Homework 6: Due Tuesday May 13, 1pm

1. (15 pts) Let L be a first order language, and ϕ a sentence of L. Then the *spectrum* of ϕ is the set of possible sizes of universes of *finite* models of ϕ . That is,

spectrum(ϕ) = { $n \ge 1$: there is a model M of ϕ so that the universe of M has exactly n elements}

For each of the sets X below find a language L and sentence ϕ such that spectrum(ϕ) = X.

- (a) $X = \emptyset$
- (b) $X = \{1, 2, 3, \ldots\}$
- (c) $X = \{n \ge 1 : n \text{ is even}\}.$
- (d) $X = \{n \ge 1 : n \text{ is a square}\}.$
- 2. (No collab 10 pts) Suppose S is a set of first order formulas, and ϕ and ψ are first order formulas. Then show:
 - (a) (The deduction theorem) $S \cup \{\phi\} \vdash \psi$ iff $S \vdash \phi \rightarrow \psi$.
 - (b) (Proof by contradiction) If $S \cup \{\phi\} \vdash \psi$ and $S \cup \{\phi\} \vdash \neg \psi$, then $S \vdash \neg \phi$.
- 3. (15 pts) Show using our formal proof system that:
 - (a) $\vdash \forall x (P(x) \land Q(x)) \leftrightarrow (\forall x P(x) \land \forall x Q(x)).$
 - (b) $\{P(x), \forall y(P(y) \to (\forall zQ(z)))\} \vdash \forall xQ(x)\}.$
 - (c) $\vdash \exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$
- 4. (20 pts) Let L be the language containing a single binary relation <. Let T be the theory of dense linear orderings without endpoints

$$\begin{split} T &= \{ \forall x (\neg x < x), \forall x \forall y (x < y \rightarrow \neg y < x), \forall x \forall y (x = y \lor x < y \lor x > y), \\ \forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y)), \forall x \exists y (y > x), \forall x \exists y (y < x) \} \end{split}$$

(a) Suppose ϕ is a formula with no quantifiers in the variables x_1, \ldots, x_k . Show that ϕ is equivalent to a formula of the form:

$$(\theta_{1,1} \wedge \ldots \wedge \theta_{1,n_1}) \vee (\theta_{2,1} \wedge \ldots \wedge \theta_{2,n_2}) \vee \ldots \vee (\theta_{m,1} \wedge \ldots \wedge \theta_{m,n_m})$$

where each $\theta_{n,m}$ is of one of the forms: $x_i < x_j$ or $\neg x_i < x_j$ or $x_i = x_j$ or $\neg x_i = x_j$ for some $i, j \leq k$.

- (b) Show that for each formula in the language L of the form $\exists x_i(\phi)$ where ϕ has no quantifiers, there is a formula ϕ^* with no quantifiers such that T logically implies $(\exists x_i \phi) \leftrightarrow \phi^*$. [Hint: Assume ϕ is in the form described above. Then show either $\exists x_i \phi$ is unsatisfiable, (hence equivalent to a formula which is always false), or we can obtain ϕ^* from ϕ by removing every $\theta_{n,m}$ which uses the variable x_i].
- (c) Use this to show for each sentence ψ in the language L, either T logically implies ψ or T logically implies $\neg \psi$. (That is, T is complete).