
Homework 7, due Tuesday Feb 24 at 1pm

1. (15 pts, no collab) Show that if T ⊆ 2<ω is a computable infinite tree that
has exactly one infinite path X, then X is computable.

2. (20 pts) Suppose a tree T ⊆ 2<ω is co-r.e. Show that there is a computable
tree T ∗ ⊆ 2<ω such that [T ] = [T ∗].

3. Suppose k ≥ 2. Show there is no single program ϕe such that for every
k + 1-DNR function F , ϕFe is a k-DNR function. We will proceed by
contradiction. Say a k-string is a finite string of numbers in {0, . . . , k−1}.
(So for example, a binary string is a 2-string). Say that a k-string is k-
DNR if for every n ∈ dom(s), s(n) 6= ϕn(n).

(a) (10 pts) Use König’s lemma to show that for every n, there is a length
l and a number s such that for every k+ 1-DNR string r of length l,
we have that ϕre(n) halts within s steps. Further show that there is
a program which given n finds such an l and s.

(b) (10 pts) Fix n, l and s as above. Say that a set S of k + 1-strings
of length l is n, l, s-large if for every string t of length l, there is a
string r ∈ S such that for all m ≤ l, either ϕm(m) halts in s steps
and r(m) 6= ϕm(m) or r(m) 6= t(m). Show that every n, l, s-large set
contains some k + 1-DNR string.

(c) (10 pts) Fix n, l, and s as above. Let Si be the set of k + 1-strings
r of length l such that ϕre(n) = i for i ∈ {0, . . . , k − 1}. Show that
some Si is n, l, s-large.

(d) (10 pts) Finish the proof by using the recursion theorem to show that
you can construct an n such that ϕn(n) = i where the corresponding
Si as defined above is large.

4. (20 pts) Modify our proof of the low basis theorem to show that for every
infinite computable tree T ⊆ 2<ω, there is an infinite branch X ∈ T such
that for every total function f : N → N such that f ≤T X, there is a
computable function g such that for all n, f(n) < g(n).
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Extra credit problems. You may do these problems anytime
during the quarter and hand them in to me directly

5. (20 pts) Show that there are r.e. sets X,Y ⊆ N such that X �T Y and
Y �T X.

6. (20 pts).

Finish the proof of the Boone-Novikov theorem we gave in class as follows.
Suppose G = 〈S;R〉 is a group and A,B ≤ G are isomorphic subgroups
with isomorphism φ : A→ B. Then the HNN extension of G with respect
to A, B, and φ is G∗ = 〈G, t; t−1at = φ(a)〉a∈A. Now fix a set of right
coset representatives of A and B. That is, pick exactly one element of each
set in {Ag : g ∈ G} and {Bg : g ∈ G} and such that our representatives
of Ae and Be are both e. Now given any n ≥ 0, we say that a word
g0t

ε1g1t
ε2g2 . . . t

εngn (and note that any gi may be equal to the identity
e) is in normal form if:

• g0 is an arbitrary element of G

• εi ∈ {−1, 1} for all i, and

• For all i > 0 if εi = −1 then gi is one of our right coset representatives
of A.

• For all i > 0 if εi = 1, then gi is one of our right coset representatives
of B.

• There is no consecutive subsequence tεet−ε.

Let S be the space of finite sequences of the form (g0, t
ε1 , g1, . . . , t

εn , gn)
that obey our normal form rules as above (but where we don’t think of
these sequences as having any group structure).

(a) Show that every element of G∗ is equivalent to a word in normal
form.

(b) Define an action of G∗ on S by extending the following definition.
For every g ∈ G, we define:

g · (g0, tε1 , g1, tε2 , g2, . . . , tεn , gn) = (gg0, t
ε1 , g1, t

ε2 , t2, . . . , t
εn , gn)

Next, if ε1 = −1 and g0 ∈ B, then set

t · (g0, tε1 , g1, tε2 , g2, . . . , tεn , gn) = (φ−1(g0)g1, t
ε2 , g2, . . . , t

εn , gn)

and otherwise, set

t·(g0, tε1 , g1, tε2 , g2, . . . , tεn , gn) = (φ−1(b), t, ĝ0, t
ε1 , g1, t

ε2 , g2, . . . , t
εn , gn),

where ĝ0 is our coset representative of Bg0, and b ∈ B is such that
g0 = bĝ0.
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Now check that we can define t−1 · (g0, tε1 , g1, tε2 , g2, . . . , tεn , gn) in a
way somewhat analogous to the above, but with B replaced by A so
that together this defines an action of G∗ on S. In particular, check
that the definition is compatible with all the relations used to define
G∗).

(c) Show using the above that if g0t
ε1g1t

ε2g2 . . . t
εngn is a word in normal

form that is equal to the identity then n = 0 and g0 = e.

(d) Show that every element of G has a unique representation as a normal
form by showing that if two normal forms are equal: g0t

ε1g1t
ε2g2 . . . t

εngn =
h0t

δ1g1t
δ2g2 . . . t

δmhm, then n = m, gi = hi and εi = δi for all i ≤ n.

(e) Show there is an embedding of G into G∗.

(f) Show that if H is a subgroup of G such that φ(H ∩A) = H ∩B, and
H∗ is the subgroup of G∗ generated by H and t, then H∗ ∩G = H.

(g) Finish the proof of the Boone-Novikov theorem from class by using
the facts proved about HNN extensions above to justify the two gaps
in our proof.
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