limits of IID factors). We can
now strengthen this result, giving d-colorings as IID factors except in the
cases Z and (Z/2Z) ∗ (Z/2Z) where there is the usual ergodic-theoretic ob-
struction.

Corollary 5.4. Suppose that Γ is a countable group not isomorphic to Z
or (Z/2Z) ∗ (Z/2Z), and suppose that S is a finite symmetric generating
set for Γ with |S| = d. Then there is an automorphism-invariant random
d-coloring of Cay(Γ, S) which is an IID factor.

Proof. In the case that Γ is amenable, it has finitely many ends, and so
we can apply [5, Theorem 6.7]. Otherwise, Γ is nonamenable and we can
apply Corollary 3.10 to obtain from WMSF(G′(Γ, S)) a Borel d-coloring
c : B → d of the restriction of G(Γ, S) to the conull set B ⊆ [0, 1]Γ on which
WMSF(G′(Γ, S)) has one end. Define π : B → Col(Γ, S, d) by (π(x))(γ) =
c(γ−1 · x). Then π∗µ is a automorphism-invariant random d-coloring which
is a factor of IID by construction, where as usual π∗µ(A) = µ(π−1(A)). �

Remark 5.5. Russ Lyons (private communication) points out that this
method of proof using spanning forests works for finitely generated groups
of more than linear growth by using instead the wired uniform spanning
forest (WUSF); see Section 10 of [4]. The realization of the WUSF as a
factor of IID follows from Wilson’s algorithm rooted at infinity (see [11,
Proof of Proposition 9]) in the transient case and Pemantle’s strong Følner
independence [22] in the amenable case.

6. The case d = 2

In this section, we prove Theorem 1.6, giving a measurable analogue of
Brooks’s theorem for the case d = 2.

Given a graph G on X, let the equivalence relation E2,G be the equivalence
relation on X where x E2,G y if x and y are connected by a path of even
length in G. Then in the case where X is finite, we can rephrase the existence
of an odd cycle in the following way: there is a nonempty G-invariant subset
A of X such that every nonempty E2,G-invariant subset of A is G-invariant.

Now, in the measurable context, even without the presence of odd cycles,
there are Borel graphs G and measures µ for which every E2,G-invariant
Borel set differs by a nullset from a Borel G-invariant set. For example,
the Borel graph GS = {(x, y) ∈ T2 : S(x) = y or S(y) = x} induced by an
irrational rotation S : T→ T of the unit circle is 2-regular and acyclic, and
since S2 is ergodic with respect to Lebesgue measure, every non-null E2,G-
invariant Borel set is Lebesgue conull. It follows that GS does not admit a
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µT-a.e. Borel 2-coloring, as the color sets in a measurable 2-coloring would
have to be disjoint, E2,G-invariant, and non-null since GS is induced by a
measure preserving transformation and is hence quasi-invariant. Likewise,
there is no Baire measurable 2-coloring of GS with respect to the usual
topology on T since every non-meager E2,G-invariant Borel set of vertices in
GS is comeager.

If we regard the phenomenon described above as generalization of pos-
sessing on odd cycle, then we have the following generalization of Brooks’s
theorem in the case d = 2:

Theorem 6.1. Suppose G is a Borel graph on a standard Borel space X
with vertex degree bounded by d = 2 such that G contains no odd cycles.
Let E2,G be the equivalence relation on X where x E2,G y if x and y are
connected by a path of even length in G.

(1) Let µ be a G-quasi-invariant Borel probability measure on X. Then
G admits a µ-measurable 2-coloring if and only if there does not exist
a non-null G-invariant Borel set A such that every E2,G-invariant
Borel subset of A differs from a G-invariant set by a nullset.

(2) Let τ be a G-quasi-invariant Polish topology compatible with the
Borel structure on X. Then G admits a Baire measurable 2-coloring
if and only if there does not exist a non-meager G-invariant Borel
set A so that every E2,G-invariant Borel subset of A differs from a
G-invariant set by a meager set.

Proof. We prove just part 1, since the proof of 2 is similar. Assume first
that G admits a µ-measurable 2-coloring with colors sets C0 and C1. Now
C0 and C1 must both be non-null, since µ is G-quasi-invariant. However, if
A is a non-null G-invariant Borel set, then A∩C0 is E2,G-invariant, however
A ∩ C0 cannot differ from a G-invariant Borel set by a nullset since µ is
G-quasi-invariant.

For the converse, assume that for every µ-measurable non-null G-invariant
set A we can find a µ-measurable E2,G-invariant C ⊆ A which is not within
a null-set of being G-invariant. Then the sets C0 = {x ∈ C : [x]EG

\C 6= ∅}
and C1 = [C0]EG

\ C0 are non-null, and they determine a µ-measurable 2-
coloring of G � [C0]EG

. We may continue this process on X \ [C0]EG
, and

by measure theoretic exhaustion we can obtain a µ-measurable 2-coloring
c : Y → {0, 1} of G � Y for some G-invariant conull Y ⊆ X. �

A. Borel vs measurable colorings

Let (Z/2Z)∗d be the d-fold free product of the group Z/2Z. This group

acts via the left shift action on the standard Borel space N(Z/2Z)∗d . Let

X = {x ∈ N(Z/2Z)∗d : γ · x 6= x for all nonidentity γ ∈ (Z/2Z)∗d} be the
free part of this action. Let G((Z/2Z)∗d,N) be the Borel graph on X where
x is adjacent to y if there is a generator γ of (Z/2Z)∗d such that γ · x = y
or γ · y = x. Note this graph is acyclic and d-regular. As discussed in the
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introduction, Marks [19, Theorem 1.2] has shown that this graph has no
Borel d-coloring. However, our Theorem 1.2 shows that for every d ≥ 3,
there is a µ-measurable and Baire measurable d-coloring of G((Z/2Z)∗d,N)
with respect to any Borel probability measure or compatible Polish topology
on X.

Hence, for all finite d ≥ 3, for Borel graphs G, admitting µ-measurable d-
coloring with respect to every Borel probability measure is a strictly weaker
notion than admitting a Borel coloring, as is admitting a Baire measurable
d-coloring with respect to every compatible Polish topology, as witnessed
by these explicit graphs given above. In this appendix, we show that for 2-
colorings these notions are the same, even without any degree assumptions
on G.

Proposition A.1. Let G be a locally countable Borel graph on a standard
Borel space X. Then the following are equivalent:

(1) G admits a Borel 2-coloring.
(2) For every Borel probability measure µ on X, G admits a µ-measurable

2-coloring.
(3) For every compatible Polish topology τ on X, G admits a Baire mea-

surable 2-coloring.

Proof. This is actually a Corollary of a more general unpublished result of
Louveau (see [21, Theorem 15]). We sketch Louveau’s argument in this
special case, which uses the G0-dichotomy [16, Theorem 6.6]. We will
prove the equivalence of 1. and 2., since the proof of the equivalence of
1. and 3. is similar. It suffices to show that if G admits no Borel 2-
coloring then G admits no µ-measurable 2-coloring for some Borel prob-
ability measure µ on X. If G contains an odd cycle then it cannot be
2-colored at all, so we may assume that G contains no odd cycles. Let
Godd = {(x, y) ∈ X2 : dG(x, y) is odd}, where dG : X2 → N ∪ {∞} de-
notes the graph distance in G. Then Godd admits no Borel N-coloring.(
Otherwise, by [16, Proposition 4.2] there is a maximal Godd-independent

set A ⊆ X which is Borel, and since G contains no odd cycles the set X \A
is Godd-independent as well, which contradicts that G admits no Borel 2-
coloring.

)
It follows from [16, Theorem 6.6] that there is an injective Borel

homomorphism f : 2N → X from the graph G0 to Godd. Then f is a homo-
morphism from Godd

0 = {(u, v) ∈ (2N)2 : dG0(u, v) is odd} = {(u, v) ∈ 2N :
u and v differ on an odd number of coordinates} to Godd. Let ν denote the
uniform product measure on 2N. Then every Borel Godd

0 -independent set
is ν-null (see [6, Example 3.7]), hence every Borel Godd-independent set
is f∗ν-null. Fix by the Feldman-Moore theorem [15, Theorem 1.3] a se-
quence (Ti)i∈N of Borel automorphisms such that EG =

⋃
i graph(Ti) and

let µ =
∑

i 2−i(Ti)∗f∗ν, so that µ is a G-quasi-invariant probability measure
with the same G-invariant null sets as f∗ν. Suppose toward a contradiction
that there is a µ-measurable 2-coloring of G. Then there is a Borel 2-coloring
c : B → {0, 1} of G � B for some G-invariant µ-conull Borel subset B ⊆ X.
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Since B is invariant, c is a 2-coloring of Godd � B, and since B is µ-conull
it is f∗ν-conull, so either c−1(0) or c−1(1) is a Borel Godd-independent set
with positive f∗ν-measure, a contradiction. �
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