
6c Lecture 10: May 1, 2014

8 Logical equivalence, prenex normal form and
games

8.1 Prenex normal form

Definition 8.1. If φ and ψ are first-order formulas in the language L with free
variables x1, . . . , xn, then we say φ and ψ are equivalent, and we write φ ≡ ψ, if
for every every structure M in the language L, and every n-tuple (a1, . . . , an),
we have M � φ[x1 7→ a1, . . . , xn 7→ xn] iff M � ψ[x1 7→ a1, . . . , xn 7→ an].

For example, if φ is a formula containing the variable x and not containing
the variable y, then if we replace each instance of x by y, we obtain an equivalent
formula. (You can prove this formally by induction on formulas).

Another sources of equivalences in first-order logic is equivalences from propo-
sitional logic. For example, the propositional formulas p→ q and ¬q → ¬p are
equivalent, so φ = ∃x(R(x)) → ∃y(S(y)) and ψ = ¬(∃y(S(y))) → ¬(∃x(R(x)))
are also equivalent. Indeed, if we take any two formulas of propositional logical
logic and replace each variable pi in these formulas with a first-order formula
ψi, then the resulting formulas of first-order logic will also be equivalent.

We have some important equivalences to do with manipulating quantifiers:

Proposition 8.2. Suppose φ is a formula. Then:

• ¬(∃x(φ)) ≡ ∀x(¬φ).

• ¬(∀y((φ)) ≡ ∃x(¬φ).

Further, if ψ is a formula that does not have x as a free variable, then

• (∀x(φ)) ∧ ψ ≡ ∀x(φ ∧ ψ).

• (∀x(φ)) ∨ ψ ≡ ∀x(φ ∨ ψ).

• (∃x(φ)) ∧ ψ ≡ ∃x(φ ∧ ψ).

• (∃x(φ)) ∨ ψ ≡ ∃x(φ ∨ ψ).

Proof. In class. This follows trivially from the definition of equivalence and the
satisfaction relation ψ.

Next, we define a useful normal form for first-order formulas, and show that
every formula is equivalent to a formula in this normal form.

1



Definition 8.3. A first-order formula is said to be in prenex normal form if it
is of the form Q1x1Q2x2 . . . Qnxnθ where each Qi is either the quantifier ∃ or
∀, and θ is a quantifier-free formula.

For example, ∃x∀y∃z(R(x, y)→ (R(x, z) ∨ ¬(R(y, z)))) is in prenex normal
form. The formula ∃x(R(x) → ∃y(R(x, y) ∧ ∀z(R(y, z) → R(x, z)))) is not in
prenex normal form.

It turns out that along with technique of changing variable names, the equiv-
alences given by Proposition 8.2 are all we need to transform any formula into
an equivalent one in prenex normal form. We give an example:

¬∃x(R(x) ∧ (∀y(S(x, y)) ∨ ¬∀y(T (x, y)))

≡ ¬∃x(R(x) ∧ (∀y(S(x, y)) ∨ ∃y(¬T (x, y)))

≡ ¬∃x(R(x) ∧ (∀y(S(x, y)) ∨ ∃z(¬T (x, z)))

≡ ¬∃x(R(x) ∧ ∀y(S(x, y) ∨ ∃z(¬T (x, z)))

≡ ¬∃x(R(x) ∧ ∀y∃z(S(x, y) ∨ (¬T (x, z)))

≡ ¬∃x∀y∃z(R(x) ∧ (S(x, y) ∨ (¬T (x, z)))

≡ ∀x∃y∀z[¬(R(x) ∧ (S(x, y) ∨ (¬T (x, z)))]

Theorem 8.4. If φ is a first-order formula, then there is a first-order formula
φ∗ in prenex normal form such that φ is equivalent to φ∗.

Proof. By induction on formula complexity. First, since the logical connectives
∧,∨,¬ are functionally complete, it suffices to prove this for formulas using only
these connectives.

For our base case, note that every quantifier-free formula is already in prenex
normal form.

For our inductive case, suppose φ and ψ are formulas equivalent to φ∗ =
Q1x1 . . . Qnxn(θ) and ψ∗ = Q′1y1 . . . Q

′
nyn(ξ) in PNF, where θ and ξ are quantifier-

free. Then
(∃): ∃xφ ≡ ∃xφ∗ which is in PNF.
(∀): ∀xφ ≡ ∀xφ∗ which is in PNF.
(¬): ¬φ ≡ ¬φ∗ ≡ ¬Q1x1 . . . Qnxn(θ) ≡ Q1x1 . . . Qnxn(¬θ) which is in PNF

where Qi is ∃ if Qi is ∀, and Qi is ∀ if Qi is exist.
(∧): By changing variables, we can assume assume the set of variables

x1 . . . xn is disjoint from y1 . . . ym. Then

φ ∧ ψ ≡ φ∗ ∧ ψ∗ ≡ Q1x1 . . . QnxnQ
′
1y1 . . . Q

′
nyn(θ ∧ ξ)

which is in PNF.
(∨): Again, assuming x1 . . . xn is disjoint from y1 . . . ym, then φ ∨ ψ ≡ φ∗ ∨

ψ∗ ≡ Q1x1 . . . QnxnQ
′
1y1 . . . Q

′
nyn(θ ∨ ξ) which is in PNF.
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8.2 Games and quantifiers

Suppose we have a formula φ = ∃x1∀x2∃x3∀x4 . . . (R(x1, . . . , xn)) with alternat-
ing quantifiers, a structure M having universe A and an n-ary relation R. Then
we can associate a game Gφ,M to this formula and structure, as follows. The
game has two players ∃ and ∀, who alternate playing elements a1, a2, . . . , an of
the universe of A, with ∃ going first:

∃ ∀
a1

a2
a3

a4
...

Once the game is finished, then ∃ wins if R(a1, . . . , an) is true. Otherwise,
∀ wins.

For example, supposeR(x1, x2, x3) is the relation on N defined byR(x1, x2, x3)
iff x3 + x3 = x2 ∨ x3 + x3 + x1 = x2, φ is the formula ∃x1∀x2∃x3R(x1, x2, x3),
and we work in the model 〈N; +〉. Then here is one play of the game Gφ,〈N ;+〉,
where the first move of ∃ is 1, ∀ makes the move 9, and ∃ finishes by playing 4:

∃ ∀
1

9
4

Here ∃ wins this play of the game, since 4 + 4 = 9 ∨ 4 + 4 + 1 = 9 is true.
Recall that a winning strategy for a player is a way of making a move for this

player on each turn of the game so that no matter what moves their opponent
makes, once the game finished, this player wins. For example, ∃ has a winning
strategy in our game above; they should play a1 = 1 first, and then after ∀ plays
a2, then ∃ should play a3 = a2/2 if a2 is even, and a3 = (a2 − 1)/2 if a2 is odd.

We can now give a game-theoretic interpretation of when φ is true. The
analysis we are about to do will also transfer easily to any formula in prenex
normal form.

Theorem 8.5. Suppose φ = ∃x1∀x2∃x3∀x4 . . . (R(x1, . . . , xn)) is a sentence
with alternating quantifiers in the language of a structure M . Then

1. M � φ iff ∃ has a winning strategy in the game Gφ,M .

2. M � ¬φ iff ∀ has a winning strategy in the game Gφ,M .

Proof. In class.

From this we can also deduce a famous classical theorem of game theory:

Corollary 8.6 (Zermelo). Any two-player game of finite length and perfect
information has a winning strategy for one of the two players.
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