
6c Lecture 9: April 29, 2014

7 Definability and automorphisms

Definition 7.1. If M is a structure with universe A, then we say that an
element a ∈ A is (first-order) definable in M if there is a first-order formula
φ with one free variable x such that a is the unique element of A such that
M � φ(x) is true under the assignment x 7→ a

Example 7.2. 5 is definable in the structure 〈N; 0, 1,+〉, via the formula x =
1 + 1 + 1 + 1 + 1.

Example 7.3.
√

2 is definable in the structure 〈R; 0, 1,+, ·〉. Since since
√

2 is
the only positive solution of x2 = 2, it is defined by the formula

(x · x = 2) ∧ ∃y(y · y = x)

Example 7.4. π is not definable in the structure 〈R; 0, 1,+, ·〉. We do not give a
proof here, but it is an easy consequence of the Tarski-Seidenberg theorem which
we will discuss later in class, and Lindemann’s theorem that π is a transcendental
number.

Definition 7.5. If M is a structure with universe A, then we say that a relation
R on A is (first-order) definable in M if there is first-order formula φ with n
free variables x1, . . . , xn such that for all n-tuples (a1, . . . , an), we have

R(a1, . . . , an)↔M � φ[x1 7→ a1 . . . xn 7→ an]

Example 7.6. The relation < is definable in the structure 〈R; 0, 1,+·〉 since
x < y iff x 6= y ∧ ∃zx+ z · z = y

Recall that we can identify 1-ary relations on a set A with subsets of A.
Hence, we will often say that a set X ⊆ A is definable if it is definable as a
1-ary relation.

Example 7.7. The set N is definable in the structure 〈Z; 0, 1,+, ·〉. We can see
this via Lagrange’s four square theorem. Since every nonnegative integer n can
be written as a sum of four integer squares n = m2

1 + m2
2 + m2

3 + m2
4, we have

that N is definable via the formula:

∃m1∃m2∃m3∃m4(x = m1 ·m1 +m2 ·m2 +m3 ·m3 +m4 ·m4)

Finally, we similarly have a notation of definability for functions:
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Definition 7.8. If M is a structure with universe A, then we say that a n-ary
function f on A is (first-order) definable in M if there is first-order formula
φ with n + 1 free variables x1, . . . , xn, xn+1 such that for all (n + 1)-tuples
(a1, . . . , an, an+1), we have

f(a1, . . . , an) = an+1 ↔M � φ[x1 7→ a1 . . . xn 7→ an]

Example 7.9. The function f(x) = 3
√
x is definable in the structure 〈R; 0, 1,+, ·〉,

using the formula x1 · x1 · x1 = x2.

7.1 The automorphism method

Definition 7.10. Suppose M = 〈A; fM1 , . . . , fMi ;RM
1 , . . . , R

M
j 〉 and

N = 〈B; fN1 , . . . , f
N
i ;RN

1 , . . . R
N
j 〉 are structures with the same signature. Then

an isomorphism from M to N is a bijection (a 1-1 and onto function) π : A→ B
such that for every n− ary function fi, and every n-tuple (a1, . . . an) ∈ An,

π(fMi (a1, . . . , am)) = fNi (π(a1), . . . , π(am)),

and for every n-ary relation Ri, and every n-tuple (a1, . . . an) ∈ An,

π(RM
i (a1, . . . , am))↔ RN

i (π(a1), . . . , π(am)).

If there is an isomorphism from M to N , then we say M and N are isomorphic.

We give a picture illustrating the equation

π(fMi (a1, . . . , am)) = fNi (π(a1), . . . , π(am)).

M

a1

...

an

fMi (a1, . . . , an)

fMi

π

π

π

N

π(a1)

...
π(an)

fNi (π(a1), . . . , π(an))

fNi

If M is isomorphic to N , then you should think of M and N as being the
same structure, just with the universe of N being a “relabeled” version of the
universe of M via the function π.

2



Example 7.11. Consider the graphs G1 and G2 on the set of vertices {1, 2, 3, 4}
and {a, b, c, d} respectively, and having an edge relations EG1 and EG2 as fol-
lows: G1 = 〈1, 2, 3, 4, {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (1, 4), (4, 1)}〉, and
G2 = 〈a, b, c, d, {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (a, d), (d, a)}〉. Then the
function π where π(1) = a, π(2) = b, π(3) = c, and π(4) = d, is an isomorphism
from G1 to G2, since we can check that for every (a1, a2) in the universe of G1,
we have

EG
1 (a1, a2)↔ EG

2 (π(a1), π(a2)).

We draw a picture below:

G1

3

1

4

2

G2

c

a

d

b

Example 7.12. Consider the structures 〈R+; ·〉 and 〈R; +〉, where R+ is the
set of positive integers. The the function π(x) = log x is an isomorphism from
〈R+; ·〉 to 〈R; +〉. To check this, for the single functions in these two structures,
we mus show that for every (a1, a2) ∈ (R+)2, we have:

π(a1 · a2) = π(a1) + π(a2)

which is equivalent to

log(a1 · a2) = log(a1) + log(a2)

which is a law of logarithms.

Theorem 7.13. Suppose π is an isomorphism between structures M and N
having the same language, φ is a formula in this language having free variables
x1, . . . , xn, and (a1, . . . , an) is an n-tuple of elements of the universe of M .
Then M � φ[x1 7→ a1 . . . xn 7→ an] iff N � φ[x1 7→ π(a1) . . . xn 7→ π(an)].

Proof. In class, by induction on formulas.

For example, consider our isomorphism above beween the graphs G1 and
G2. Then the formula φ = ∃y∃z(xEy ∧ xEz ∧ yEz) is true in G1 when x 7→ 1
and therefore φ is also true in G2 when x 7→ a, since π(1) = a. (Similarly φ is
false in G1 when we assign x 7→ 4 and φ is false in G2 when we assign x 7→ d.)
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Definition 7.14. An automorphism of a structure M is an isomorphism from
M to M . For every structure, the identity function π(x) = x is an automor-
phism of M . This automorphism is called the trivial automorphism, and an
automorphism is called nontrivial if it is not equal to the identity automor-
phism.

A corollary of Theorem 7.13 gives a very useful technique for proving func-
tions and relations are not first-order definable.

Corollary 7.15. If π is an automorphism of M , then for every formula φ with
n free variables x1, . . . , xn and every n-tuple a1, . . . , an in the universe of M ,

M � φ[x1 7→ a1 . . . xn 7→ an]↔M � φ[x1 7→ π(a1) . . . xn 7→ π(an)]

Example 7.16. The function π(a) = a3 is an automorphism of the structure
〈R; 0, 1, ·〉, since π(0) = 0, π(1) = 1, and for every a, b ∈ R

π(a · b) = π(a) · π(b)

is true, since
(a · b)3 = a3 · b3.

Note that π(x) = x2 is not an automorphism of 〈R; 0, 1, ·〉 since π is not a
bijection.

Example 7.17. N is not definable in 〈R; 0, 1, ·〉. We can prove this by us-
ing Corollary 7.15 and the automorphism π(x) = x3 given above. By way of
contradiction, if N was definable, then there would be a formula φ such that
〈R; 0, 1, ·〉 � φ[x 7→ a] iff a ∈ N. So 〈R; 0, 1, ·〉 � φ[x 7→ 3

√
2] would have to

be false, but this is true iff 〈R; 0, 1, ·〉 � φ[x 7→ 2] by Corollary 7.15. However,
〈R; 0, 1, ·〉 � φ[x 7→ 2] must be true since φ defines N. Contradiction!
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