6¢ Lecture 2: April 3, 2014

2.1 Functional completeness, normal forms, and struc-
tural induction

Before we begin, lets give a formal definition of a truth table.

Definition 2.1. A truth table for a set of propositional variables, is a function
which assigns each valuation of these variables either the value true or false.
Given a formula ¢, the truth table of ¢ is the truth table assigning each valuation
of the variables of v the corresponding truth value of ¢.

We are ready to begin:

Definition 2.2. We say that a set S of logical connective is functionally com-
plete if for every finite set of propositional variables pq,...,p, and every truth
table for the variables p1,...,p,, there exists a propositional formula ¢ using
the variables pi,...,p, and connectives only from S so that ¢ has the given
truth table.

We will soon show that the set {—, A, V} is functionally complete. Before
this, lets do a quick example.
Here is an example of a truth table for the variables p1, po, p3:

b1 | P2 | P3

T | T | T |T
T|T|F|F
T|F | T|T
T|F | F|T
F|T|T]|F
F|T|F|F
F|F|T|F
F|F|F|F

If {—, A, V} is functionally complete, then we must be able to find a formula
using only {—, A, V} which has this given truth table (indeed, we must be able to
do this for every truth able). In this case, one such a formula is p; A (—p2 V p3).

There is a much more systematic way of taking a truth table, and then finding
a formula implementing it. We can create a formula of the form ¥ Vo V...V,
where we consider each valuation of the variables in our truth table, and for the
1th valuation assigned true in our truth table, we let 1; be a formula which is
true iff the variables have this valuation. For example, such a formula for the
above truth table is:

(p1 Ap2 Ap3)V (p1 A=p2 Aps) V (p1 A —pa A —p3)

We now use this idea to prove the following theorem:



Theorem 2.3. The set {—, A} is functionally complete.
Proof. Given in class. O

A corollary of our proof is that every formula is equivalent to a formula of
particular form.

Definition 2.4. Say that a formula ¢ is in disjunctive normal form (DNF) is ¢ is
of the form ¢ = ¥ Vipo V.. . V1), where each 1); is of the form ¢; = £; 1 A.. Al 1,
where each ¢; ; is a literal, i.e. either a propositional variable p,, or its negation

Pm-

Corollary 2.5. Every propositional formula is equivalent to a formula in dis-
junctive normal form.

Proof. Given ¢, we may take its truth table, and then use the argument in
Theorem 2.3 to produce a formula with this truth table in DNF. O

This corollary will be important to us in the future; when we want to prove
that every formula has some property (which is invariant under passing to equiv-
alent formulas), then it will be enough to proof this property holds just for
formulas in DNF which have a much simpler structure than arbitrary formulas.

Now that we know {—, A, V} is functionally complete, in order to show that
any other set of propositional connectives is logically complete, it suffices to be
able to use these connectives to give formulas equivalent to —p, p A g, and pV q.
So for example:

Theorem 2.6. The set {—, A} is functionally complete.

Proof. Since {—, A, V} is functionally complete, it suffices to use the connectives
— and A to create a formula equivalent to pV ¢q. But by De-Morgan’s law, pV ¢
is equivalent to —(—p A —q). O

Induction on formulas is a very important tool used for proving that is
true for every formula. We begin by proving that the property is true of all
formulas consisting of a single propositional variable (this is called the base
case). Then, we prove that if ¢ and v are formulas with the given property,
then applying any of our logical connectives to ¢ and v produces another formula
with this property (this is the inductive case). Since every formula is obtained
starting with propositional variables and then repeatedly applying connectives,
this shows the theorem. Our next theorem uses this technique to show that the
set {—, <>} is not functionally complete.

Theorem 2.7. The set {—, <} is not functionally complete.

Proof. We will show the following statement using induction on formulas. Let
n > 2. Then every formula in the variables pi,...p, which only uses the
connectives — and <> has an even number of true and an even number of false
values in its truth table. This proves the theorem, since there are certainly truth
tables assigning a value of true to an odd number of valuations.



Base case. Consider a formula consisting just of a single propositional vari-
able p;. Then the truth table for p; will have 2"~ many values where it is true,
and 2"~ ! many values where it is false. Both of these numbers are even since
n > 2.

Inductive cases. (—): suppose ¢ is a formula having an even number of true
values and an even number of false values in its truth table. Then this is also
true for —¢, since —¢ is true iff ¢ is false.

(+»): suppose ¢ and v are formulas having an even number of true values
and an even number of false values in their truth table. We must show ¢ <> 1
also has an even number of true values and an even number of false values in its
truth table. Let a be the number of rows in which ¢ is true and b be the number
of rows in which % is true, and ¢ be the number of rows in which both ¢ and
1 are true. Note a and b are even. Since the formula ¢ < 1) is false iff exactly
one of ¢ and v are true, the number of rows in which ¢ <> v is false is equal
the number of rows in which ¢ is true and ) is false plus the number of rows
in which v is true and ¢ is false. This is equal to (a —¢) + (b—¢) =a+b— 2¢
which is even since a and b are even. So ¢ <> 9 is false for an even number of
rows and thus also true for an even number of rows. O



