Homework 4, due Wednesday Feb 4 at 1pm

- 1. (no collab) Prove the following closure property of Π_n classes:
 - (a) (5 pts) If $R(\mathbf{x})$ and $S(\mathbf{x})$ are Π_n relations, then so is $R(\mathbf{x}) \wedge S(\mathbf{x})$.
 - (b) (5 pts) If $R(\mathbf{x}, y)$ is a Π_n relation, so is $\exists y < zR(\mathbf{x}, y)$.
- 2. (20 pts) Prove that for every n > 0, every Σ_n set is many-one reducible to $0^{(n)}$.
- 3. (20 pts) Prove that for every n > 0, a set $A \subseteq \mathbb{N}$ is Δ_{n+1}^0 iff $A \leq_T 0^{(n)}$. [Hint: a set is computable iff it is r.e. and its complement is r.e.]
- 4. Let W_n be the *n*th r.e. subset of \mathbb{N} .
 - (a) (15 pts) Show that $\{(n,m) : W_n \subseteq W_m\}$ is Π_2 complete (i.e. show both that this set is Π_2 , and every Π_2 set is many-one reducible to it).
 - (b) (15 pts) Show that $\{(n,m) : W_n \subseteq^* W_m\}$ is Σ_3 complete, where $A \subseteq^* B$ if $A \setminus B$ is finite (i.e. all but finitely many elements of A are elements of B).