
6c Lecture 8: April 24, 2014

6 First order logic

Our next topic is first-order logic, which is a more complex system than propo-
sitional logic that incorporates functions, relations and quantifiers. Indeed, all
essentially all theorems of modern mathematics can be formalized and proved
in first-order logic.

6.1 Structures

We begin by recalling the definition of relations and functions.

Definition 6.1. A n-ary relation R on a set A is a subset of the n-tuples An

of A. We write R(a1, . . . , an) to indicate that the n-tuple (a1, . . . , an) is in R.
A n-ary function f on a set A is a rule assigning each n-tuple (a1, . . . , an) a

unique value f(a1, . . . , an) ∈ A.

Example 6.2. Some relations on R:

1. L = {(x, y) ∈ R2 : x < y} is a 2-ary (or binary) relation on R.

2. E = {(x, y) ∈ R2 : x = y} is a binary relation on R.

3. Q = {x ∈ R : x is rational} is a 1-ary (or unary) relation on R.

4. For each natural number n, the (n+1)-ary relation Rn = {(a0, a1, . . . , an) :
the polynomial anx

n + . . .+ a1x+ a0 = x has n distinct real roots}.

Some relations on the set A of binary strings:

1. P = {(s, t) : s is a prefix of t}

2. S = {(s, t) : s is a substring of t}

Note that we can identify 1-ary relations on A with subsets of A in the
obvious way.

Example 6.3. Some examples of functions on R:

1. s(x) = x2 is a unary function

2. a(x) = x+ y is a binary function

3. fn(x1, . . . , xn) =
√
x21 + . . .+ x2n.
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Some examples of functions on the set A of binary strings:

1. The binary function C(s, t) equal to the concatenation of s and t.

2. The ternary function R(r, s, t) equal to the string obtained by replacing
the first instance of r in t with the string s.

Sometimes when R is a 2-ary relation we will write x R y instead of R(x, y).
For example, we generally write x < y instead of < (x, y) for the relation <.

Note that a 0-ary function takes no input, and outputs a single value in A. A
more common name for 0-ary functions is constants. For example, the constant
value π is a 0-ary function on R.

0-ary relation are sometimes also considered. There are two such relations,
the relation which is always true, and the relation which is always false. These
are denoted > and ⊥ respectively.

Definition 6.4. A structure consists of a set A called the universe of the struc-
ture, together with a collection of functions f1, f2, . . . and relations R1, R2, . . .
on A. We write 〈A, f1, f2, . . . , R1, R2, . . .〉 to note this structure.

We give some examples:

Example 6.5. 1. Let A be the set of all binary strings. Then we can con-
sider the structure 〈A;C,R;P, S〉 whose universe is A, and which has the
functions C and R and relations P and S defined above.

2. The structure 〈N; 0, 1,+, ·;<〉 whose universe is the natural numbers and
which has the constants 0 and 1, the functions + and ·, and the relation
<.

3. The structure 〈R; 0, 1, π,+, ·, sin, cos;<〉 consisting of the real numbers
with the constants 0, 1, and π, the functions of addition, multiplication,
sin and cos, and the relation <.

Note that for example, 〈R; tan〉 is not a structure since the tan is not a
function on R; its domain does not include π/2, for example. Similarly, we
cannot have a function for subtraction on a structure whose universe is N, since
1− 2 is not an element of N.

Every structure has a language associated to it, which is just the information
of what symbols we use for the functions and relations of language, and what
their airities are. For example, the language of the the structure 〈A;C,R;P, S〉
has 2 binary functions C and R, a binary relation P and a ternary relation S.

When we have several structures that use the same language, and we want to
emphasize what model a particular function or relation comes from, we will use
superscripts to indicate this. For example, the language with 2 binary relations
+ and · is the language of both the structure R = 〈R; +, ·〉 and the structure
〈N; +, ·〉. It is also the language of the the structure Z2 = 〈{0, 1}; +, ·〉 of the
integers modulo 2, where we define · as usual, but addition as 0 +Z2 0 = 0,
0 +Z2 1 = 1, 1 +Z2 0 = 1, and 1 +Z2 1 = 0.

Formally we have the following definition:
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Definition 6.6. A language is a set of symbols representing a collection of
functions and relations, and information about their arities (i.e. the n for which
each the function or relation is n-ary).

6.2 The satisfaction relation

Now we will give the longest and most pedantic sequence of definition we’ll
encounter this whole quarter. Intuitively, what we want to do is to define what
first-order formulas are (formulas we can build using variables, quantification
over variables, functions and relations) and what it means for a formula to be
true in a structure.

For example, we’ll see that φ = ∀x∀y∃z(x+z = y) and ψ = ∀y[(x+y) ≥ x·y]
are formulas, and φ is true in the structure 〈R; +〉 and false in the structure
〈N; +〉 while in the structure 〈N; +, ·〉, ψ is true under the assignment x 7→ 1
and ψ is false under the assignment x 7→ 2.

The recursive definitions we will give will often be used in inductive proofs
we give.

We’ll start by defining terms. Terms are expressions that represent an ele-
ment of the universe of a structure. They can be single variables (for which we
will usually use the letters x, y, z, w or x1, x2, . . .), or combinations of variables
made using function. For example, for the structure 〈R; 0, 1; +, ·〉, we have that
(1 +x) · y+ 1 is a term whose value under the assignment [x 7→ 3, y 7→ 1/4] is 2.

Definition 6.7. Fix a language L and a structure M . We give an inductive
definition of what the terms of L are, what the variables of a term are, and if t is
a term having variables x1, . . . , xn and a1, . . . , an are elements of the universe of
M , what the value of t under the assignment [x1 7→ a1, . . . , xn 7→ an] is, which
we write t[x1 7→ a1, . . . , xn 7→ an].

Our base case is that any variable x is a term, and the value of the term
consisting of a single variable x under any the assignment [x 7→ a] is a.

Now inductively, if t1, . . . tn are terms and f is an n-ary function in the
language L, then f(t1, . . . , tn) is a term. Its set of variables is equal to the union
of the variables appearing in t1, . . . , tn, and if these variables are x1, . . . , xm,
then the value of the term f(t1, . . . , tn)[x1 7→ a1, . . . , xm 7→ am] in M is equal
to fM (t1[x1 7→ a1, . . . , xm 7→ am], . . . , tn[x1 7→ a1, . . . , xm 7→ am]).

Note that a 0-ary function (i.e. a constant) by itself is also a term.
Formally, each term in a language L having n variables defines an n-ary

function on each structure for this language.

For example, lets consider again set of binary strings A, and lets work in
structure 〈A; 0, 1, C, S〉 which has constants consisting of the strings ”0” and
”1”, and the functions C(s, t) of concatenation and the ternary function R(r, s, t)
equal to the string obtained by replacing the first instance of r in t with the
string s. Then 0 is a term (just the constant 0). C(0, 1) is a term whose value
is 01 in the structure. R(C(0, 1), C(1, 0), x) is a term whose value under the
assignment [x 7→ 000110] is 001010.
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Next, we will give a definition of what first order formulas are; expressions
such as:

∀y((∃x(x · x+ y = 0) ∧ ∃x(x · x = y))→ y = 0).

The quantifier ∃x should be thought of as saying “there exists an x”, and the
quantifier ∀x should be thought of as saying “for all x”. Thus, for example, the
above formula roughly says for every y, if there is an x such that x2 + y = 0,
and there is an x such that x2 = y, then y = 0.

As usual, we define formulas recursively starting with terms combined using
relations, and then adding logical connectives and quantifiers. We’ll also define
the satisfaction relation � for which given a model M indicates what formulas
are true in M under what variable assignments.

Definition 6.8. Fix a language L and a structure M . We inductively define the
class of first order formulas in the language L, the free variables in a formula,
and and the satisfaction relation �.

An atomic formula is a formula of one of the following two forms:

1. R(t1, . . . , tn), whenever where R is an n-ary relation of L and t1, . . . , tn
are terms in L. If x1, . . . , xm are the variables occurring in the terms
t1, . . . , tn, then these variables are all said to be free in R(t1, . . . , tn), and
if a1, . . . , am is an m-tuple of elements in the universe of M , then M �
R(t1, . . . , tn)[x1 7→ a1, . . . , xm 7→ am] if and only if in the structure M ,
RM (t1[x1 7→ a1, . . . , xm 7→ am], . . . , tn[x1 7→ a1, . . . , xm 7→ am]) is true.

2. t1 = t2, whenever t1, t2 are terms in L. If x1, . . . , xm are the variables
occurring in the terms t1, . . . , tn, then these variables are all said to be
free in t1 = t1, and if a1, . . . , am is an m-tuple of elements in the universe
of M , then M � t1 = t2[x1 7→ a1, . . . , xm 7→ am] if and only if in M
t1[x1 7→ a1, . . . , xm 7→ am] = t2[x1 7→ a1, . . . , xm 7→ am].

Now we obtain more complicated formulas by combining them with logical
connectives and quantifiers. If φ and ψ are formulas, then

1. ¬φ is a formula, whose set of free variables is the same as φ. If these
variables are x1, . . . , xm, then under any assignment, [x1 7→ a1, . . . , xm 7→
am], we have M � ¬φ[x1 7→ a1, . . . , xm 7→ am] iff its not the case that
M � φ[x1 7→ a1, . . . , xm 7→ am].

2. φ ∧ ψ is a formula, whose set of free variables is the union of those of
φ and ψ. If these variables are x1, . . . , xm, then under any assignment,
[x1 7→ a1, . . . , xm 7→ am], we have M � φ ∧ ψ[x1 7→ a1, . . . , xm 7→ am] iff
M � φ[x1 7→ a1, . . . , xm 7→ am] and M � ψ[x1 7→ a1, . . . , xm 7→ am].

3. φ∨ψ, φ→ ψ and φ↔ ψ are also formulas, and we define the satisfaction
relation for them similarly.

If φ is a formula and y is a variable, then
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1. ∃y(φ) is a formula, whose free variables are those of φ except y if it is a
free variable in φ. We say that the variable y is bound by the quantifier
∃y, and that every instance of the variable y in φ is in the scope of the
quantifier ∃y. If the free variables of ∃yφ are x1, . . . , xm, then under
the assignment [x1 7→ a1, . . . , xm 7→ am] we define M � ∃y(φ)[x1 7→
a1, . . . , xm 7→ am] iff there is an element b of the universe of M so that
M � φ[x1 7→ a1, . . . , xm 7→ am, y 7→ b].

2. ∀y(φ) is a formula, whose free variables are those of φ except y if it is a free
variable in φ. We say that the variable y is bound by the quantifier ∀y, and
that every instance of the variable y in φ is in the scope of the quantifier
∀y. If the free variables of ∀yφ are x1, . . . , xm, then under the assignment
[x1 7→ a1, . . . , xm 7→ am] we define M � ∀y(φ)[x1 7→ a1, . . . , xm 7→ am]
iff for every element b of the universe of M , M � φ[x1 7→ a1, . . . , xm 7→
am, y 7→ b].

Note that if φ is a formula whose free variables are included in x1, . . . , xn,
and [x1 7→ a1, . . . , xm 7→ am] is an assignment of values from the universe of M
to variables x1, . . . , xm, then we define M � φ[x1 7→ a1, . . . , xm 7→ a1] to be the
truth value of φ in M under the assignment which removes all variables that
are not free in φ.

Note that we have included equality = as a basic object in first order logic;
because of the fundamental role that it plays in mathematics, it is difficult to
to anything interesting without it.

Definition 6.9. A sentence φ is a formula which does not have any free variables

Sentences are important because they have truth values without specifying
values for any of their variables.
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