## 6c Lecture 9: April 29, 2014

## 7 Definability and automorphisms

**Definition 7.1.** If M is a structure with universe A, then we say that an element  $a \in A$  is *(first-order) definable* in M if there is a first-order formula  $\phi$  with one free variable x such that a is the unique element of A such that  $M \models \phi(x)$  is true under the assignment  $x \mapsto a$ 

**Example 7.2.** 5 is definable in the structure  $\langle \mathbb{N}; 0, 1, + \rangle$ , via the formula x = 1 + 1 + 1 + 1 + 1.

**Example 7.3.**  $\sqrt{2}$  is definable in the structure  $\langle \mathbb{R}; 0, 1, +, \cdot \rangle$ . Since since  $\sqrt{2}$  is the only positive solution of  $x^2 = 2$ , it is defined by the formula

$$(x \cdot x = 2) \land \exists y(y \cdot y = x)$$

**Example 7.4.**  $\pi$  is not definable in the structure  $\langle \mathbb{R}; 0, 1, +, \cdot \rangle$ . We do not give a proof here, but it is an easy consequence of the Tarski-Seidenberg theorem which we will discuss later in class, and Lindemann's theorem that  $\pi$  is a transcendental number.

**Definition 7.5.** If M is a structure with universe A, then we say that a relation R on A is *(first-order) definable* in M if there is first-order formula  $\phi$  with n free variables  $x_1, \ldots, x_n$  such that for all n-tuples  $(a_1, \ldots, a_n)$ , we have

$$R(a_1,\ldots,a_n) \leftrightarrow M \vDash \phi[x_1 \mapsto a_1 \ldots x_n \mapsto a_n]$$

**Example 7.6.** The relation  $\langle$  is definable in the structure  $\langle \mathbb{R}; 0, 1, + \cdot \rangle$  since x < y iff  $x \neq y \land \exists zx + z \cdot z = y$ 

Recall that we can identify 1-ary relations on a set A with subsets of A. Hence, we will often say that a set  $X \subseteq A$  is definable if it is definable as a 1-ary relation.

**Example 7.7.** The set  $\mathbb{N}$  is definable in the structure  $\langle \mathbb{Z}; 0, 1, +, \cdot \rangle$ . We can see this via Lagrange's four square theorem. Since every nonnegative integer n can be written as a sum of four integer squares  $n = m_1^2 + m_2^2 + m_3^2 + m_4^2$ , we have that  $\mathbb{N}$  is definable via the formula:

$$\exists m_1 \exists m_2 \exists m_3 \exists m_4 (x = m_1 \cdot m_1 + m_2 \cdot m_2 + m_3 \cdot m_3 + m_4 \cdot m_4)$$

Finally, we similarly have a notation of definability for functions:

**Definition 7.8.** If M is a structure with universe A, then we say that a n-ary function f on A is *(first-order) definable* in M if there is first-order formula  $\phi$  with n + 1 free variables  $x_1, \ldots, x_n, x_{n+1}$  such that for all (n + 1)-tuples  $(a_1, \ldots, a_n, a_{n+1})$ , we have

$$f(a_1,\ldots,a_n) = a_{n+1} \leftrightarrow M \vDash \phi[x_1 \mapsto a_1 \ldots x_n \mapsto a_n]$$

**Example 7.9.** The function  $f(x) = \sqrt[3]{x}$  is definable in the structure  $\langle \mathbb{R}; 0, 1, +, \cdot \rangle$ , using the formula  $x_1 \cdot x_1 \cdot x_1 = x_2$ .

## 7.1 The automorphism method

**Definition 7.10.** Suppose  $M = \langle A; f_1^M, \ldots, f_i^M; R_1^M, \ldots, R_j^M \rangle$  and  $N = \langle B; f_1^N, \ldots, f_i^N; R_1^N, \ldots, R_j^N \rangle$  are structures with the same signature. Then an *isomorphism* from M to N is a bijection (a 1-1 and onto function)  $\pi: A \to B$  such that for every n - ary function  $f_i$ , and every n-tuple  $(a_1, \ldots, a_n) \in A^n$ ,

$$\pi(f_i^M(a_1,...,a_m)) = f_i^N(\pi(a_1),...,\pi(a_m)),$$

and for every *n*-ary relation  $R_i$ , and every *n*-tuple  $(a_1, \ldots a_n) \in A^n$ ,

$$\pi(R_i^M(a_1,\ldots,a_m)) \leftrightarrow R_i^N(\pi(a_1),\ldots,\pi(a_m)).$$

If there is an isomorphism from M to N, then we say M and N are *isomorphic*.

We give a picture illustrating the equation



If M is isomorphic to N, then you should think of M and N as being the same structure, just with the universe of N being a "relabeled" version of the universe of M via the function  $\pi$ .

**Example 7.11.** Consider the graphs  $G_1$  and  $G_2$  on the set of vertices  $\{1, 2, 3, 4\}$  and  $\{a, b, c, d\}$  respectively, and having an edge relations  $E^{G_1}$  and  $E^{G_2}$  as follows:  $G_1 = \langle 1, 2, 3, 4, \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (1, 4), (4, 1)\}\rangle$ , and  $G_2 = \langle a, b, c, d, \{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (a, d), (d, a)\}\rangle$ . Then the function  $\pi$  where  $\pi(1) = a, \pi(2) = b, \pi(3) = c$ , and  $\pi(4) = d$ , is an isomorphism from  $G_1$  to  $G_2$ , since we can check that for every  $(a_1, a_2)$  in the universe of  $G_1$ , we have

$$E_1^G(a_1, a_2) \leftrightarrow E_2^G(\pi(a_1), \pi(a_2)).$$

We draw a picture below:



**Example 7.12.** Consider the structures  $\langle \mathbb{R}^+; \cdot \rangle$  and  $\langle R; + \rangle$ , where  $\mathbb{R}^+$  is the set of positive integers. The function  $\pi(x) = \log x$  is an isomorphism from  $\langle \mathbb{R}^+; \cdot \rangle$  to  $\langle \mathbb{R}; + \rangle$ . To check this, for the single functions in these two structures, we mus show that for every  $(a_1, a_2) \in (\mathbb{R}^+)^2$ , we have:

$$\pi(a_1 \cdot a_2) = \pi(a_1) + \pi(a_2)$$

which is equivalent to

$$\log(a_1 \cdot a_2) = \log(a_1) + \log(a_2)$$

which is a law of logarithms.

**Theorem 7.13.** Suppose  $\pi$  is an isomorphism between structures M and N having the same language,  $\phi$  is a formula in this language having free variables  $x_1, \ldots, x_n$ , and  $(a_1, \ldots, a_n)$  is an n-tuple of elements of the universe of M. Then  $M \vDash \phi[x_1 \mapsto a_1 \ldots x_n \mapsto a_n]$  iff  $N \vDash \phi[x_1 \mapsto \pi(a_1) \ldots x_n \mapsto \pi(a_n)]$ .

*Proof.* In class, by induction on formulas.

For example, consider our isomorphism above between the graphs  $G_1$  and  $G_2$ . Then the formula  $\phi = \exists y \exists z (xEy \land xEz \land yEz)$  is true in  $G_1$  when  $x \mapsto 1$  and therefore  $\phi$  is also true in  $G_2$  when  $x \mapsto a$ , since  $\pi(1) = a$ . (Similarly  $\phi$  is false in  $G_1$  when we assign  $x \mapsto 4$  and  $\phi$  is false in  $G_2$  when we assign  $x \mapsto d$ .)

**Definition 7.14.** An automorphism of a structure M is an isomorphism from M to M. For every structure, the identity function  $\pi(x) = x$  is an automorphism of M. This automorphism is called the *trivial automorphism*, and an automorphism is called *nontrivial* if it is not equal to the identity automorphism.

A corollary of Theorem 7.13 gives a very useful technique for proving functions and relations are not first-order definable.

**Corollary 7.15.** If  $\pi$  is an automorphism of M, then for every formula  $\phi$  with n free variables  $x_1, \ldots, x_n$  and every n-tuple  $a_1, \ldots, a_n$  in the universe of M,

$$M \vDash \phi[x_1 \mapsto a_1 \dots x_n \mapsto a_n] \leftrightarrow M \vDash \phi[x_1 \mapsto \pi(a_1) \dots x_n \mapsto \pi(a_n)]$$

**Example 7.16.** The function  $\pi(a) = a^3$  is an automorphism of the structure  $\langle \mathbb{R}; 0, 1, \cdot \rangle$ , since  $\pi(0) = 0$ ,  $\pi(1) = 1$ , and for every  $a, b \in \mathbb{R}$ 

$$\pi(a \cdot b) = \pi(a) \cdot \pi(b)$$

is true, since

$$(a \cdot b)^3 = a^3 \cdot b^3.$$

Note that  $\pi(x) = x^2$  is not an automorphism of  $\langle \mathbb{R}; 0, 1, \cdot \rangle$  since  $\pi$  is not a bijection.

**Example 7.17.**  $\mathbb{N}$  is not definable in  $\langle \mathbb{R}; 0, 1, \cdot \rangle$ . We can prove this by using Corollary 7.15 and the automorphism  $\pi(x) = x^3$  given above. By way of contradiction, if  $\mathbb{N}$  was definable, then there would be a formula  $\phi$  such that  $\langle \mathbb{R}; 0, 1, \cdot \rangle \models \phi[x \mapsto a]$  iff  $a \in \mathbb{N}$ . So  $\langle \mathbb{R}; 0, 1, \cdot \rangle \models \phi[x \mapsto \sqrt[3]{2}]$  would have to be false, but this is true iff  $\langle \mathbb{R}; 0, 1, \cdot \rangle \models \phi[x \mapsto 2]$  by Corollary 7.15. However,  $\langle \mathbb{R}; 0, 1, \cdot \rangle \models \phi[x \mapsto 2]$  must be true since  $\phi$  defines  $\mathbb{N}$ . Contradiction!