
6c Lecture 5 & 6: April 15 & 17, 2014

4 Proofs by resolution and a Hilbert-style for-
mal proof system

Our next goal is to discuss some formal proof systems. These systems will be
for providing a formal proof that S implies φ, for some set of formulas S and φ
such that this is true. Here we will write S ` φ to indicate that there is a formal
proof of φ from S (according to whatever proof system we are discussing).

We’ll be especially interested in verifying two properties of the systems we
will discuss. First, soundness, which is the property that if S ` φ, then S implies
φ (simply stated, our formal proof system doesn’t prove false things). Second,
completeness, which is the property that if S implies φ, then S ` φ (simply
stated, our formal proof system proves every true thing). Together one can
think of soundness and completeness as saying that our proof system is perfect:
it proves every true thing and no false things.

Recall that by compactness, since whenever S implies φ we have that some
finite subset S′ of S implies φ, it’s enough for us to describe proof systems which
only prove logical implications from finite sets of assumptions.

Now of course, we already have one way of proving logical implications: truth
tables. However, truth table are very inefficient in practice, and time consuming
both to compute initially and to verify as correct afterwards. Our goal now is to
describe some systems which have the potential for being much more efficient,
and closer to real mathematical practice.

4.1 Efficiently converting logical implications into check-
ing satisfiability of formulas in CNF

We’ll begin by showing that having a system for proving logical implications is
equivalent (in a way that can be computed efficiently) to having a system for
proving when CNF formulas are contradictions. We start with the following
lemma which gets us halfway there.

Lemma 4.1. If S = {φ1, φ2, . . . , φn} is a finite set of formulas, then S implies
ψ iff (φ1 ∧ φ2 ∧ . . . ∧ φn) → ψ is a tautology iff ¬φ1 ∨ ¬φ2 ∨ . . .¬φn ∨ ψ is
contradictory.

Proof. Given in class.

Next, we show that we can assume our formulas which we want to prove
contradictory are in CNF, since there is an efficient algorithm for transforming
any satisfiability problem into an equivalent one for a CNF formula.

1

Theorem 4.2. There is an efficient (linear-time) algorithm for converting any
formula φ into a formula ψ in CNF which is satisfiable iff φ is.

Proof. As we describe the algorithm in abstract, we will also work an ex-
ample to illustrate the algorithm. Suppose we have a formula such as φ =
¬ ((p ∨ (¬q))↔ (p→ (q ∧ r))). Then consider the parse tree for this formula:

¬ ((p ∨ (¬q))↔ (p→ (q ∧ r)))

¬

(p ∨ (¬q))↔ (p→ (q ∧ r))

p ∨ (¬q) p→ (q ∧ r)

↔

p ¬q

∨

p q ∧ r

→

q

¬

q r

∧

For each node having children in this tree starting from the root, we first
associate a new propositional variable v0, v1, . . . , vn. So now we have:

¬ ((p ∨ (¬q))↔ (p→ (q ∧ r))) ≡ v0

¬

(p ∨ (¬q))↔ (p→ (q ∧ r)) ≡ v1

p ∨ (¬q) ≡ v2 p→ (q ∧ r) ≡ v3

↔

p ¬q ≡ v4

∨

p q ∧ r ≡ v5

→

q

¬

q r

∧

Having done this, now each node in the tree is associated a variable (either
it has no children and is associated one of the original variables, or it is has
children and has been assigned one of our new variables). Now for each node
vi having children in the tree, make the formula stating vi is equivalent to the

2

connective associated to this node applied to its children. In our example, this
gives the formulas v0 ↔ (¬v1), v1 ↔ (v2 ↔ v3), v2 ↔ (p ∨ v4), v3 ↔ (p → v5),
v4 ↔ (¬q), and v5 ↔ (q ∧ r). Now take the conjunction of all these formulas
with the variable assigned to our root v0:

v0 ∧ [v0 ↔ (¬v1)] ∧ [v1 ↔ (v2 ↔ v3)] ∧ [v2 ↔ (p ∨ v4)]∧
[v3 ↔ (p→ v5)] ∧ [v4 ↔ (¬q)] ∧ [v5 ↔ (q ∧ r)]

One can prove by induction on formulas that this process yields a formula
which is satisfiable iff the original formula φ is satisfiable.

To efficiently convert this new formula to conjunctive normal form, it suf-
fices to note that for each of the possible forms of the conjuncts we have in
such a formula (corresponding to each logical connective), there is a short and
equivalent way of expressing the formula in conjunctive normal form:

Original formula Equivalent form
x↔ (¬y) (¬x ∨ ¬y) ∧ (x ∨ y)
x↔ (y ∧ z) (¬x ∨ y) ∧ (¬z ∨ z) ∧ (z ∨ ¬y ∨ ¬z)
x↔ (y ∨ z) (¬x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (x ∨ ¬z)
x↔ (y → z) (¬x ∨ ¬y ∨ z) ∧ (x ∨ y) ∧ (x ∨ ¬z)
x↔ (y ↔ z) (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z) ∨ (¬x ∧ ¬y ∧ z)

For example, our example φ now yields the following formula ψ:

v0 ∧ [(¬v0 ∨ ¬v1) ∧ (v0 ∨ v1)]∧
[(¬v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ ¬v3) ∧ (v1 ∨ ¬v2 ∨ ¬v3) ∨ (¬v1 ∧ ¬v2 ∧ v3)]∧

[(¬v2 ∨ p∨ v4)∧ (v2 ∨¬p)∧ (v2 ∨¬v4)]∧ [(¬v3 ∨¬p∨ v5)∧ (v3 ∨ p)∧ (v3 ∨¬v5)]∧
[(¬v4 ∨ ¬q) ∧ (v4 ∨ q)] ∧ [(¬v5 ∨ q) ∧ (¬r ∨ r) ∧ (r ∨ ¬q ∨ ¬r)]

It will be an exercise to prove that for every formula, the formula ψ obtained
by this algorithm is satisfiable iff φ is satisfiable.

4.2 The method of resolution

Now we will describe a method for proving that a formula in CNF is unsatis-
fiable. Recall that a formula in CNF has the form (`1,1 ∨ . . . , `1,n1) ∧ (`1,2 ∨
. . . , `1,n2

) ∧ . . . ∧ (`1,k ∨ . . . , `1,nk
), where the `i,j are literals. Since the order

of the literals `i,1 . . . `i,ni
does not matter inside each conjunct, we can think

of them as simply being a set of literals, which we call a clause. It is this ob-
servation which motivates the following definition, which essentially is just new
terminology for parts of a formula in CNF.

Definition 4.3. A clause is a set of literals. A clause is satisfied by a valuation
v if at least one of the literals in the clause is true according to the valuation.
A set of clauses is satisfiable iff there is some valuation making each clause in
the set satisfied.

3

For example, the CNF formula {(p∨¬q ∨ r)∧ (¬p∨ q ∨ r)∧ (¬p∨¬q ∨¬r)}
is associated to the set of clauses {{p,¬q, r}, {¬p, q, r}, {¬p,¬q,¬r}}, and this
set of clauses is satisfiable iff the original formula is.

Now suppose we have two disjunctions of literals where some propositional
variable p appears in the first, and ¬p appears in the second. For example,
p ∨ q ∨ r and ¬p ∨ q ∨ ¬t. If both these disjunctions are true, then we can
conclude that at least one of the remaining literals other than p and ¬p is true.
This is because if p is false, then q or r is true (to make the first disjunction
true), and if p is true, then q or ¬t is true. Hence, from p∨ q∨ r and ¬p∨ q∨¬t
we can conclude q ∨ r ∨¬t. This idea is what leads us to make the definition of
a resolvent of two clauses.

Definition 4.4. Suppose c1 and c2 are clauses. We say that a third clause c is a
resolvent of c1 and c2 if there is a propositional variable p such that c1 contains
p, c2 contains ¬p, and c = (c1 \ {p}) ∪ (c2 \ {¬p}).

We denote this by the diagram

c

c1 c2

Hence, for example:

• {r,¬s, t} is a resolvent of {¬p, r, t} and {p,¬s, r, t}.

• The empty clause {} is a resolvent of {q} and {¬q}.

• {p,¬p} is a resolvent of {p,¬q} and {¬p, q}.

• {¬q, q} is a resolvent of {p,¬q} and {¬p, q}.

Note that the empty clause is unsatisfiable; there is no literal in this clause
which can be made true by any valuation.

By our reasoning above, we have the following fact, proved in class:

Lemma 4.5. If {c1, c2} is a set of clauses and c is a resolvent of c1 and c2,
then if {c1, c2} is satisfiable, then so is c.

Definition 4.6. A proof by resolution of a clause c from a set of clauses C is a
finite tree whose vertices are each assigned a clause such that

1. The root is assigned c

2. If a vertex assigned c has children it has exactly two children and c is a
resolvent of the clauses assigned to them.

3. If a vertex has no children it is assigned a clause from C.

4

We give an example of a proof by resolution of {q} from the set of clauses
{{p, s}, {¬p, q}, {¬q, s}, {¬p, q,¬s}, }:

{q}

{s} {¬s, q}

{q, s} {¬q, s} {p, s}{¬p, q,¬s}

{p, s} {¬p, q}

The following theorem is essentially soundness for proofs by resolution.

Theorem 4.7 (Soundness for proofs by resolution). If there is a proof by res-
olution of a clause c from a set of clauses C, then if C is satisfiable, then so is
c.

Proof. In class, proved by induction on formulas. The key fact one needs to use
in this proof is Lemma 4.5 above.

In class we also proved the completeness theorem for proofs by resolution.
We began with the following definition:

Definition 4.8. Suppose C is a set of clauses. Then we define

C(p = True) = {c \ {¬p} : c ∈ C ∧ p /∈ c}.

and
C(p = True) = {c \ {p} : c ∈ C ∧ ¬p /∈ c}.

For example, if C = {{p, s}, {¬p, q}, {¬q, s}, {¬p, q,¬s}, }, then C(p = True) =
{{q}, {¬q, s}, {q,¬s}}, and C(p = False) = {{s}, {¬q, s}}.

Lemma 4.9. Suppose C is a set of clauses. Then C(p = True) is satisfiable iff
there is a valuation satisfying C such that p is true. Further, C(p = False) is
satisfiable iff there is a valuation satisfying C such that p is false.

Theorem 4.10 (Completeness for proofs by resolution). If C is an unsatisfiable
set of clauses, then there is a proof by resolution of the empty clause from C.

Proof. Given in class. The rough idea is to prove the theorem by induction on
the number of propositional variables {p1, . . . , pn} used in the set of clauses.
Assuming C is an unsatisfiable set of clauses in the variables {p1, . . . , pn, pn+1},
both C(pn = True) and C(pn = False) are unsatisfiable by Lemma 4.9. We then
explained a way of combining proofs of the empty clause from C(pn = True)
and C(pn = False) to obtain a proof of the empty clause from C.

5

4.3 A Hilbert-style formal proof system

One disadvantage of proofs of resolution is that they bear little resemblance
to the mathematical proofs we generally use in practice. Next, we describe a
formal proof system which is closer to the proof we usually use in mathematics.
The Hilbert-style system we will describe has 3 logical axioms and 1 rule. This
system deals only with proofs of formulas involving the connectives ¬ and →.

Definition 4.11. For any formulas φ, ψ, θ, the following are logical axioms:

1. φ→ (ψ → φ).

2. (φ→ (ψ → θ))→ ((φ→ ψ)→ (φ→ θ))

3. (¬φ→ ¬ψ)→ ((¬φ→ ψ)→ φ).

In addition, we have the rule (modus ponens) that if φ and φ→ ψ are true,
then ψ is true, which we represent with the diagram:

ψ

φ φ→ ψ

Now we can define a formal proof in this system as follows:

Definition 4.12. A Hilbert-style proof of a formula θ from a set of formulas S
is a finite tree whose vertices are each assigned a formula such that

1. The root is assigned θ

2. If a vertex assigned ψ has children it has exactly two children, one is
assigned some formula φ and the other is assigned φ → ψ (so this corre-
sponds to an instance of modus ponens).

3. If a vertex has no children it is assigned a formula from S or a logical
axiom.

If there is such a proof θ from S, we write S ` θ.

We give an example showing that {¬p→ q,¬p→ ¬q, p→ q} ` q

6

q

p→ q p

(¬p→ q)→ p ¬p→ q

(¬p→ ¬q)→ ((¬p→ q)→ p) (axiom 3)(¬p→ ¬q)

We give another example showing the from the empty set of formulas we can
prove p→ p (and similarly we can prove φ→ φ for every formula φ).

p→ p

(p→ (p→ p))→ (p→ p) p→ (p→ p) (axiom 1)

p→ ((p→ p)→ p) (axiom 1) (p︸︷︷︸
φ

→ ((p→ p)︸ ︷︷ ︸
ψ

→ p︸︷︷︸
θ

))→ ((p→ (p→ p))→ (p→ p)) (axiom 2)

7

