
6c Lecture 3 & 4: April 8 & 10, 2014

3.1 Graphs and trees

We begin by recalling some basic definitions from graph theory.

Definition 3.1. A (undirected, simple) graph consists of a set of vertices V and
a set E ⊆ V × V of edges with the property that for every x, y ∈ V we have:

1. (x, x) /∈ E.

2. (x, y) ∈ E iff (y, x) ∈ E.

If (x, y) ∈ E, then we say that x and y are adjacent

Graphically, we represent graphs by drawing points to represent the vertices,
and lines between them to represent the edges. For example, the graph whose
vertices are {a, b, c, d, e, f}, and whose edges are

{(a, d), (d, a), (a, e), (e, a), (a, f), (f, a), (b, d), (d, b), (b, e), (e, b),

(b, f), (f, b), (c, d), (d, c), (c, e), (e, c), (c, f), (f, c)}

we can represent using the following picture:

a b c

d e f

Definition 3.2. A path from x to y in a graph is a finite sequence of distinct
vertices x0, x1, . . . , xn where x0 = x, xn = y, and for each i < n, (xi, xi+1) is an
edge.

Definition 3.3. A graph is connected if for each two vertices x, y in the graph,
there is a path from x to y.

Definition 3.4. A cycle in a graph is a finite sequence of vertices x0, x1, x2, . . . , xn,
where n ≥ 3, x0 = xn, (xi, xi+1) is an edge for every i < n, and xi 6= xj for all
i, j < n.

For example, the sequence a, d, b, f, a is a cycle in the above graph, while
a, d, b, a is not (since (b, a) is not an edge), and neither is a, d, e, c (since a and
c are not equal) or a, d, a (since the length must be at least 3).

Note that if x0, x1, x2, . . . , xn is a cycle, then the sequence x0, . . . , xn−1 must
be a path in the graph.
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Definition 3.5. A tree is a connected graph having no cycles. Equivalently,
a tree is a graph such that for every two vertices x, y in the graph, there is a
unique path from x to y.

So for example, the graph we have drawn above is not a tree. However, the
following graph is:

a b c

d e f

Definition 3.6. A rooted tree is a tree with a distinguished vertex called the
root.

We will generally use v0 to denote the root of a tree. Note that in a rooted
tree, for every vertex v, there is a unique path v0, v1, . . . , vn = v from the root
to v. We say that a vertex is on level n when the length of this path is n.
Give a vertex v 6= v0 in a rooted tree, its parent is the vertex vn−1 such that
v0, . . . , vn−1, vn = v is the unique path from v0 to v. The children of a vertex v
is the set of all vertices having v as their parent.

v0

v1, the parent of v2

v2

children of v2

3.2 König’s lemma and compactness

Definition 3.7. An infinite branch of a rooted tree T is an infinite sequence
starting at the root v0, v1, v2, . . . such that for every i, vi+1 is a child of vi.

Definition 3.8. A rooted tree is said to be finitely splitting if each node has
only finitely many children.

Theorem 3.9 (König’s lemma). Suppose T is a finitely splitting tree with in-
finitely many vertices. Then T has an infinite branch.
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Recall the pigeon-hole principle for infinite sets. If S0∪S1∪. . .∪Sn is infinite,
then some Si must be infinite. (This is the contrapositive of the obvious fact
that a finite union of finite sets is finite). The key to proving König’s lemma
is to repeatedly use the pigeon-hole principle to find a sequence v0, v1, . . . of
vertices such that each vi has infinitely many vertices below it in the tree.

Proof of König’s lemma. Given in class.

Note that we need the condition that the graph is finitely splitting for König’s
lemma to be true. For example, consider the rooted tree whose root has infinitely
many children labeled {1, 2, 3, . . .} but has no other vertices.

As a sidenote for those who know some topology, König’s lemma is very
closely related to compactness. For example, it is a good exercise to show that
from König’s lemma one can easily prove the Heine-Borel theorem that the unit
interval is compact. That is, if [0, 1] is covered by infinitely many open intervals
of the form (ai, bi), then there is a finite subset of these open intervals which
still covers [0, 1]. König’s lemma also is easily seen to be a simple reformulation
of the compactness of Cantor space.

We are now ready to give some applications of König’s lemma. As an abstract
principle, König’s lemma excels at taking a collection of finite objects, and
converting them into a single coherent infinite object.

3.3 Graph colorings

Definition 3.10. A k-coloring of a graph is a function assigning one of the
numbers {1, . . . , k} to each vertex of the graph such that adjacent vertices are
assigned different numbers.

Recall also that given a set S of the vertices of a graph G, the induced
subgraph of G on the set of vertices S is the graph G′ whose vertices consist
just of the vertices of S, and where there is an edge between two vertices in G′

iff there is an edge between those vertices in G.

Theorem 3.11. Suppose that G is an infinite graph on the set of vertices
{x1, x2, . . .}. Then G has a k-coloring iff every finite induced subgraph of G
has a k-coloring.

Proof. The direction → is easy, since a k-coloring of G obviously gives a k-
coloring of all of its induced subgraphs, simply by restricting the coloring to
any smaller set of vertices. To prove the direction ←, we will use König’s
lemma to combine colorings of finite induced subgraphs of G to yield a single
coloring of all of G.

Consider the tree T whose nth level consists of k-colorings of the induced sub-
graph of G on the set {x1, . . . , xn}, and where such a coloring c on {x1, . . . , xn}
is a child of a coloring c′ on {x1, . . . , xn−1} iff c′ assigns the same colors as c to
the vertices x1, . . . , xn−1. It is easy to check that T is finitely splitting, since
there are only finitely many possible colorings of the vertices {x1, . . . , xn}, and
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T is also infinite, since for every n, by assumption there is at least one k-coloring
of the induced subgraph on {x1, . . . , xn}.

Hence, by König’s lemma there is an infinite branch in the tree T . Two col-
orings on this infinite branch always agree on what color is assigned to a vertex
whenever it occurs in both their domains by definition. Hence, by combining
all these colorings, we obtain a single coloring of all of G.

For those who know somthing about topology and cardinality, it is a good
exercise to show that the above theorem is true also for uncountable graphs G.

3.4 Tiling problems

A Wang tile is a square tile whose edges have each been assigned a color. A
tileset is a finite set of Wang tiles. For example, here is a picture of a tileset of
size 3:

A tiling using a tileset is an arrangement of these tiles in a grid, where edges
of adjacent tiles match each other. In a tiling we may repeat any tile as many
times as we like, however, each tile may only be translated horizontally and
vertically (and not reflected or rotated). Here is a picture of a tiling using the
above three tiles:

Note that by repeating the above pattern over and over, we can tile the
entire infinite plane. This gives an example of a periodic tiling, a tiling such
that there is some m× n rectangle such that the tiling consists entirely of this
rectangle repeatedly translated.

Now using König’s lemma, we can prove the following theorem:
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Theorem 3.12. A finite set of Wang tiles can tile the infinite plane iff it can
tile every n× n square.

Proof. Given in class.

In 1961 Hao Wang conjectured the following:

Conjecture 3.13 (Wang’s conjecture). A finite tileset can tile the infinite plane
iff it has a periodic tiling.

If Wang’s conjecture were true, it would have the following nice consequence:

Proposition 3.14. If Wang’s conjecture is true, then there is an algorithm for
checking (in a finite time, always outputting the correct answer) whether a finite
tileset can tile the infinite plane.

Proof. The algorithm goes as follows. For each n in order, check first whether
there is an n×m rectangle for any m < n which can periodically tile the plane
(if so output that there is a tiling of the plane). Then check if there no tiling
at all of an n× n square (if there is none, then output that there is no tiling of
the plane).

This algorithm will always halt assuming Wang’s conjecture, since either
there is a tiling of the plane (and hence a periodic tiling by Wang’s conjecture
which we will eventually find), or there is no tiling of the plane (and hence by
our above theorem no tiling of some n × n rectangle, which we will eventually
find).

In 1966, Berger proved a startling result refuting Wang’s conjecture in a
strong way.

Theorem 3.15 (Berger). There is no algorithm for checking in a finite amount
of time whether a given finite tileset can tile the infinite plane.

We will discuss the proof of Berger’s theorem later in the class. However,
note that Berger’s theorem implies that Wang’s conjecture is false (since we have
shown that it would give such an algorithm). In fact, by the contrapositive of
Proposition 3.14, it implies that there is a finite set of tiles which can tile the in-
finite plane, but only aperiodically. An example of such a set of tiles is shown be-
low, taken from http://en.wikipedia.org/wiki/File:Wang tesselation.svg
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3.5 The compactness theorem for propositional logic

We now use König’s lemma to prove the compactness theorem for propositional
logic. We will give two versions of the compactness theorem. The first is as
follows:

Theorem 3.16 (The compactness theorem for propositional logic, I). If S =
{φ1, φ2, . . .} is a set of formulas in the propositional variables {p1, p2, . . .}, then
S is satisfiable iff every finite subset of S is satisfiable.

Proof. The proof was given in class, and was quite similar in spirit to Theo-
rem 3.11. The direction → is trivial. For the direction ←, we made a tree
whose nth level consists of valuations of the variables {p1, . . . , pn} that do not
make the formulas φ1, . . . , φn false, arranged by compatibility. Then we showed
that an infinite branch gave a valuation of {p1, p2, . . .} making all the formulas
of S true.

We next give another version of the compactness theorem. However, first
we will need the following lemma:
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Lemma 3.17. Suppose φ is a formula and S is a set of formulas. Then S
implies φ iff S ∪ {¬φ} is unsatisfiable.

Proof. If S implies φ, then every valuation making the formulas of S true make
φ true. Hence, there is no valuation making all the formulas of S true and φ
false. Hence, S ∪ {¬φ} is unsatisfiable.

Conversely, if S ∪ {¬φ} is unsatisfiable, it must be that every valuation
making all the formulas of S true makes ¬φ false. Hence, every valuation
making all the formulas of S true must make φ true. Hence S implies φ.

Theorem 3.18 (The compactness theorem for propositional logic, II). Suppose
φ is a formula and S = {φ0, φ1, . . .} is a set of formulas. Then S implies ψ iff
there is a finite subset S′ ⊆ S such that S′ implies φ.

Proof. S implies ψ iff S ∪ {¬ψ} is unsatisfiable (by Lemma 3.17) iff there is a
finite subset of S ∪ {¬ψ} that is unsatisfiable (by the compactness theorem) iff
there is a finite subset S′ ⊆ S such that S′ ∪ {¬ψ} is unsatisfiable iff there is a
finite subset S′ ⊆ S such that S′ implies ψ (by Lemma 3.17).

It is a good exercise to show that version II of the compactness theorem also
easily implies version I.
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