Homework 1: Due Tuesday April 8, 1pm

- 1. (10 pts) Write each of the following sentences as propositional formulas, using the propositional variables given.
 - (a) It is sunny except if there are clouds.Let p: "it is sunny", q: "there are clouds".
 - (b) It is raining or there are clouds, but it is not raining if there are not clouds.

Let p: "it is raining", q: "there are clouds".

- (c) Assuming it rains, then there will be enough water. Let p: "it rains", q: "there will be enough water".
- (d) It is cold outside, but the sun is shining and the sky is clear. Let p: "it is cold outside", q: "the sun is shining", r: "the sky is clear".
- (e) Your car is clean provided if it rained, you parked in the garage. Let p: "your car is clean", q: "it rained", r: "you parked in the garage".
- 2. (8 pts) Determine whether each of the following is a tautology, a contradiction or neither. Justify your answers.
 - (a) $((p \to q) \to p) \to p$
 - (b) $(q \land (p \to q)) \to p$
 - (c) $p \land (p \leftrightarrow q) \land \neg q$
 - (d) $((p \to q) \to r) \leftrightarrow (p \to (q \to r))$
- 3. (10 pts) Recall that a set S of formulas is called satisfiable if there is a single valuation which makes all the formulas in S true. For each number $n = 2, 3, 4, \ldots$ find a set $S = \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ of n formulas that is not satisfiable, but so that every proper nonempty subset S' of S is satisfiable.
- 4. (10 pts)
 - (a) Prove that the set $\{\neg, \lor\}$ is functionally complete.
 - (b) Prove that the set $\{\rightarrow, \lor\}$ is not functionally complete.

(Homework continued on the next page)

5. (15 pts) Let φ be a formula containing only connectives from the set $\{\neg, \land, \lor\}$, and let φ^* be the formula obtained from φ by replacing each instance of \land with \lor , each instance of \lor with \land , and each of its propositional variables p_i with $(\neg p_i)$. (For instance, if we have $\varphi = (p_1 \lor (\neg p_2)) \land p_3$, then we obtain $\varphi^* = ((\neg p_1) \land (\neg (\neg p_2))) \lor (\neg p_3)$).

Prove using structural induction that $\neg \varphi$ is equivalent to φ^* .

- 6. (20 pts) (No collaboration) A set S of formulas is said to be *independent* if for any formula $\varphi \in S$, φ is not implied logically by the rest of the formulas in S. (So for example, the empty set \emptyset is independent, and a set $S = \{\varphi\}$ consisting of a single formula is independent iff φ is not a tautology).
 - (a) Which of the following sets are independent? Justify your answers.
 - i. $\{p \rightarrow q, q \rightarrow r, r \rightarrow q\}$ ii. $\{p \lor q, p \rightarrow q, p \leftrightarrow q\}$ iii. $\{p \rightarrow q, q \rightarrow r, p \rightarrow r\}$
 - (b) Two sets of formulas S and R are called equivalent if S logically implies every formula $\varphi \in R$ and R logically implies every formula $\psi \in S$. Prove that for any *finite* set S of formulas, there is a subset $S' \subseteq S$ which is independent and S' is equivalent to S.