6c Lecture 9: April 29, 2014

7 Definability and automorphisms

Definition 7.1. If M is a structure with universe A, then we say that an
element a € A is (first-order) definable in M if there is a first-order formula
¢ with one free variable x such that a is the unique element of A such that
M E ¢(zx) is true under the assignment = — a

Example 7.2. 5 is definable in the structure (N;0, 1,4}, via the formula = =
1+14+1+14+1.

Example 7.3. /2 is definable in the structure (R;0,1,+,-). Since since v/2 is
the only positive solution of z2 = 2, it is defined by the formula

(x-2=2)ANyly-y=2)

Example 7.4. 7 is not definable in the structure (R; 0,1, +, ). We do not give a
proof here, but it is an easy consequence of the Tarski-Seidenberg theorem which
we will discuss later in class, and Lindemann’s theorem that 7 is a transcendental
number.

Definition 7.5. If M is a structure with universe A, then we say that a relation
R on A is (first-order) definable in M if there is first-order formula ¢ with n
free variables z1,...,z, such that for all n-tuples (aq,...,a,), we have

R(ay,...,an) & ME ¢[z1 = ay...2, — ay)

Example 7.6. The relation < is definable in the structure (R;0,1,+-) since
r<yiffe AyAJzz+2z-2=y

Recall that we can identify l-ary relations on a set A with subsets of A.
Hence, we will often say that a set X C A is definable if it is definable as a
l-ary relation.

Example 7.7. The set N is definable in the structure (Z;0,1,+,-). We can see
this via Lagrange’s four square theorem. Since every nonnegative integer n can
be written as a sum of four integer squares n = m? + m2 + m2 + m?2, we have
that N is definable via the formula:

3m13m23m33m4(x =mp-mi+ My Mg+ M3 M3+ My - m4)

Finally, we similarly have a notation of definability for functions:



Definition 7.8. If M is a structure with universe A, then we say that a n-ary
function f on A is (first-order) definable in M if there is first-order formula

¢ with n + 1 free variables x1,...,%,,T,+1 such that for all (n + 1)-tuples
(a1y...,ap,ant1), we have
flat,...;an) = any1 & M EPlzy — ay ... 2y — ay]

Example 7.9. The function f(z) = ¢z is definable in the structure (R;0, 1, +, ),
using the formula x; - 1 - 1 = xo.

7.1 The automorphism method

Definition 7.10. Suppose M = (A; fM ... fM;RM . | R;VI> and
N=(B;fN,...,fN;RYV, ... R§V> are structures with the same signature. Then
an isomorphism from M to N is a bijection (a 1-1 and onto function) 7: A — B
such that for every n — ary function f;, and every n-tuple (ay,...a,) € A™,

W(flM(ala ceey am)) = fiN(,]r<a’1)a o 77T(am))a
and for every n-ary relation R;, and every n-tuple (a1, ...a,) € A™,
m(RM(ay,...,am)) < RN (r(a1),...,m(am)).

If there is an isomorphism from M to N, then we say M and N are isomorphic.

We give a picture illustrating the equation

7T(.fi]\/j(afla AR am)) = fiN(,]r(al)v cee 77T(am))'

If M is isomorphic to N, then you should think of M and N as being the
same structure, just with the universe of N being a “relabeled” version of the
universe of M via the function 7.



Example 7.11. Consider the graphs G and G2 on the set of vertices {1, 2, 3,4}
and {a,b,c,d} respectively, and having an edge relations ECt and E©2 as fol-
lows: G = (1,2,3,4,{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1)}), and
G2 = (a,b,c,d,{(a,b),(b,a),(a,c),(c,a),(b,c),(cb),(a,d),(d,a)}). Then the
function 7 where w(1) = a, m(2) = b, 7(3) = ¢, and 7(4) = d, is an isomorphism
from G; to Go, since we can check that for every (a1, az) in the universe of Gy,
we have
EY (a1, as) ¢ B ((a1), 7(az)).

We draw a picture below:

Example 7.12. Consider the structures (R™;-) and (R;+), where R is the
set of positive integers. The the function m(x) = logz is an isomorphism from
(RT;) to (R;+). To check this, for the single functions in these two structures,
we mus show that for every (a1,as) € (RT)?2, we have:

m(ay - az) = w(ay) + 7(az)
which is equivalent to
log(ay - az) = log(ay) + log(az)
which is a law of logarithms.

Theorem 7.13. Suppose w is an isomorphism between structures M and N
having the same language, ¢ is a formula in this language having free variables
T1y.eoy Xy, and (a1,...,a,) is an n-tuple of elements of the universe of M.
Then M E ¢[z1 — a1...2q — ay] iff N E @[z — w(ar) ...z, — w(ay)].

Proof. In class, by induction on formulas. O

For example, consider our isomorphism above beween the graphs G; and
G4. Then the formula ¢ = JyIz(zEy A xEz A yEz) is true in G; when = — 1
and therefore ¢ is also true in Go when z — a, since m(1) = a. (Similarly ¢ is
false in G; when we assign © — 4 and ¢ is false in G2 when we assign x +— d.)



Definition 7.14. An automorphism of a structure M is an isomorphism from
M to M. For every structure, the identity function m(x) = x is an automor-
phism of M. This automorphism is called the trivial automorphism, and an
automorphism is called nontrivial if it is not equal to the identity automor-
phism.

A corollary of Theorem 7.13 gives a very useful technique for proving func-
tions and relations are not first-order definable.

Corollary 7.15. If 7 is an automorphism of M, then for every formula ¢ with
n free variables x1,...,T, and every n-tuple ay,...,a, in the universe of M,

ME¢[zi—ar...xp = ay) & ME ¢z — w(ar) ...z, — 7(ay)]

Example 7.16. The function 7(a) = a® is an automorphism of the structure

(R;0,1,-), since 7(0) =0, 7(1) = 1, and for every a,b € R
m(a-b) =7(a)- w(b)

is true, since
(a-b)® =a® b3

Note that 7(x) = 22 is not an automorphism of (R;0,1,-) since 7 is not a
bijection.

Example 7.17. N is not definable in (R;0,1,-). We can prove this by us-
ing Corollary 7.15 and the automorphism 7 (z) = 3 given above. By way of
contradiction, if N was definable, then there would be a formula ¢ such that
(R;0,1,-) F ¢[x + d] iff @ € N. So (R;0,1,-) F ¢[z ~— /2] would have to
be false, but this is true iff (R;0,1,-) E ¢z — 2] by Corollary 7.15. However,
(R;0,1,-) E ¢[z — 2] must be true since ¢ defines N. Contradiction!



