
6c Lecture 1: April 1, 2014

1.1 Propositions and propositional connectives

Definition 1.1. A proposition is a statement that is true or false.

Examples of propositions are “1 + 1 = 3”, “there are infinitely many prime
numbers”, “eπ − π = 20”, and “every planar graph can be colored using four
colors”. We will usually use the letters p, q, r, . . . to stand for propositions.

You should be careful to distinguish a proposition from statements like “x2+
2x = 5” which is not a proposition, but will become a proposition after we
specify more information (here, a value for x). Statements like this are called
propositional functions.

Definition 1.2. A propositional connective is a way of combining propositions
to obtain another proposition in such a way that the truth or falsity of the
compound proposition depends only on the truth or falsity of the components.

We discuss some common propositional connectives, and give truth tables
for them, which specify how their truth values depends on the truth values of
their component propositions:

• Negation (not). The negation of a single proposition p is denoted ¬p, and
¬p is true if and only if p is false.

p ¬p
T F
F T

• Conjunction (and). The conjunction of two propositions p and q is denoted
p ∧ q and is true if and only if both p and q are true.

p q p ∧ q
T T T
T F F
F T F
F F F

• Disjunction (or). The disjunction of two propositions p and q is denoted
p ∨ q and is true if and only if either p is true, q is true, or both are true.

p q p ∨ q
T T T
T F T
F T T
F F F
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• Implication (implies). The implication p→ q is true if whenever p is true,
then q is also true. If on the other hand p is false, then p→ q is true (and
is said to be vacuously true).

p q p→ q
T T T
T F F
F T T
F F T

• Equivalence (if and only if, abbreviated iff). The biconditional p ↔ q is
true whenever both p and q are true, or both p and q are false.

p q p↔ q
T T T
T F F
F T F
F F T

It is important to beware of a few pitfalls that arise from differences between
our colloquial meanings of some of these connectives in English, and the precise
mathematical meanings we have assigned to them above.

First, note that for us, the connective “or” has the property that p∨q is true
even when p and q are both true. This is different from the way it is sometimes
used in English where we implicitly mean that either p or q is true, but not both
(e.g. “I will arrive on Monday, or I will arrive on Tuesday”). The connective
which is true if either p is true or q is true but not both is called called exclusive
or, and is abbreviated xor. In colloquial English this is sometimes phrased
“either p or q”.

p q p xor q
T T T
T F F
F T F
F F T

The second important pitfall to be aware of is that in mathematics, implies
has nothing whatsoever to do with causality. Mathematically, “p implies q”
does not mean “if p is true then this causes q to be true” except is a very formal
sense. All we care about is that the truth values of p and q together maker
p → q true; p and q may have nothing to do with each other. So for example,
“there is a number which is both even and odd → π = 3” is (vacuously) true,
and “the derivative of sine is cosine → Fermat’s last theorem is true” is true
because both components are true.

We have a vast number of ways of talking about implication in English. Here
are a few ways of saying p→ q:

• if p, then q. (This is the most common one used in mathematics).

• if p, q.
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• p is sufficient for q.

• p only if q.

• a necessary condition for p is q.

• q follows from p

• q whenever p

• q unless ¬p.

• q when p

• q if p

Notice that the order of p and q is switched in the last several examples.
From now on we’ll usually restrict the logicall connectives we use to the ones

discussed above: {¬,∧,∨,→,↔}.
Next, we discuss combining logical connectives to create formulas. A for-

mula of propositional logic is a proposition created from propositional variables
(we’ll usually use p, q, r, . . . or p1, p2, p3, . . .) by applying logical connectives. For
example, p, p ∨ (¬q), (p → q) → r, ¬(p → (q → (r ∨ ¬p)), etc. We’ll often use
the following formal definition.

Definition 1.3. Given a set of propositional variables p1, p2, p3, . . ., the set of
propositional formulas in these variables is the smallest set containing p1, p2, p3, . . .
and closed under applying the logical connectives {¬,∧,∨,→,↔}.

We will usually use the lowercase Greek letters φ, ψ, θ, . . . to stand for for-
mulas.

One way of thinking of formulas is in terms of a tree structure reflecting how
the formula is built out of its propositional variables using connectives. These
are sometimes called parse trees, and you can likewise think of them as being
the circuit used to create our compound proposition.

¬ ((p ∨ (¬q))↔ (p→ (q ∧ r)))

¬

(p ∨ (¬q))↔ (p→ (q ∧ r))

p ∨ (¬q) p→ (q ∧ r)

↔

p ¬q

∨

p q ∧ r

→

q

¬

q r

∧
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One efficient way to make a truth table for such a compound proposition
is to iteratively make truth tables for each of the entries in its parse tree. For
example,

p q r p ∨ (¬q) q ∧ r p→ (q ∧ r) (p ∨ (¬q))↔ (p→ (q ∧ r))
T T T T T T T
T T F T F F F
T F T T F F F
T F F T F F F
F T T F T T F
F T F F F T F
F F T T F T T
F F F T F T T

You should always use parentheses when writing down propositional formulas
to make clear in what order the connectives are applied! However, there is an
(oft forgotten) order of operations on logical connectives. In order of highest to
lowest precedence: ¬,∧,∨,→,↔, and were we associate parentheses to the left
when a single connective is repeated. For example, ¬p ∨ q ∧ s ↔ p → r → s
should be parenthesized ((¬p) ∨ (q ∧ s))↔ ((p→ r)→ s).

There are two situations in which we’ll occasionally be lazy about omitting
parentheses. The first is for negation, so we’ll ocassionally write things like
p ∨ ¬q instead of p ∨ (¬q).

The second is for repeated use of ∨s or s. This is because for formulas made
just out of the connective ∨, the order in which we parenthesize is not important.
For example, (p1 ∨ p2) ∨ (p3 ∨ p4) is equivalent to p1 ∨ ((p2 ∨ p3) ∨ p4), since
both are true iff at least one of the variables p1, p2, p3, p4 are true. Similarly
the order of parentheses is not important for formulas made out of just the
connective ∧; p1 ∧ p2 ∧ p3 ∧ p4 is true iff all of p1, p2, p3, p4 are true, no matter
how it is parenthesized. For this reason, we will often omit parentheses in these
cases, writing p1 ∨ p2 ∨ . . . ∨ pn and p1 ∧ p2 ∧ . . . ∧ pn. These facts we have just
mentioned can be proved using a technique called induction on formulas which
we will discuss in the next lecture.

1.2 Valuations, satisfiability, logical implication and equiv-
alence

Definition 1.4. A valuation of a set S of propositional variables is assignment
of a truth value to each of these variables of S. Given a formula φ and a
valuation v assigning truth values to all the propositional variables in φ, we say
v satisfies φ if φ is true when its propositional variables are valued according to
v.

For example, if we choose the valuation v making p true, and q false, then
the formula ¬p ∨ ¬q is satisfied by this valuation.

Definition 1.5. A formula φ is satisfiable if there is some valuation which
makes it true. Otherwise φ is said to be unsatisfiable, or contradictory.

4



For example p ∧ q is satisfiable (choose p to be true and q to be true),
while p ∧ ¬p is not satisfiable (as you can easily check that it is false for every
valuation).

Similarly, we can define satisfiability for a set of formulas:

Definition 1.6. A set of formulas S is said to be satisfiable if there is a single
valuation which makes every formula φ ∈ S true.

An important class of formulas are those which are true for every valuation
of their variables:

Definition 1.7. A formula φ is said to be a tautology if it is true for every
valuation.

Here are some important examples of tautologies. You should check yourself
that they are actually tautologies:

1. ¬(p ∧ q)↔ (¬p ∨ ¬q)

2. ¬(p ∨ q)↔ (¬p ∧ ¬q) (These first two tautologies are called De Morgan’s
laws).

3. p ∧ (q ∨ r)↔ ((p ∧ q) ∨ (p ∧ r))

4. p ∨ (q ∧ r)↔ ((p ∨ q) ∧ (p ∨ r))

5. (p→ q)↔ (¬q → ¬p)

6. (p→ q)↔ (¬p ∨ q)

7. (p↔ q)↔ ((p→ q) ∧ (q → p))

8. p ∨ ¬p

Next, we discuss equivalence of formulas.

Definition 1.8. Two formulas φ and ψ are equivalent if for every valuation v
of their variables, v satisfies φ iff v satisfies ψ.

It is easy to prove that φ is equivalent to ψ if and only if φ ↔ ψ is a
tautology. For this reason, tautologies of the form φ ↔ ψ are quite important,
because we can think of them as rules which allow us to transform formulas into
other equivalent formulas.

For example, ((p → q) ∧ ¬q) → ¬p is equivalent to ((¬p ∨ q) ∧ ¬q) → ¬p
by tautology (6) above, which is equivalent to ((¬q ∧ ¬p) ∨ (¬q ∧ q)) → ¬p by
tautology (3) above, which is equivalent to (¬q ∧ ¬p) → ¬p, since (¬q ∧ q) is
always false, and finally (¬q∧¬p)→ ¬p is always true, since whenever (¬q∧¬p)
is true, then ¬p is true. Hence, the formula ((p→ q)∧¬q)→ ¬p is a tautology.
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