Homework 4: Due Tuesday April 28, 1pm

- 1. (15 pts) Suppose S is a set of formulas of propositional logic.
 - (a) Prove that if $S \cup \{\phi\}$ is inconsistent, then $S \vdash \neg \phi$ (that is, there is a proof of ϕ from S in our Hilbert-style proof system).
 - (b) Prove that if S is inconsistent, then for every ψ , $S \vdash \psi$.
- 2. (15 pts) Prove that if S is a complete consistent set of formulas of propositional logic in the variables $\{p_1, p_2, \ldots\}$, then the following valuation satisfies S: assign True to p_i if the formula p_i is in S, and assign False to p_i if the formula $\neg p_i$ is in S. Show furthermore that this is the only valuation making every formula of S true.
- 3. (No collaboration) (12 pts) For each sentence in informal english, write a formula in first-order logic expressing it.
 - (a) Every planar graph has a 4-coloring. (Our universe is the set of graphs, P(x) is the relation saying the graph x is planar, and $C_4(x)$ is the relation saying that x has a 4-coloring)
 - (b) Every student without a scholarship pays tuition. (Our universe is the set of students, S(x) is the relation saying the student x has a scholarship, and T(x) is the relation saying the student x pays tuition).
 - (c) A student must complete the requirements of their major and all their core requirements to graduate. (Our universe is the set of students, M(x) is the relation saying the student x has completed the requirements of their major, C(x) is the relation saying the student has completed their core requirements, G(x) is the relation saying the student has graduated.)
 - (d) Everyone has a friend. (Our universe is the set of people. F(x, y) is the relation that x is a friend of y.)
 - (e) A friend of a friend is a friend. (Our universe is the set of people. F(x, y) is the relation that x is a friend of y.)
 - (f) There is someone with at least 3 different friends. (Our universe is the set of people. F(x, y) is the relation that x is a friend of y.)

(continued...)

- 4. (12 pts) For each given formula ϕ of first-order logic, give an example of a structure M in the language consisting of a single binary relation R such that $M \models \phi$, and another structure M' such that $M' \models \neg \phi$.
 - (a) $\forall x[\exists y R(x,y)].$
 - (b) $\forall x[\exists y R(x,y)] \rightarrow \forall x[\forall y R(x,y)].$
 - (c) $\forall x [\forall y [R(x,y) \rightarrow \exists z R(x,z) \land R(z,y)]].$
- 5. (12 pts) For each pair of formulas, ϕ and ψ , give an example of a structure M such that $M \models \phi$ and $M \models \neg \psi$, where our language has a binary relation R and unary relations S and T.
 - (a) $\phi = \forall x \exists y R(x, y), \ \psi = \exists y \forall x R(x, y).$
 - (b) $\phi = \forall x[S(x)] \rightarrow \forall x[T(x)], \psi = \forall x[S(x) \rightarrow T(x)].$
 - (c) $\phi = \exists x[S(x)] \land \exists x[T(x)], \psi = \exists x[S(x) \land T(x)].$