Homework 3: Due Tuesday April 22, 1pm

- 1. (20 pts). (Review Problem). Recall that a *partial order* \leq_P on a set S is a relation such that for every $x, y, z \in S$, we have:
 - $x \leq_P x$
 - if $x \leq_P y$ and $y \leq_P x$, then x = y,
 - if $x \leq_P y$ and $y \leq_P z$, then $x \leq_P z$.

Recall that a partial order \leq_P on a set S is said to be *linear* if for every $x, y \in S$, we have either $x \leq_P y$ or $y \leq_P x$.

- (a) Show that for every partial order \leq_P on a finite set S, there is a linear order \leq_L on S such that \leq_L extends \leq_P . That is, for every $x, y \in S$, if $x \leq_P y$, then $x \leq_L y$.
- (b) Use König's lemma and part (i) to show that for every partial order \leq_P on an infinite set $S = \{x_0, x_1, \ldots\}$, there is a linear order \leq_L on S extending \leq_P .
- 2. (10 pts) Prove the correctness of the algorithm given in class for efficiently converting a formula ϕ into a formula ψ in CNF which is satisfiable iff ϕ is.
- 3. (8 pts) Using resolution, show that the set of clauses

$$\{\{p,q,r\},\{\neg p,\neg q,\neg r\},\{\neg p,q,s\},\{p,\neg q,\neg s\}, \\ \{p,\neg r,s\},\{\neg p,r,\neg s\},\{\neg q,r,s\},\{q,\neg r,\neg s\}\} \}$$

is unsatisfiable.

- 4. (15 pts) (No collaboration) Using our Hilbert-style formal proof system, show that:
 - (a) From $\{\neg p \to q, \neg p \to \neg q, p \to (r \to s), p \to r\}$ there is a formal proof of s.
 - (b) For every formula ϕ , there is a formal proof of $\neg \neg \phi \rightarrow \phi$.