6c Lecture 10: May 1, 2014

8 Logical equivalence, prenex normal form and
games

8.1 Prenex normal form

Definition 8.1. If ¢ and ¢ are first-order formulas in the language L with free

variables x1,...,x,, then we say ¢ and v are equivalent, and we write ¢ = v, if
for every every structure M in the language L, and every n-tuple (ai,...,ay),
we have M F ¢lzy — a1,..., 25— x,] iff M EY[x) = ay,..., 2, — ay).

For example, if ¢ is a formula containing the variable x and not containing
the variable y, then if we replace each instance of = by y, we obtain an equivalent
formula. (You can prove this formally by induction on formulas).

Another sources of equivalences in first-order logic is equivalences from propo-
sitional logic. For example, the propositional formulas p — ¢ and —-q¢ — —p are
equivalent, so ¢ = Jr(R(x)) — 3y(S(y)) and ¥ = ~(Fy(S(y))) — ~(Fo(R(@)))
are also equivalent. Indeed, if we take any two formulas of propositional logical
logic and replace each variable p; in these formulas with a first-order formula
1, then the resulting formulas of first-order logic will also be equivalent.

We have some important equivalences to do with manipulating quantifiers:

Proposition 8.2. Suppose ¢ is a formula. Then:
o ~(32(9)) = Va(~9).
o ~(%y((9)) = Fa(~9).
Further, if ¢ is a formula that does not have x as a free variable, then
o (Vz(¢)) AN =Va(p AY).
Vi =Va(p V).
(

( )

o (Vz(¢)) )

o (Az(d)) Ay =3Tz(Pp ANY).

o (Jx(¢)) Ve =3a(o V).
Proof. In class. This follows trivially from the definition of equivalence and the
satisfaction relation . O

Next, we define a useful normal form for first-order formulas, and show that
every formula is equivalent to a formula in this normal form.



Definition 8.3. A first-order formula is said to be in prenex normal form if it
is of the form Q1x1Qsx> ...Q 7,0 where each @; is either the quantifier 3 or
V, and 6 is a quantifier-free formula.

For example, JxVy3Iz(R(z,y) — (R(x, z) V =(R(y, 2)))) is in prenex normal
form. The formula 3z(R(x) — Jy(R(z,y) A Vz(R(y,z) — R(x,z)))) is not in
prenex normal form.

It turns out that along with technique of changing variable names, the equiv-
alences given by Proposition 8.2 are all we need to transform any formula into
an equivalent one in prenex normal form. We give an example:

—3z(R(z) A (Vy(S(2,y)) v —Vy(T(x,y)))
= —3x(R(x) A (Vy(S(z,y)) vV Fy(=T(z,y)))
= —3Jz(R(z) A Yy(S(z,y)) vV Iz(-T(z, 2)))
= -3z (R(z) AVy(S(z,y) vV Iz(-T(x, 2)))
= -3z (R(z) AVy3z(S(z,y) V (7T (x, 2)))
= —JeVyIz(R(z) A (S(z,y) V (7T (x, 2)))
— Va3yva(R(@) A (S(@5) v (~T(z, )]

Theorem 8.4. If ¢ is a first-order formula, then there is a first-order formula
¢* in prenex normal form such that ¢ is equivalent to ¢*.

Proof. By induction on formula complexity. First, since the logical connectives
A, V, - are functionally complete, it suffices to prove this for formulas using only
these connectives.

For our base case, note that every quantifier-free formula is already in prenex
normal form.

For our inductive case, suppose ¢ and ¢ are formulas equivalent to ¢* =
Q121 ... Qnry(0) and ¥* = Qly1 ... Q) yn(€) in PNF, where 0 and & are quantifier-
free. Then

(3): Jx¢ = Jx¢* which is in PNF.

(V): Vz¢ = Vargd* which is in PNF.

(ﬁ):gzb = —¢* = Q111 7ann(9) = Q121 ... Qnry(—0) which is in PNF
where Q; is Fif Q; is V, and Q; is V if Q); is exist.

(A): By changing variables, we can assume assume the set of variables
Z1...%, is disjoint from y; ... %y,,. Then

PAY =" AY" = Qra1 ... QurnQiy1 ... Quyn (0 N E)

which is in PNF.
(V): Again, assuming z ..., is disjoint from ¥y ...y, then ¢ V¢ = ¢* V
v =Q1x1 ... QurnQiyr ... QLyn (0 V&) which is in PNF.
O



8.2 Games and quantifiers

Suppose we have a formula ¢ = Jz1VaoIzsVe, ... (R(x1,. .., x,)) with alternat-
ing quantifiers, a structure M having universe A and an n-ary relation R. Then
we can associate a game Gy pr to this formula and structure, as follows. The
game has two players 3 and V, who alternate playing elements a1, as, ..., a, of
the universe of A, with 3 going first:

3 Vv
ai
a2
as
Qay4
Once the game is finished, then 3 wins if R(aq,...,a,) is true. Otherwise,

V wins.

For example, suppose R(z1, 2, x3) is the relation on N defined by R(z1, 22, x3)
iff x3 4+ 23 =22 V o3 + 23 + 21 = X9, ¢ is the formula Iz VeoIrs R(x1, T2, 23),
and we work in the model (N;+). Then here is one play of the game Gy (n.4),
where the first move of 3 is 1, V makes the move 9, and 3 finishes by playing 4:

B
1

9
4

Here 3 wins this play of the game, since 4 +4 =9V 4+441=9 is true.

Recall that a winning strategy for a player is a way of making a move for this
player on each turn of the game so that no matter what moves their opponent
makes, once the game finished, this player wins. For example, 3 has a winning
strategy in our game above; they should play a; = 1 first, and then after V plays
ag, then 3 should play as = as/2 if a9 is even, and as = (a2 — 1)/2 if ay is odd.

We can now give a game-theoretic interpretation of when ¢ is true. The
analysis we are about to do will also transfer easily to any formula in prenex
normal form.

Theorem 8.5. Suppose ¢ = JxiVaodasVay ... (R(x1,...,2,)) is a sentence
with alternating quantifiers in the language of a structure M. Then

1. M E ¢ iff 3 has a winning strategy in the game Gg .
2. M E —¢ iff V has a winning strategy in the game Gy -

Proof. In class. O
From this we can also deduce a famous classical theorem of game theory:

Corollary 8.6 (Zermelo). Any two-player game of finite length and perfect
information has a winning strategy for one of the two players.



