
6c Lecture 12: May 8, 2014

10 A proof system for first-order logic

We begin with two definitions.

Definition 10.1. If φ is a formula, then a generalization of φ is a formula of
the form ∀x1∀x2 . . . ∀xnφ.

So for example, if φ = x+y = y+x, then ∀x(x+y = y+x), ∀x∀y(x+y = y+x)
and ∀z(x+ y = y + x) are all generalizations of φ.

Definition 10.2. If φ is a formula, x is a variable and t is a term, then φxt is
the formula where we replace each free instance of x by t.

So for instance, if φ = ∃z(x+ z · z = 0 ∨ x = z · z), then if t = (1 + y), then
φxt = ∃z((1+y)+z ·z = 0∨(1+y) = z ·z). Similarly, if φ = R(x, y)∨∃xR(x, y, z),
and t = f(1, 0), then φxt = R(f(1, 0), y) ∨ ∃xR(x, y, z) (since the latter two
instances of x are not free in φ).

We are now ready to define the logical axioms of our proof system. We note
that from now on for the purposes of defining our proof system, we will only
deal with universal (i.e. ∀) quantifiers. We will regard the quantifier ∃x as an
abbreviation for ¬∀x¬.

Definition 10.3. The logical axioms of our proof system consist of all gener-
alizations of the following types of formulas.

1. φ′ → ψ′, whenever φ and ψ are propositional formulas in the variables
p1, . . . , pn such that φ→ ψ is a tautology, θ1 . . . , θn are first-order formu-
las, and φ′ and ψ′ are the formulas obtained by replacing each instance of
pi with θi in φ and ψ respectively.

2. ∀xφ→ φxt whenever φ is a formula, x is a variable and t is a term, and t
is substitutable for x in φ (we define this below).

3. ∀x(φ→ ψ)→ (∀xφ→ ∀xψ), for all formulas φ and ψ.

4. φ→ ∀xφ whenever φ is a formula such that x is not free in φ.

5. t = t for any term t.

6. r = s ∧ s = t→ r = t for any terms r, s, t.

7. s = t→ t = s for any terms s and t.
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8. s1 = t1 ∧ s2 = t2 ∧ . . . sn = tn → (f(s1, . . . , sn) = f(t1, . . . , tn) for any
terms si and ti and any n-ary function f .

9. s1 = t1 ∧ s2 = t2 ∧ . . . sn = tn → (R(s1, . . . , sn) → R(t1, . . . , tn) for any
terms si and ti and any n-ary relation R.

Most of these axioms are straightforward. However, we discuss in some detail
axiom 2, and define precisely what it means for a term to be substitutable.
Roughly, we want axiom 2 to say that if ∀xφ is true, then we can substitute any
term t for x in the formula φ and it will remain true. However, the following
example illustrates that we need to be careful exactly how we do this.

Let φ = ∃y(x 6= y) and now consider the formula ∀xφ = ∀x∃y(x 6= y), which
says roughly “the universe has at least two different elements”. If we substitute
t = y for x in φ, then we get the formula ∃y(y 6= y) which is always false. The
problem here is that in our original formula ∀x∃y(x 6= y), for each x we could
pick in an arbitrary way a y depending upon x to satisfy the formula. When we
substitute a term for x that involves y, then we alter this dependency, which is
what changes the meaning of the formula. To address this issue, we define the
notion of substitutability as follows:

Definition 10.4. If φ is a formula, x is a variable and t is a term, then t is
substitutable for x in φ if whenever a free occurrence of x is in the scope of a
quantifier over another variable y, then the variable y does not occur in t.

For example, t = 1+z is substitutable for x in the formula φ = ∃y(x+y = z).
However, t = 1 + y is not substitutable for x in this formula.

Having defined our logical axioms, our formal proofs are now made by com-
bining them with our usual deduction rule of modus ponens.

Definition 10.5. If S is a set of formulas and φ is a formal, then a formal proof
of φ from S is a finite tree whose vertices are labeled with formulas so that the
root is labeled with φ, the leaves (vertices without children) are labeled with
elements of S or logical axioms, and each vertex labeled ψ that is not a leaf has
exactly two children labeled θ and θ → ψ for some formula θ (corresponding to
an instance of modus ponens).

We give an example of a proof of P (x) → ∃xP (x), recalling that ∃x we
regard as an abbreviation of ¬∀x¬.

P (x)→ ¬∀x¬P (x)

∀x¬P (x)→ ¬P (x) (∀x¬P (x)→ ¬P (x))→ (P (x)→ ¬∀x¬P (x))

Here, ∀x¬P (x) → ¬P (x) is an instance of logical axiom 2 (with t = x and
φ = ¬P (x)), and (∀x¬P (x)→ ¬P (x))→ (P (x)→ ¬∀x¬P (x)) is an instance of
logical axiom 1 coming from the propositional tautology (p→ ¬q)→ (q → ¬p).
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As in propositional logic, we will often do proofs by induction the height of
proofs.

Our next theorem says roughly that if we can prove a formula φ involving
a variable x that we do not assume anything special about, then we can also
prove ∀xφ.

Theorem 10.6 (The generalization theorem). If S ` φ, and S is a set of
formulas that do not contain any free instance of the variable x, then S ` ∀xφ.

Proof. By induction on the height of proofs. If φ has a proof of height 0, then
φ must be a logical axiom or an element of S. If φ is a logical axiom, then so is
the generalization ∀xφ of φ. If φ is an element of S, then x does not occur as a
free variable in φ, and hence φ→ ∀xφ is instance of our logical axiom 4, and so
by modus ponens ∀xφ is provable from S.

For our inductive step, assume φ has a proof of height n + 1. Then φ
arises from an instance of modus ponens from formulas θ and θ → φ for some
θ. Now θ and θ → φ have proofs of height ≤ n from S so by our induction
hypothesis, S ` ∀xθ and S ` ∀x(θ → φ) but now an instance of rule 3 is
∀x(θ → φ)→ (∀xθ → ∀xφ). Hence by modus ponens, S ` ∀xφ.

Many of our old results proved in the context of propositional logical will
remain true here. For example, the deduction theorem that S ∪ {φ} ` ψ iff
S ` φ→ ψ will be assigned as homework.

We finish with one more example, showing ` ∀x∀yR(x, y) → ∀y∀xR(x, y).
By the deduction theorem, it is enough to prove ∀x∀yR(x, y) ` ∀y∀xR(x, y). By
two instance of rule 2, since ∀x∀yR(x, y)→ ∀yR(x, y) and ∀yR(x, y)→ R(x, y),
we see ∀x∀yR(x, y) ` R(x, y). But then applying the generalization theorem
twice, we see ∀x∀yR(x, y) ` ∀xR(x, y) and then ∀x∀yR(x, y) ` ∀y∀xR(x, y).
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