
6c Lecture 14: May 20, 2014

11 Compactness

We begin with a consequence of the completeness theorem. Suppose T is a
theory. Recall that T is satisfiable if there is a model M � T of T . Recall that
T is consistent if there is no sentence φ such that T ` φ and T ` ¬φ.

Theorem 11.1. If T is a theory, then T is satisfiable iff T is consistent.

Proof. (→): we prove the contrapositive. If T is inconsistent, there is some φ
such that T ` φ and T ` ¬φ. Then by the soundness theorem, T � φ and
T � ¬φ. Hence, if there was a model M of T , then M � φ and M � ¬φ which
is a contradiction.

(←): We showed in our proof of the completeness theorem that if T is
consistent, then there is a model M of T .

Now on your homework, you proved one version of the compactness theorem:

Theorem 11.2 (Compactness theorem, version 1). Suppose L is a language, T
is a theory in, and φ is a sentence in L. Then if T � φ, there is a finite subset
T0 ⊆ T such that T0 � φ.

We’ll now give another version of the compactness theorem:

Theorem 11.3 (Compactness theorem, version 2). If T is a theory, then T is
satisfiable iff every finite subset T0 ⊆ T is satisfiable.

Proof. (→): If T has a model M , then clearly this model M is a model of every
finite subset of T .

(←): We prove the contrapositive. Suppose that T is unsatisfiable. Then
by Theorem 11.1, T is inconsistent, and hence there is some φ such that T ` φ
and T ` ¬φ. But since proofs are finite, there is some finite T0 ⊆ T such that
T0 ` φ and T0 ` ¬φ. Hence, some finite subset T0 ⊆ T is inconsistent, and
hence unsatisfiable.

For the rest of the lecture today, we’ll discuss consequences of the compact-
ness theorem.

We’ll begin by discussing to what extent finiteness can be axiomatized by
first-order logic.

Theorem 11.4. Suppose T is a theory that has finite models of arbitrarily large
size. That is, for ever number n ∈ N, there is a finite model Mn � T such that
the universe of M has at least n elements. Then T has an infinite model.
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Proof. Let φn be the sentence which states that there are at least n different
elements in the universe:

φn = ∀x1∀x2 . . . ∀xn−1∃xn(x1 6= xn ∧ x2 6= xn ∧ . . . ∧ xn−1 6= xn).

Now consider the theory T ′ = T ∪ {φ1, φ2, . . .}
Given any finite subset T0 ⊆ T ′, there is some largest n such that φn ∈

T ′. But then we claim that Mn is a model of T0 since Mn � T , and Mn �
{φ1, . . . , φn}. Hence, every finite subset of T ′ is satisfiable, so T ′ is satisfiable
by the compactness theorem. Hence, there is a model M of T ′ which will be an
infinite model of T .

A corollary of this theorem is that there is no way in first-order logic to
axiomatize finiteness.

Corollary 11.5. There is no theory T such that every finite structure is a model
of T , and no infinite structure is a model of T .

Proof. Because every finite model would be a model of T , there must be finite
models of T of arbitrarily large size. Hence T must have an infinite model by
the above theorem.

Often, concepts involving infinity cannot be expressed in first-order logic.
We can often prove this using the compactness theorem. Our next theorem is
another result of this type:

Theorem 11.6. Consider the theory of graphs:

T = {∀x(¬xEx),∀x∀y(xEy → yEx)}

in the language L containing a single binary relation E. Then there is no theory
T ′ ⊇ T such that the models of T ′ are exactly the connected graphs.

Proof. Lets begin by considering the language L′ ⊇ L obtained by adding two
constant symbols a and b to the language L. Now for each n consider the
sentence:

φn = ¬∃x1∃x2 . . . ∃xn
(a = x1 ∧ b = xn ∧ x1Ex2 ∧ . . . ∧ xn−1Exn ∧ x1 6= x2 ∧ . . . xn−1 6= xn)

which says there is no path of length n − 1 between a and b. Now suppose T ′

was a theory whose models were precisely the connected graphs. Then we claim
that T ′ ∪ {φ1, φ2, . . .} would be satisfiable.

This is by the compactness theorem. Given any finite subset T0 ⊆ T ′, there
is some largest n such that φn ∈ T ′. But then take a connected graph having
two points of distance > n and assign these two points to be a and b. Then the
resulting graph is a model of T0.

Hence, since T ′ is satisfiable, it has a model M . But then M is not connected,
since there is no path of any length between a and b. So regarding M as just a
model in the language L by forgetting the constants a and b, M � T which is a
contradiction.
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The trick we have used above of adding some constants to the language
before we do a compactness argument (and then forgetting them later to derive
consequences about the theory we started with) is a very technique.

11.1 Nonstandard analysis and infinitesimals.

When doing calculus, differential equations, mathematical physics, etc. we often
pretend that we have infinitesimally small real numbers (we call them things
like dx, δ, or ∆y, etc).

If you’ve taken a course in mathematical analysis, you’ve probably seen how
we can often formalize these types of intuitions using limits of increasingly small
numbers.

However, there is a different way of working with infinitesimals which realizes
them as actual objects (and not just a vague intuitions for limits).

Lets start with the model whose universe is the real numbers R and where
our language L contains:

• The relation <

• A constant cr representing each real number r ∈ R

• The functions of addition and multiplication +, ·

• (and optionally) whatever other functions f1, f2, . . . we want.

Lets call this model R, and let T be the theory consisting of all sentences φ
such that R � φ. (That is, T is the theory of the real numbers).

Now lets enlarge our language L by adding a constant symbol δ. (We’ll think
of δ as an infinitesimally small number). For each n, let φn be the sentence:

φn = 0 < δ < 1/n

Now consider the theory T ′ = T ∪ {φ1, φ2, . . .}. We claim that T ′ is satisfi-
able.

This is by the compactness theorem. If T0 ⊆ T ′ is a finite subset of T ′, then
there is a largest n such that φn ∈ T0. Now we claim that T0 is satisfiable, since
R is a model of T0 if we assign the value 1/n+ 1 to the constant δ.

This means that there is a model ∗R of T ′. This model looks a whole lot
like the real numbers: it still has a constant cr representing every real number
r, and ∗R � T , the theory of the real numbers. However, this model ∗R also
has has infinitesimally small real numbers (such as the one represented by δ),
which are > 0, but < 1/n for every n. ∗R is called a nonstandard model of the
real numbers, and the field of study which uses such models to prove theorems
is called nonstandard analysis.

Now given any standard real number r ∈ R, we can identify r with the num-
ber represented by the constant cr in ∗R. Literally, this defines an embedding
of the model R into ∗R. Often we will abuse notation, and not differentiate
between standard numbers in R and their images in ∗R.
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Given any element x in the universe of ∗R, say that x is standard if there
is some constant cr representing a standard real number such that x = cr.
Otherwise say x is nonstandard. Say that x is infinitesimal if for every n ∈ N we
have −1/n < x < 1/n. Note that 0 is infinitesimal, but there are nonstandard
infinitesimal numbers (such as the number represented by δ) in our model ∗R.
We will write x ≈ y if x− y is infinitesimal. If there is a standard real number
y ∈ R such that x ≈ y, then we say that y is the standard part of x.

Say that x is finite if there is an n ∈ N such that −n < x < n. Say that x
is infinite otherwise.

We note some examples of facts about nonstandard numbers. To prove these,
we heavily use the fact that the theory of ∗R is the same as the theory of R:

• There are infinite numbers in ∗R. To see this, take an infinitesimal δ > 0.
Now since δ 6= 0, and R � ∀x(x 6= 0 → ∃y(x · y = 1)), (and hence ∗R
models this as well) there must be some some number y such that δ ·y = 1.
Lets use the notation δ−1 for this y. Now since δ < 1/n for every n, we
have that δ−1 > n for every n, and hence δ−1 is infinitely large.

• If x is a finite number in ∗R, then there is a standard real number y such
that y ≈ x. To see this1, note that

R � ∀x∀a∀b(a < x < b→

(x =
a+ b

2
) ∨ a < x <

a+ b

2
∨ a+ b

2
< y < b).

Hence, if we start with natural numbers n and −n such that −n < x < n,
using the above fact, we can get a sequence of standard numbers a1, a2, . . .
with ai < x and b1, b2, . . . with bi > x such that limi ai = limi bi. Letting
this limit be y, we see that y − x must be infinitesimal.

A common (but imperfect) way to visualize a nonstandard model ∗R is to
imagine each real number, and then add some some extra infinitesimal “stuff”
around each real number, and then some infinite “stuff” at both ends of the
number line beyond all the standard numbers. Note though that there’s a lot of
“layers” involved when doing this. For example, if δ is a nonstandard infinites-
imal, and r is a standard real number, then rδ is a nonstandard infinitesimal
(so around each standard number is an infinitesimal copy of the standard reals
R). Note though, that there are lost more infinitesimals that just numbers like
rδ. For example, δ2 is also a nonstandard infinitesimal, but it is infinitesimally
smaller than δ.

Using nonstandard models, its possible to formally and precisely define lots
of concepts from analysis using infinitesimal numbers instead of limits.

For example, a function f is continuous iff for all x ≈ y, we have f(x) ≈ f(y).
A fact which is easy to prove from this definition is that if f is continuous on
[0, 1] and 0 < x < 1, then f(x) is finite.

1here we are using y/2 as an abbreviation for the unique number z such that 2 · z = y,
which must always exist.
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Similarly, we can define the derivative of f(x) to be equal to as the standard

part of f(x+δ)−f(x)
δ for any nonzero infinitesimal δ (provided the standard part

is the same for every such nonzero infinitesimal). So for a given infinitesimal δ,
if f is differentiable, then the quantity f(x + δ) − f(x) will be an infinitesimal

number, and the fraction f(x+δ)−f(x)
δ will actually be a finite number.

For example, if f(x) = x2, then (x+δ)2−x2

δ = 2xδ+δ2

δ = 2x+ δ, but then since
δ is infinitesimal, the standard part of this is just 2x (which is the derivative of
x2).

We have just barely scratched the surface of nonstandard analysis which is
a large and important field.
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