Homework 3, due Tuesday Jan 27 at 1pm

1. Assume p is a prime and $r = r_0 + r_1 p + \ldots + r_n p^n$ has an expansion in base p with digits r_i . Recall our convention that $\binom{i}{j} = 0$ if j > i.

Throughout, let p be prime.

(a) (5 pts) Show that if $0 < k < p^m$, then $\binom{p^m}{k} \mod p = 0$. Conclude that

$$(1+x)^p \equiv 1+x^p \pmod{p}.$$

(b) (5 pts) Justify each congruence in the following:

$$\sum_{s=0}^{r} \binom{r}{s} x^{s} \equiv (1+x)^{r} \pmod{p}$$
$$\equiv \prod_{m=0}^{n} (1+x)^{r_{m}p^{m}} \pmod{p}$$
$$\equiv \prod_{m=0}^{n} (1+x^{p^{m}})^{r_{m}} \pmod{p}$$
$$\equiv \prod_{m=0}^{n} \sum_{s_{m}=0}^{r_{m}} \binom{r_{m}}{s_{m}} x^{s_{m}p^{m}} \pmod{p}$$
$$\equiv \sum_{s=0}^{r} \prod_{\substack{\{s_{0}, \dots, s_{k}:\\s=s_{0}p^{0}+\dots+s^{k}p^{k}\}}} \binom{r_{m}}{s_{m}} x^{s} \pmod{p}$$

(c) (5 pts) Conclude Lucas's theorem. If the s_i are the base p digits of a number $s = s_0 + s_1 p + \ldots + s_n p^n$, then

$$\binom{r}{s} \equiv \binom{r_n}{s_n} \cdots \binom{r_1}{s_1} \binom{r_0}{s_0} \pmod{p}$$

2. (40 pts) Prove the Davis-Putnam-Robinson theorem: if exponentiation is diophantine, then every r.e. set $R \subseteq \mathbb{N}$ is diophantine. Recall that in class, we used Lucas's theorem to prove that the bit masking relation \preceq is diophantine.

Recall the outline of our proof. We are given a register machine with r many registers numbered $1, \ldots, r$ and a program with l lines numbered $1, \ldots, l$, where each line in the program has one of the following forms¹:

- GOTO LINE j
- IF REGISTER j > 0 GOTO LINE k
- INCREMENT REGISTER j

 $^{^{1}}$ Recall that incrementing a register means increasing its value by 1 and decrementing a register means decreasing its value by 1.

- DECREMENT REGISTER j
- HALT

We may assume that we never decrement a register containing 0, since we may always preface a decrement command by a command checking first that the value of the register is 0. Let R be the set of x_1, \ldots, x_r such that the machine halts when register i is initialized to x_i . We show that R is diophantine.

The equation we will use to show that R is diophantine will begin by quantifying over parameters Q, s, I, R_1, \ldots, R_r , y_1, \ldots, y_r , L_1, \ldots, L_l , where we intend:

- $Q = 2^{x_1 + \dots + x_r + s + l + 1}$ is a large power of 2 that we use as a base relative to which we can represent sequences of numbers.
- $I = \sum_{t=0}^{s} Q^{t}$ is the number having a 1 in every digit in base Q, and has length s + 1.
- *s* is the number of steps the machine runs for.
- R_i is a number so that in base Q, the *t*th digit of R_i is the contents of the *i*th register at time *t*.
- y_i is the contents of the *i*th register at step *s*.
- L_i is a number so that in base Q, then tth digit of L_i is equal to 1 if the program is at line i at time t and is equal to 0 otherwise.
- (a) (5 pts) Show that the definitions we have given for Q and I in terms of $x_1 \ldots, x_r, s, l$ are diophantine (assuming exponentiation is diophantine). [Hint: use the equation $1 + (Q 1)I = Q^{s+1}$ to define I]
- (b) (5 pts) Show that the condition $R \leq (Q/2 1)I$ forces that R must have at most s + 1 digits in base Q, and that this relation is diophantine.
- (c) (5 pts) Show that the conditions $L_1 \leq I \wedge \ldots \wedge L_l \leq I$, $1 \leq L_1$ and $I = L_1 + \ldots + L_l$ force that for each t with $0 \leq t \leq s$, there is exactly one L_i such that the tth digit of L_i in base Q is 1, and the rest are 0, and the first digit of L_1 is 1.
- (d) (5 pts) Show that $QL_i \leq L_j$ corresponds to the *i*th line of the program being GOTO LINE j.
- (e) (5 pts) Show that $QL_i \leq L_k + L_{i+1}$ and $QL_i \leq L_k + QI 2R_j$ corresponds to the *i*th line of the program being IF REGISTER j > 0 GOTO LINE k.
- (f) (5 pts) Let N be the set of pairs (i, j) such that line i in the program increments register j and let D be the set of pairs (i, j) such that line i in the program decrements register j. Show that for each i and j

$$R_j + y_j Q^{s+1} = QR_j + x_j + \sum_{(i,j) \in N} L_i - \sum_{(i,j) \in D} L_i$$

and the condition $QL_i \leq L_{i+1}$ corresponds to the commands INCREMENT REGISTER j or DECREMENT REGISTER j being on line *i*.

- (g) (10 pts) Finish proving the DPRM theorem.
- 3. (10 pts) (No collab) Show that if $A_0, A_1, A_2, \ldots \subseteq \mathbb{N}$ is a countable sequence of subset of \mathbb{N} , then there is some $B \subseteq \mathbb{N}$ such that for every i, $B \geq_T A_i$.
- 4. (20 pts) Show that if $A, B \subseteq \mathbb{N}$ and $A \leq_T B$, then $A' \leq_T B'$.