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Abstract. In this note, we give a short proof of the theorem due to Connes,

Feldman, and Weiss that a countable Borel equivalence relation on a standard
probably space (X,µ) is µ-hyperfinite if and only if it is µ-amenable.

1. Introduction

Recall that a Borel equivalence relation E on a standard Borel space X is said to
be finite if every equivalence class of E is finite, and countable if every equivalence
class of E is countable.

Definition 1.1. A countable Borel equivalence relation E on a standard Borel
space X is hyperfinite if there is an increasing sequence F0 ⊆ F1 ⊆ . . . of finite
Borel equivalence relations such E =

⋃
Ei. A countable Borel equivalence relation

E on a standard probability space (X,µ) is said to be µ-hyperfinite if there is a
µ-conull Borel set A such that E � A is hyperfinite.

Note that throughout this note we do not assume that E is µ-invariant (or even
µ-quasi-invariant).

By the Feldman-Moore theorem, every countable Borel equivalence relation
arises as the orbit equivalence relation of a Borel action of a countable group.

Theorem 1.2 (Feldman-Moore, see [KM, Theorem 1.3]). Suppose E is a countable
Borel equivalence relation on a standard Borel space X. Then there is a Borel
action Γ ya X of a countable discrete group Γ on X such that E is equal to the
orbit equivalence relation Ea of this action where x Ea y if there exists γ ∈ Γ such
that γ · x = y.

Analogously to the theory of amenable groups, one can develop a theory of
amenable equivalence relations. Roughly, a countable Borel equivalence relation E
on standard Borel space X is said to be amenable if there is a Borel way of assigning
Reiter functions to each equivalence class of E. Note that in the literature (see for
instance [JKL]) what we call amenability is sometimes called 1-amenability. We
use `1(X)+ to denote the set of functions from X → [0,∞) that are summable.

Definition 1.3. Suppose E is a countable Borel equivalence relation on X. Then
E is amenable if there is a Borel sequence λn : E → [0, 1] of functions assigning
each pair of E-related points (x, y) ∈ E to some λn(x, y) ∈ [0, 1] such that if we let
λnx(y) = λn(x, y), then

(1) λnx ∈ `1([x]E)+ and ‖λnx‖ = 1.
(2) For all (x, y) ∈ E, we have ‖λnx − λny‖1 → 0 as n→∞.

Date: November 20, 2017, updated March 4, 2019.

1



2 ANDREW MARKS

If E is a countable Borel equivalence relation on a standard probability space (X,µ),
then we say E is µ-amenable if there is a conull Borel set A such that E � A is
amenable.

In this note, we give a short proof of the following fundamental theorem due to
Connes, Feldman, and Weiss:

Theorem 1.4 ([CFW]). Suppose E is a countable Borel equivalence relation on a
standard probability space (X,µ). Then E is µ-hyperfinite iff E is µ-amenable.

The main difference between our proof and other arguments in the literature
is that we avoid the use of Radon-Nikodym derivatives, following a suggestion of
Robin Tucker-Drob. In Section 2 we give some examples of amenable equivalence
relations. In Sections 3 and 4 we review some well-known facts about µ-hyperfinite
equivalence relations. In Section 5 we give our proof of the Connes-Feldman-Weiss
theorem.

2. Examples of amenable equivalence relations

We briefly give several examples of amenable Borel equivalence relations.

Proposition 2.1. Suppose E is a countable Borel equivalence relation which admits
a Borel transversal A ⊆ X (that is, E is smooth). Then E is amenable.

Proof. This is witnessed by

λn(x, y) =

{
0 if y /∈ A
1 if y ∈ A.

�

Proposition 2.2. Suppose Γ is a countable amenable group and Γ ya X is a Borel
action of Γ. Then Ea is amenable.

Proof. Let fn : Γ → [0, 1] be a sequence of Reiter functions for Γ. Then the
amenability of Ea is witnessed by the functions

λn(x, y) =
∑

{γ∈Γ:γ·x=y}

fn(γ)

�

Proposition 2.3. Suppose E is a hyperfinite Borel equivalence relation. Then E
is amenable

Proof. Let the hyperfiniteness of E be witnessed by F0 ⊆ F1 ⊆ . . .. Then the
amenability of E is witnessed by the functions

λn(x, y) =

{
0 if y /∈ [x]Fn

1
|[x]Fn |

if y ∈ [x]Fn

�

The converse of Proposition 2.3 is an important open problem:

Open Problem 2.4 (See [KM, page 30]). Suppose E is a countable Borel equiva-
lence relation. If E is amenable, is E hyperfinite?
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3. Characterizing µ-hyperfiniteness with finite subequivalence
relations

One of the tools we will need to prove that Connes-Feldman-Weiss theorem is the
theorem of Dye and Krieger that an increasing union of µ-hyperfinite Borel equiva-
lence relations is µ-hyperfinite. This follows from the fact that a Borel equivalence
relation E is µ-hyperfinite if it can be approximated well by finite Borel equivalence
relations.

Lemma 3.1. Suppose E is a countable Borel equivalence relation on a standard
probability space (X,µ) generated by a Borel action of a countable group Γ ya X.
Then E is µ-hyperfinite iff for every ε > 0 and every finite set S ⊆ Γ, there is a
Borel equivalence relation F ⊆ E with finite classes such that

µ({x ∈ X : ∀γ ∈ S(γ · x F x)}) > 1− ε

Proof. ⇒: Suppose that E is µ-hyperfinite as witnessed by F0 ⊆ F1 ⊆ . . .. Pick a
finite S ⊆ Γ and let

Ak = {x ∈ X : ∀γ ∈ S(γ · x F x)}
Since the Fk are increasing and their union is E modulo a nullset, the Ak are
also increasing and their union is conull. Hence there must be some Ak with
µ(Ak) > 1− ε and hence Fk is as desired.
⇒: Let γ0, γ1, . . . enumerate Γ. For each k, find a Borel equivalence relation Fk

with finite classes as above for the finite set S = {γ0, . . . , γk} and ε = 1/2k. Let
F ′n =

⋂
k≥n Fk. Now the F ′n clearly have finite classes since the Fk do, and are

increasing by definition. It suffices to show that there is a conull Borel set A so
that E � A =

⋃
n F
′
n � A.

To see this, it suffices to show that for each γi ∈ Γ, the set Ai = {x : ∃nγi ·xF ′nx}
is conull, since we can take A =

⋂
iAi. But for each n,

µ({x : ¬(γi · x F ′n x)}) ≤
∑
k≥n

µ({x : ¬(γi · x Fn x)}) ≤
∑
k≥n

1

2k
≤ 1

2n−1

So we are done. �

Now we show that an increasing union of µ-hyperfinite Borel equivalence relations
is µ-hyperfinite. The rough idea of the proof is that an increasing union of hyper-
finite Borel equivalence relations is approximated well by hyperfinite equivalence
relations which themselves are approximated well by finite equivalence relations.
The only technicality is arranging the right way of generating these equivalence
relations so that we can apply the above lemma.

Theorem 3.2 (Dye [D] and Krieger [Kr]). Suppose E0 ⊆ E1 ⊆ . . . are countable
Borel equivalence relations on a standard probability space (X,µ) and for every i,
Ei is µ-hyperfinite. Then

⋃
iEi is µ-hyperfinite.

Proof. By the Feldman-Moore Theorem, we can choose Borel actions Γi yai X so
the ith action generates Ei. If we then let the free product ∗i∈N Γi act on X in the
natural way where each γ ∈ Γi acts via ai, then this action clearly generates

⋃
iEi,

and the restriction of the action to ∗i≤n Γn generates En.
Now we use Lemma 3.1. Pick any finite S ⊆ ∗i∈N Γi and ε > 0. Since S is

contained in ∗i≤n Γn for some n, we can find our desired F by applying the lemma
to En. �
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4. Characterizing µ-hyperfiniteness with subgraphs

If Γ is a finitely generated group, then it is standard to show that Γ is amenable if
and only if the Cayley graph of Γ has isoperimetric constant 0. Analogously, we give
a proof of a result due to Kaimanovich characterizing when a locally finite Borel
graph has a µ-hyperfinite connectedness relation in terms of a measure-theoretic
version of isoperimetric constant.

Recall that a Borel graph G on a standard Borel space X is a graph whose set
of vertices is X, and where the edge relation of G is Borel as a subset of X ×X. A
graph is locally finite (locally countable) if every vertex has finitely many (countably
many) neighbors. Let NG(x) denote the set of neighbors of x in G.

Definition 4.1. Suppose G is a locally finite Borel graph on a Polish space X. We
say G is hyperfinite if its connectedness relation EG is hyperfinite. Similarly, we
say that G is µ-hyperfinite with respect to some Borel probability measure µ if EG
is µ-hyperfinite.

An important example of Borel graphs is the following class of “Cayley graphs”
of group actions. If Γ ya X is a Borel action of the countable group Γ on a
standard Borel space X, and S ⊆ Γ is a symmetric set, then G(a, S) is the Borel
graph on X where distinct x, y ∈ X are adjacent iff ∃γ ∈ S(γ · x = y).

Definition 4.2. If G is a locally finite Borel graph on a standard probability space
(X,µ), then the µ-isoperimetric constant of G is the infimum of µ(∂GA)/µ(A) over
all Borel subsets A ⊆ X of positive measure such that the induced subgraph G � A
of G on A has finite connected components. Here, ∂GA denotes the set of vertices
in X \A which are G-adjacent to a vertex in A.

For example, suppose Γ is a countable amenable group, S ⊆ Γ is finite symmetric,
and Γ ya (X,µ) is a free µ-measure preserving Borel action of Γ. Then it is easy
to check that G(a, S) has µ-isoperimetric constant 0.

Now we give a proof of the theorem of Kaimanovich characterizing when a locally
finite graph G is µ-hyperfinite in terms of isoperimetric constant. Robin Tucker-
Drob pointed out that Elek’s proof [E] of Kaimanovich’s theorem works in the
greater generality of when the graph G is not assumed to be µ-invariant. The
following presentation of Theorem 4.3 is due to Tucker-Drob.

Theorem 4.3 (Kaimanovich [Ka], see also Elek [E]). Let G be a locally finite Borel
graph on a standard probability space (X,µ). Then G is µ-hyperfinite if and only if
for every positive measure Borel subset X0 ⊆ X, the isoperimetric constant of the
induced subgraph G � X0 of G on X0 is 0.

Proof. Suppose first that G is µ-hyperfinite. Let X0 ⊆ X be a Borel set of positive
measure and let H = G � X0. Then H is µ-hyperfinite, so after ignoring a null set
we can find finite Borel subequivalence relations F0 ⊆ F1 ⊆ · · · with EH =

⋃
n Fn.

Since H is locally finite, for each x ∈ X0 there exists an n such that NH(x) ⊆ [x]Fn
,

where NH(x) denotes the set of H-neighbors of x.
Given ε > 0, we may find n large enough so that µ(An) > µ(X0)(1 − ε), where

An = {x ∈ X0 : NH(x) ⊆ [x]Fn}. Then H � An ⊆ Fn so H � An has finite
connected components. Finally, µ(∂HAn)/µ(An) < ε/(1 − ε). Since ε > 0 was
arbitrary this shows the isoperimetric constant of G is 0.

Assume now that for every positive measure Borel subset X0 ⊆ X the isoperi-
metric constant of G � X0 is 0. To show that G is µ-hyperfinite it suffices to show
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that for any ε > 0 there exists a Borel set Y ⊆ X with µ(Y ) ≥ 1 − ε such that
G � Y has finite connected components.

This is because then we can find a sequence of such sets Yn, n ∈ N, with µ(Yn) ≥
1−2−n. Let Zn =

⋂
k>n Yk. So Z =

⋃
n Zn is a Borel set of µ-measure 1. Then EG

is µ-hyperfinite since EG � Z is the increasing union
⋃
nEG�Zn

. (This argument is
essentially a graph-theoretic version of Lemma 3.1).

Given ε > 0, by measure exhaustion we can find a maximal countable collection
A of pairwise disjoint non-null Borel subsets of X such that

(i) G �
⋃
A has finite connected components;

(ii) µ(∂G(
⋃
A)) ≤ εµ(

⋃
A);

(iii) If A,B ∈ A are distinct, then no vertex in A is adjacent to a vertex in B.

Let Y =
⋃
A. We now claim that the set X0 = X − (Y ∪ ∂GY ) is null. Otherwise,

by hypothesis we may find a Borel set A0 ⊆ X0 of positive measure such that
G � A0 has finite connected components and µ(∂G�X0

A0) < εµ(A0). But then the
collection A0 = A∪ {A0} satisfies (i)-(iii) in place of A, ((i) and (iii) are clear and
(ii) follows from the equality ∂G(

⋃
A0) = ∂GY ∪∂G|X0

A0) contradicting maximality
of A. Thus, µ(Y ) = 1−µ(∂GY ) ≥ 1−εµ(Y ) ≥ 1−ε, and G � Y has finite connected
components, which finishes the proof. �

Remark 4.4. It is an open question whether every ∆1
1 hyperfinite equivalence

relation has a ∆1
1 witness to its hyperfiniteness (see [JKL, 6.1(B)]). Theorems 3.2

and 4.3 are both easily seen to be effective, modulo an effective nullset. This can be
used to show that if E is a µ-hyperfinite ∆1

1 equivalence relation on (2N, µ), where
µ is a ∆1

1 Borel probability measure, then there is a ∆1
1 µ-conull set A ⊆ 2N and a

∆1
1 sequence F0 ⊆ F1 ⊆ . . . of equivalence relations on A witnessing that E � A is

hyperfinite. This result is due originally to M. Segal [S].

5. Characterizing µ-amenability

Namioka’s trick is the standard way of transforming Reiter functions into Følner
sets in amenable groups. We will use it as part of our proof of the Connes-Feldman-
Weiss theorem.

Lemma 5.1 (Namioka’s trick). For a > 0, let 1(a,∞) be the characteristic function

of (a,∞). Then if f, g ∈ `1(X)+, then∫ ∞
0

‖1(a,∞)(f)− 1(a,∞)(g)‖1 da = ‖f − g‖1

Proof. For arbitrary s, t > 0,∫ ∞
0

|1(a,∞)(s)− 1(a,∞)(t)|da = |s− t|

Hence, for f, g ∈ `1(X)+ and every x ∈ X we have∫ ∞
0

|1(a,∞)(f(x))− 1(a,∞)(g(x))|da = |f(x)− g(x)|

and hence ∫ ∞
0

‖1(a,∞)(f)− 1(a,∞)(g)‖1 da = ‖f − g‖1

by Fubini’s theorem. �



6 ANDREW MARKS

By Theorem 4.3, to show that every µ-amenable countable Borel equivalence
relation is µ-hyperfinite, it suffices to show the following.

Theorem 5.2. Suppose that E is a µ-amenable countable Borel equivalence relation
on a standard probability space (X,µ), B is a Borel subset of X of positive measure,
and G ⊆ E is a bounded degree Borel graph on B. Then G has µ-isoperimetric
constant 0.

Proof. By discarding a nullset we may assume that E is amenable (instead of µ-
amenable). Let λn : E → [0, 1] be Reiter functions witnessing the amenability of
E. Fix ε > 0. The rough idea of the proof is that we can use Namioka’s trick to
change the Reiter functions into Følner sets. Having chosen an appropriate Følner
set Π ⊆ E, we will find a set A witnessing that G has isoperimetric constant less
than ε. The set A will be a union of sets of the form Πz. These sets will have small
boundary since the Følner sets are almost invariant.

To begin,

lim
n→∞

∫
B

∑
y∈NG(x)

‖λnx − λny‖1 dµ(x) = 0

by the dominated convergence theorem; since G has degree bounded by some d, for
each n the integral on the LHS is bounded by d. Hence, we can find a large enough
n so that ∫

B

∑
y∈NG(x)

‖λnx − λny‖1 dµ(x) < εµ(B)

Let Λ = λn. As usual, let 1(a,∞) be the characteristic function of the interval
(a,∞). Now by Namioka’s trick, Fubini’s theorem, and the fact that ‖Λx‖1 = 1,
applied to the displayed equation above, we have∫ ∞

0

∫
B

∑
y∈NG(x)

‖1(a,∞)(Λx)− 1(a,∞)(Λy)‖1 dµ(x) da < εµ(B)

= ε

∫
B

‖Λx‖1 dµ(x) = ε

∫ ∞
0

∫
B

‖1(a,∞)(Λx)‖1 dµ(x) da

Hence there is an a > 0 so that∫
B

∑
y∈NG(x)

‖1(a,∞)(Λx)− 1(a,∞)(Λy)‖1 dµ(x) < ε

∫
B

‖1(a,∞)(Λx)‖1 dµ(x).

Fix this a. Now 1(a,∞)(Λ) is the characteristic function of a subset of E ⊆ X ×
X. Call this set R. For each x ∈ X, we have that Rx = {y : (x, y) ∈ R} is
finite. Indeed, |Rx| ≤ 1/a. We have that ‖1(a,∞)(Λx)‖1 = |Rx| and similarly
‖1(a,∞)(Λx)− 1(a,∞)(Λy)‖1 = |Rx4Ry|, where 4 indicated symmetric difference.
So rewriting, ∫

B

∑
y∈NG(x)

|Rx4Ry|dµ(x) < ε

∫
B

|Rx|dµ(x)

By Lusin-Novikov uniformization [Ke, 18.15], since R has countable horizontal
sections, we can write R as a union R =

⋃
n{(gn(x), x) : x ∈ X} of countably

many partial Borel functions gi, and hence by taking the union of the graphs of
only the first i many functions, we can find Borel sets R0 ⊆ R1 ⊆ R2 ⊆ . . . such
that

⋃
iRi = R, and for every i and z ∈ X we have that Rzi = {x : (x, z) ∈ R} is
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finite. By the dominated convergence theorem, there is some Ri so that the above
inequality holds if we replace R by Ri. Set Π equal to this Ri. We now have

(*)

∫
B

∑
y∈NG(x)

|Πx4Πy|dµ(x) < ε

∫
B

|Πx|dµ(x)

Let H be the graph on X where zHz′ if (Πz ∪ ∂GΠz) ∩ (Πz′ ∪ ∂GΠz′) 6= ∅.
For each z ∈ X, Πz and ∂GΠz are finite sets. Hence H is a locally finite Borel
graph. We can find a Borel N-coloring c of H by [KST, Proposition 4.5]. For each
color k, let Ak = {x : ∃z ∈ Πx(c(z) = k)}. Then each connected component of
G � Ak corresponds to some set of the form Πz, and so G � Ak has finite connected
components. We can use c to rewrite each side of (*) to get∑
k

∫
B

∑
y∈NG(x)

|{z ∈ Πx4Πy : c(z) = k}|dµ(x) < ε
∑
k

∫
B

|{z ∈ Πx : c(z) = k}|dµ(x)

so there is some k such that∫
B

∑
y∈NG(x)

|{z ∈ Πx4Πy : c(z) = k}|dµ(x) < ε

∫
B

|{z ∈ Πx : c(z) = k}|dµ(x)

But the right hand side of this equation is just
∫
B

1Ak
dµ = µ(Ak). Further x ∈

∂GAk implies there is some y ∈ NG(x) such that {z ∈ Πx4Πy : c(z) = k} is
nonempty. Hence, the function integrated on the left hand side is greater than or
equal to the characteristic function of ∂GAk. Hence,

µ(∂GAk) < εµ(Ak)

�

From this we can conclude the Connes-Feldman-Weiss theorem.

Proof of Theorem 1.4. We have already shown that every µ-hyperfinite Borel equiv-
alence relation is µ-amenable in Proposition 2.3. Now suppose E is µ-amenable.
By the Feldman-Moore theorem, we can find a Borel action of a countable group
Γ ya X generating E. Let S0 ⊆ S1 ⊆ . . . ⊆ Γ be an increasing union of finite
symmetric subsets of Γ whose union is Γ. Each graph G(a, Si) is µ-hyperfinite by
combining Theorem 5.2 and Theorem 4.3. Since E =

⋃
iEG(a,Si), we see that E is

µ-hyperfinite by Theorem 3.2. �

Historically, this theorem was preceded by a theorem of Ornstein and Weiss [OW]
that every Borel action of an amenable countable group Γ on a standard probability
space (X,µ) induces a µ-hyperfinite countable Borel equivalence relation.

Combing this with Dye’s theorem, we conclude that any two aperiodic ergodic
actions of an amenable group are orbit equivalent.

Corollary 5.3 (Dye [D], Ornstein-Weiss [OW]). Suppose Γ ya (X,µ) and ∆ yb

(Y, ν) are aperiodic ergodic measure-preserving actions of amenable groups on stan-
dard probability space (X,µ) and (Y, ν). Then a and b are orbit equivalent.

Proof. Ea and Eb are µ-amenable and ν-amenable by Proposition 2.2. Hence, by
Theorem 1.4, both actions induce µ-hyperfinite Borel equivalence relations Ea and
Eb. Hence, both Ea and Eb are induced (modulo a nullset) by ergodic measure
preserving Borel actions of Z, which are orbit equivalent by Dye’s theorem [D]. �
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