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Abstract. We propose a new multiphase level set framework for image segmentation using the Mumford and
Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also
a generalization of an active contour model without edges based 2-phase segmentation, developed by the authors
earlier in T. Chan and L. Vese (1999. In Scale-Space’99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151) and
T. Chan and L. Vese (2001. IEEE-IP, 10(2):266–277). The multiphase level set formulation is new and of interest
on its own: by construction, it automatically avoids the problems of vacuum and overlap; it needs only log n level
set functions for n phases in the piecewise constant case; it can represent boundaries with complex topologies,
including triple junctions; in the piecewise smooth case, only two level set functions formally suffice to represent
any partition, based on The Four-Color Theorem. Finally, we validate the proposed models by numerical results for
signal and image denoising and segmentation, implemented using the Osher and Sethian level set method.

Keywords: energy minimization, multi-phase motion, image segmentation, level sets, curvature, PDE’s, denois-
ing, edge detection, active contours

1. Introduction and Motivations, Related
Relevant Work

The method introduced in this paper extends and gener-
alizes the active contour model without edges based bi-
nary segmentation and level sets, previously proposed
by the authors in Chan and Vese (1999, 2001). In that
work, to obtain an active contour model for object de-
tection, the basic idea was to look for a particular parti-
tion of a given image into two regions, one representing
the objects to be detected, and the second one repre-
senting the background. The active contour was given
by the boundary between these two regions. It turned
out that the model was a particular case of the mini-
mal partition problem of Mumford and Shah (1989) for
segmentation of images. For the implementation of the
active contour model from Chan and Vese (1999, 2001),
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the level set method of Osher and Sethian (1988) was
successfully used, together with a particular numerical
approximation, which allowed to automatically detect
interior contours. The method was then easily extended
to vector-valued images (Chan et al., 2000), and is ro-
bust with respect to noise.

In this paper, we generalize further this active con-
tour model (based binary segmentation), to segment
images with more than two regions, by proposing a
new multiphase level set framework for the (Mumford
and Shah, 1989) problem. We will show that, with a
reduced number of level set functions, triple junctions
and complex topologies can be represented. In addition,
the phases used in the partition do not produce “vac-
uum” and “overlap.” Finally, in the piecewise smooth
case, based on The Four-Color Theorem, we show that
only two level set functions formally should suffice to
represent any partition.

The outline of the paper is as follows: in this In-
troduction, we give the necessary background on the
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main two ingredients of the method: the Mumford and
Shah model and variational level sets; then, we shortly
describe the most related relevant work. In Section 2,
we present the proposed model in the piecewise con-
stant case in two dimensions, while in Section 3 we
consider the piecewise smooth version of the model,
in one and two dimensions. Finally, in Section 4 we
present numerical results for signal and image denois-
ing and segmentation, using the proposed models, and
we end the paper by a short concluding section and an
appendix, with the details of the numerical algorithms.

1.1. The Mumford and Shah Problem

Let � ⊂ R
2 be open and bounded. For the purpose

of illustration, we consider for the moment the two-
dimensional case, but any dimension could be con-
sidered. For instance, we will also treat the one-
dimensional case in Section 3. Let C be a closed subset
in �, made up of a finite set of smooth curves. The con-
nected components of �\C are denoted by �i , such
that � = ∪i�i ∪ C . We also denote by |C | the length
of curves making up C . Let u0 : � → R be a given
bounded image-function.

The segmentation problem in computer vision, as
formulated by Mumford and Shah (1989), can be de-
fined as follows: given an observed image u0, find a de-
composition �i of � and an optimal piecewise smooth
approximation u of u0, such that u varies smoothly
within each �i , and rapidly or discontinuously across
the boundaries of �i .

To solve this problem, Mumford and Shah (1989)
proposed the following minimization problem:

inf
u,C

{
FMS(u, C) =

∫
�

(u − u0)2 dx dy

+ µ

∫
�\C

|∇u|2 dx dy + ν|C |
}
, (1)

where µ, ν > 0 are fixed parameters, to weight the
different terms in the energy. For (u, C) a minimizer of
the above energy, u is an “optimal” piecewise smooth
approximation of the initial, possibly noisy, image u0,
and C has the role of approximating the edges of u0; u
will be smooth only outside C , i.e. on �\C . Theoretical
results of existence and regularity of minimizers of (1)
can be found for example in Mumford and Shah (1989),
Morel and Solimini (1988, 1989, 1994), and De Giorgi
et al. (1989).

A reduced case of the above model is obtained by
restricting the segmented image u to piecewise constant
functions, i.e. u = constant ci inside each connected
component �i . Then the problem is often called the
“minimal partition problem,” and in order to solve it,
in Mumford and Shah (1989) it is proposed to minimize
the following functional:

EMS(u, C) =
∑

i

∫
�i

(u0 − ci )
2 dx dy + ν|C |. (2)

It is easy to see that, for a fixed C , the energy
from (2) is minimized in the variables ci by setting
ci = mean(u0) in �i . Theoretical results for exis-
tence and regularity of minimizers of (2) can be found
for example in Mumford and Shah (1989), Massari
and Tamanini (1993), Tamanini (1996), Tamanini and
Congedo (1996), and Leonardi and Tamanini (1998).

It is not easy to minimize in practice the functionals
(1) and (2), because of the unknown set C of lower di-
mension, and also because the problems are not convex.
After giving the necessary background on the level set
method, we will review some alternative solutions to
this problem, and other related relevant models for im-
age segmentation, before presenting the proposed level
set formulations.

1.2. The Level Set Method and Variational
Level Sets

Osher and Sethian (1988) proposed an effective im-
plicit representation for evolving curves and surfaces,
which has found many applications, because it allows
for automatic change of topology, such as merging and
breaking, and the calculations are made on a fixed rect-
angular grid.

A given curve C (the boundary of an open set ω ∈ �,
i.e. C = ∂ω) is represented implicitly, as the zero level
set of a scalar Lipschitz continuous function φ : � → R

(called level set function), such that (see Fig. 1):

φ(x, y) > 0 in ω, φ(x, y) < 0 in �\ω,

φ(x, y) = 0 on ∂ω.

A typical example of level set function is given by
the signed distance function to the curve. Using this
representation, geometrical quantities, properties and
motions can be expressed. Indeed, using the Heaviside
function H (z), equal with 1 if z ≥ 0 and with 0 if z < 0,
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ω

φ>0

    φ<0

Ω−ω

Figure 1. A curve, given by the zero level set of the function φ,
is the boundary between the regions: {(x, y) : φ(x, y) > 0} and
{(x, y) : φ(x, y) < 0}.

the length of C and the area of ω can be expressed
respectively by Evans and Gariepy (1992):

|C | =
∫

�

|∇ H (φ)|, |ω| =
∫

�

H (φ) dx dy (3)

(we mention that the first integral is in the sense of
measures).

Considering any C1(R) approximation and re-
gularization Hε of the Heaviside function as ε →
0, and denoting by δε = H ′

ε (an approximation to
the one-dimensional Dirac delta function δ0), we
can approximate the length functional by Lε(φ) =∫
�

|∇ Hε(φ)|dxdy = ∫
�

δε(φ)|∇φ|dxdy, and the area
functional by Aε(φ) = ∫

�
Hε(φ)dxdy.

Then we can formally write the associated Euler-
Lagrange equations, obtained by minimizing the above
functionals with respect to φ, and parameterizing the
descent directions by an artificial time t , respectively
(with associated initial conditions):

∂φ

∂t
= δε(φ)div

( ∇φ

|∇φ|
)

, or
∂φ

∂t
= δε(φ).

A standard rescaling can be made, as in Zhao et al.
(1996), by replacing δε(φ) by |∇φ|, giving the follow-
ing equations, already introduced in Osher and Sethian
(1988) in the context of the level set theory:

∂φ

∂t
= |∇φ|div

( ∇φ

|∇φ|
)

, or
∂φ

∂t
= |∇φ| (4)

(motion by mean curvature minimizing the length, and
motion with constant speed minimizing the area). Here,
∇φ

|∇φ| represents the unit normal to a level curve of φ at
every point, and div( ∇φ

|∇φ| ) represents the curvature of
the level curve.

For more recent and general expositions on the level
set method and applications, we refer the reader to
Sethian (1999), Osher and Fedkiw (2001, to appear).
Theoretical results of existence, uniqueness, and reg-
ularity of the front for the equations from (4), in the
sense of viscosity solutions, can be found in many pa-
pers, for instance in Barles (1994) for Hamilton-Jacobi
equations, and in Evans and Spruck (1991), Chen et al.
(1991), and Crandall et al. (1992), or more recently in
Barles and Souganidis (1998), for generalized mean
curvature flow equations and evolution of fronts.

1.3. Related Relevant Work for Image Segmentation

We briefly mention here some of the most related rele-
vant works, and we discuss their connections or differ-
ences with our approach.

1.3.1. The Weak Formulation of the Mumford and
Shah Problem and Approximations. A weak for-
mulation of (1) has been proposed in De Giorgi and
Ambrosio (1988), and studied in Dal Maso et al. (1992),
where C is replaced by the set Ju of jumps of u, in order
to prove the existence of minimizers (it is known that
a global minimizer of (1), or of the weak formulation,
is not unique in general). In Morel and Solimini (1988,
1989), the authors proposed a constructive existence
result in the piecewise-constant case, and in Koepfler
et al. (1994), a practical multi-scale algorithm based on
regions growing and merging is proposed for this case.
For a general exposition of the segmentation problem
by variational methods, both in theory and practice,
we refer the reader to Morel and Solimini (1994). We
also refer to Ambrosio (1989) for theoretical results on
functionals defined on the appropriate space for image
segmentation: the SBV(�) space of special functions
of bounded variation.

Two elliptic approximations by �-convergence to
the weak formulation of the Mumford-Shah func-
tional have been proposed in Ambrosio and Tortorelli
(1990, 1992). They approximated a minimizer (u, Ju)
of FMS(u, Ju), by two smooth functions (uρ, vρ), such
that, as ρ → 0, uρ → u and vρ → 1 in the L2(�)-
topology, and vρ is different from 1 only in a small
neighborhood of Ju , which shrinks as ρ → 0. The el-
liptic approximations lead to a coupled system of two
equations in the unknowns uρ and vρ , to which standard
PDE numerical methods can be applied.

Related approximations and numerical results can be
found in March (1992), Chambolle (1992, 1995, 1999),
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Bourdin and Chambolle (2000), and Bourdin (1999).
Also, in Chambolle and Dal Maso (1999), the authors
provide an approximation by �—convergence based
on the finite element method, to the weak formulation.

Note that, most of the methods solving the weak
formulation, do not explicitly compute the partition of
the image and the set of curves C . In general (see for
instance Ambrosio and Tortorelli (1990, 1992)), only
an approximation to C is obtained, by a sequence of
regions enclosing C , but converging in the limit to the
empty set.

1.3.2. Active Contours Without Edges. We recall
now the authors’s active contour model without edges
from Chan and Vese (1999, 2001), which is a partic-
ular case and the motivation of the proposed models
from the present paper. Given the curve C = ∂ω, with
ω ⊂ � an open subset, and two unknown constants c1

and c2, denoting �1 = ω, �2 = �\ω, we have pro-
posed to minimize the following energy with respect
to c1, c2 and C :

F2(c1, c2, C)

=
∫

�1=ω

(u0(x, y) − c1)2 dx dy

+
∫

�2=�\ω
(u0(x, y) − c2)2 dx dy + ν|C |, (5)

or in the level set formulation, with C = {(x, y)|
φ(x, y) = 0}:

F2(c1, c2, φ) =
∫

�

(u0(x, y) − c1)2 H (φ) dx dy

+
∫

�

(u0(x, y) − c2)2(1 − H (φ)) dx dy

+ν

∫
�

|∇ H (φ)|.

Considering Hε and δε any C1 approximations and
regularizations of the Heaviside function H and Delta
function δ0, as ε → 0 and with H ′

ε = δε, and minimiz-
ing the energy, we obtain: φ(0, x, y) = φ0(x, y):

c1(φ) =
∫
�

u0(x, y)Hε(φ(t, x, y)) dx dy∫
�

Hε(φ(t, x, y)) dx dy
,

c2(φ) =
∫
�

u0(x, y)(1 − Hε(φ(t, x, y))) dx dy∫
�

(1 − Hε(φ(t, x, y))) dx dy
,

∂φ

∂t
= δε(φ)

[
νdiv

( ∇φ

|∇φ|
)

− (u0 − c1)2 + (u0 − c2)2

]
.

This model performs active contours, looking for a
2-phase segmentation of the image, given by u(x, y) =
c1 H (φ(x, y)) + c2(1 − H (φ(x, y))). The main advan-
tages, by comparison with other active contour models,
are: it automatically detects interior contours, the ini-
tial curve can be placed anywhere in the image, and it
detects both contours with, or without gradient (called
cognitive contours, following Kanizsa (1997)). Natural
generalizations are presented in this paper, in Sections
2 and 3, for image segmentation, where more than two
segments and non-constant regions can be represented,
using a new multi-phase level set approach.

1.3.3. Inward and Outward Curve Evolution Using
Level Set Method. A similar model with Chan and
Vese (1999, 2001) was proposed in Amadieu et al.
(1999). Again, this model is limited to object detec-
tion and two-phase segmentation, and it cannot seg-
ment images with more than two segments and with
triple junctions, for instance. We will not give here the
details of the model from Amadieu et al. (1999), being
similar with that one from Chan and Vese (1999, 2001).

The previous two models already discussed above,
Chan and Vese (1999, 2001) and Amadieu et al. (1999),
cannot detect more than two segments and triple junc-
tions. When working with level sets to represent triple
junctions and more than two segments, the general idea
is to use more then one level set function. Related rel-
evant work is presented next, and this is the idea used
in the proposed approach, but in a different way.

1.3.4. A Variational Level Set Approach to Multi-
phase Motion. The work from Zhao et al. (1996)
is devoted to motion of junctions and boundaries of
multiple phases, in a variational level set approach.
Each phase �i is represented via a level set function
φi , such that �i = {(x, y) : φi (x, y) > 0}. The to-
tal length of boundaries between phases is computed
as 1

2

∑
i

∫
�

|∇ H (φi )|. In order to keep the phases dis-
joint (no overlap) and their union the domain � (no
vacuum), the authors in Zhao et al. (1996) have added
an additional term to the energy which is minimized,
in the form λ

∫
�

(
∑

i H (φi ) − 1)2dxdy. The Lagrange
multiplier λ is updated at each time step, to keep the
constraint

∑
i H (φi ) = 1 at all points satisfied. Mo-

tions of triple junctions are then obtained.
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1.3.5. A Level Set Model for Image Classification. In
Samson et al. (1999, 2000), the authors have applied
the multi-phase level set representation from Zhao et al.
(1996) to the reduced model of Mumford and Shah, for
piecewise constant image segmentation. The problem
is called classification, because the mean intensities ci

of classes are assumed to be known a-priori, and only
the set of boundaries C is unknown.

1.3.6. A Statistical Approach to Snakes for Bimodal
and Trimodal Imagery. In Yezzi et al. (1999), the
authors are again using the idea of combining several
level set functions, to represent more than two segments
in an image. They are showing numerical results with
binary flows (related with the models Chan and Vese
(1999, 2001) and Amadieu et al. (1999)), but with addi-
tional choices for the segmentation criteria (instead of∫
�

|u−u0|2dxdy, they propose other choices, with dif-
ferent statistical meanings). They also propose interest-
ing ternary flows, where two evolving curves segment
an image into three regions (two foreground regions
and one background region).

1.3.7. Coupled Geodesic Active Regions for Image
Segmentation: A Level Set Approach. In Paragios
and Deriche (2000), the authors are using again mul-
tiple level set functions for image segmentation, in a
probabilistic framework. As in Zhao et al. (1996) and
Samson et al. (1999, 2000), each region is associated
with one level set function. So, if N regions need to
be segmented, then N level set functions are needed.
Results of coupled curve evolution are obtained, to seg-
ment images with up to five different regions.

As we have seen, there are several choices for the
representation of the different phases and their bound-
aries by level sets. As mentioned above, a first idea
was proposed in Zhao et al. (1996), and then applied in
Samson et al. (1999, 2000): a level set function is asso-
ciated to each phase or each connected component �i

(this is also used in Paragios and Deriche (2000)). But
then natural problems of vacuum and overlap appear,
and these have been solved by adding additional con-
straints into the above mentioned models. An interest-
ing idea, but different than ours, to remove the problems
of vacuum and overlap, has been used in Merriman
et al. (1994), but it is not clear how to incorporate this
formulation into a variational framework. Their idea
was that, at each step, after computing the character-
istic functions χi , associated with each phase �i , to
re-define these characteristic functions by: χi (x, y) =

max{χ j (x, y), 1 ≤ j ≤ number of phases}, to avoid
the problems of vacuum and overlap. For another work
on partitions, we also refer the reader to Ei et al. (1999).
Finally, we would also like to refer to a projection
method for motion of triple junctions by level sets
(Smith et al., 2002).

In this paper, we propose a different multi-phase
level set representation, and by construction, the dis-
tinct phases are disjoint (no overlap) and their union is
the domain � (no vacuum); also, we need fewer level
set functions to represent the same number of phases.
Finally, we will see that triple junctions and other com-
plex topologies can be detected and represented by the
proposed multi-phase level set representation. Based
on these characteristics, we think that the proposed ap-
proach is new and different than the existing related
models. The applications of the proposed multi-phase
level set formulation are devoted in this paper to image
segmentation, via Mumford and Shah (1989).

Many other authors have studied the minimization
of the Mumford-Shah functional and related problems
for segmentation, both in theory and in practice, and
it is impossible to mention all of them. However, we
would like to mention Zhu et al. (1995), Zhu and Yuille
(1996), Shah (1996, 1999), Shi and Malik (2000), and
Sharon et al. (2000).

An interesting application of the level set method
and energy minimization to segmentation of three-
dimensional structures has been proposed in Lorigo
et al. (1999), to extract complicated curve-like struc-
tures, such as blood vessels.

For general expositions on segmentation of images
by variational methods, both in theory and algorithms,
we refer the reader to Mumford et al. (1993) and
Morel and Solimini (1994). Also, for recent exposi-
tions of geometric PDE’s, variational problems and
image processing (including snakes, active contours,
curve evolution problems), we refer the reader to Sapiro
(2001), Aubert and Kornprobst (2001), and Guichard
and Morel (to appear).

To summarize, in this paper we propose: an extension
and generalization of the active contour model without
edges from Chan and Vese (1999, 2001), to the general
Mumford and Shah model, in two cases: the piecewise
constant case (2), and the piecewise smooth case (1).
The proposed models can identify individual segments
in images with multiple segments and junctions, as
compared with the initial model (Chan and Vese, 1999,
2001), where the detected objects were belonging to the
same segment. We also propose a new representation
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for multiphase motion by level sets (requiring only
log2 n level set functions for n segments or phases in
the piecewise constant case), allowing for triple junc-
tions, for example, without vacuum or overlap between
phases. In the piecewise smooth case, based on The
Four-Color Theorem, we show that only two level set
functions suffice for image segmentation. Finally, the
proposed models inherit all the advantages of our ac-
tive contour model without edges: detection of edges
with or without gradient, detection of interior con-
tours, automatic change of topology, robustness with
respect to noise. The models can perform in parallel ac-
tive contours, segmentation, denoising, object and edge
detection.

2. Description of the Model
in the Piecewise-Constant Case

In this section, we show how we can generalize the
2-phase piecewise constant active contour model with-
out edges (Chan and Vese, 1999, 2001), to piecewise
constant segmentation of images with more than two
segments and junctions, using (2).

We note again that, using only one level set func-
tion, we can represent only two phases or segments in
the image. Also, other geometrical features, such as
triple junctions, cannot be represented using only one
level set function. Our goal is to look for a new multi-
phase level set model with which we can represent more
than two segments or phases, triple junctions and other
complex topologies, in an efficient way. We will need
only log2 n level set functions to represent n phases
or segments with complex topologies, such as triple
junctions. In addition, our formulation automatically
removes the problems of vacuum and overlap, because
our partition is a disjoint decomposition and covering
of the domain � by definition. This is explained next.

Let us consider m = log n level set functions
φi : � → R. The union of the zero-level sets
of φi will represent the edges in the segmented im-
age. We also introduce the “vector level set function”
� = (φ1, . . . , φm), and the “vector Heaviside function”
H (�) = (H (φ1), . . . , H (φm)) whose components are
only 1 or 0. We can now define the segments or phases in
the domain �, in the following way: two pixels (x1, y1)
and (x2, y2) in � will belong to the same phase or
class, if and only if H (�(x1, y1)) = H (�(x2, y2)). In
other words, the classes or phases are given by the level
sets of the function H (�), i.e. one class is formed by

the set

{(x, y) | H (�(x, y)) = constant vector ∈ H (�(�))}

(one phase or class contains those pixels (x, y) of �

having the same value H (�(x, y))).
There are up to n = 2m possibilities for the vector-

values in the image of H (�). In this way, we can de-
fine up to n = 2m phases or classes in the domain of
definition �. The classes defined in this way form a
disjoint decomposition and covering of �. Therefore,
each pixel (x, y) ∈ � will belong to one, and only one
class, by definition, and there is no vacuum or over-
lap among the phases. This is an important advantage,
comparing with the classical multiphase representation
introduced in Zhao et al. (1996), and used in Samson
et al. (1999, 2000). The set of curves C is represented
by the union of the zero level sets of the functions φi .

We label the classes by I , with 1 ≤ I ≤ 2m = n.
Now, let us introduce a constant vector of averages
c = (c1, . . . , cn), where cI = mean(u0) in the class I ,
and the characteristic function χI for each class I . Then
the reduced Mumford-Shah energy (2) can be written
as:

FMS
n (c, �) =

∑
1≤I≤n=2m

∫
�

(u0(x, y) − cI )2χI dx dy

+ ν
1

2

∑
1≤I≤n=2m

∫
�

|∇χI |. (6)

In order to simplify the model, we will replace the
length term by

∑
i

∫
�

|∇ H (φi )| (i.e. the sum of the
length of the zero-level sets of φi ). Thus, in some cases,
some parts of the curves will count more than once in
the total length term, or in other words, some edges will
have a different weight in the total length term. We will
see that with this slight modification and simplification,
we still obtain very satisfactory results (it may have
only a very small effect in most of the cases, because
the fitting term is dominant).

Therefore, the energy that we will minimize is given
by:

Fn(c, �) =
∑

1≤I≤n=2m

∫
�

(u0 − cI )2χI dx dy

+
∑

1≤i≤m

ν

∫
�

|∇ H (φi )|. (7)

Clearly, for n = 2 (and therefore m = 1), we obtain
the 2-phase energy (5) considered in our active contour
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Figure 2. Left: 2 curves {φ1 = 0} ∪ {φ2 = 0} partition the domain into 4 regions: {φ1 > 0, φ2 > 0}, {φ1 > 0, φ2 < 0}, {φ1 < 0, φ2 > 0},
{φ1 < 0, φ2 < 0}. Right: 3 curves {φ1 = 0} ∪ {φ2 = 0} ∪ {φ3 = 0} partition the domain into 8 regions: {φ1 > 0, φ2 > 0, φ3 > 0},
{φ1 > 0, φ2 > 0, φ3 < 0}, {φ1 > 0, φ2 < 0, φ3 > 0}, {φ1 > 0, φ2 < 0, φ3 < 0}, {φ1 < 0, φ2 > 0, φ3 > 0}, {φ1 < 0, φ2 > 0, φ3 < 0},
{φ1 < 0, φ2 < 0, φ3 > 0}, {φ1 < 0, φ2 < 0, φ3 < 0}.

model without edges. For the purpose of illustration, let
us write the above energy for n = 4 phases or classes
(and therefore using m = 2 level set functions; see
Fig. 2 left):

F4(c, �)

=
∫

�

(u0 − c11)2 H (φ1)H (φ2) dx dy

+
∫

�

(u0 − c10)2 H (φ1)(1 − H (φ2)) dx dy

+
∫

�

(u0 − c01)2(1 − H (φ1))H (φ2) dx dy

+
∫

�

(u0 − c00)2(1 − H (φ1))(1 − H (φ2)) dx dy

+ ν

∫
�

|∇ H (φ1)| + ν

∫
�

|∇ H (φ2)|, (8)

where c = (c11, c10, c01, c00) is a constant vector, and
� = (φ1, φ2).

With these notations, we can express the image-
function u as:

u = c11 H (φ1)H (φ2) + c10 H (φ1)(1 − H (φ2))

+ c01(1 − H (φ1))H (φ2)

+ c00(1 − H (φ1))(1 − H (φ2)).

The Euler-Lagrange equations obtained by minimiz-
ing (8) with respect to c and �, embedded in a dy-
namical scheme, are: given φ1(0, x, y) = φ1,0(x, y),
φ2(0, x, y) = φ2,0(x, y),

c11(�) = mean(u0) in {(x, y) : φ1(t, x, y) > 0,

φ2(t, x, y) > 0}

c10(�) = mean(u0) in {(x, y) : φ1(t, x, y) > 0,

φ2(t, x, y) < 0}
c01(�) = mean(u0) in {(x, y) : φ1(t, x, y) < 0,

φ2(t, x, y) > 0}
c00(�) = mean(u0) in {(x, y) : φ1(t, x, y) < 0,

φ2(t, x, y) < 0},

∂φ1

∂t
= δε(φ1)

{
νdiv

( ∇φ1

|∇φ1|
)

− [((u0 − c11)2 − (u0 − c01)2)H (φ2)

+ ((u0 − c10)2 − (u0 − c00)2)(1 − H (φ2))]

}
,

∂φ2

∂t
= δε(φ2)

{
νdiv

( ∇φ2

|∇φ2|
)

− [((u0 − c11)2 − (u0 − c10)2)H (φ1)

+ ((u0 − c01)2 − (u0 − c00)2)(1 − H (φ1))]

}
.

We note that the equations in � = (φ1, φ2) are gov-
erned by both mean curvature and jump of the data
energy terms across the boundary.

We show in Fig. 2 right, the partition of the domain
� into eight regions, using three level set functions.

It is easy to extend the proposed model to vector-
valued functions, such as color images, following
for instance (Chan et al. 2000). In this case, u0 =
(u0,1, . . . , u0,N ) is the initial data, with N chan-
nels (N = 3 for color RGB images), and for
each channel i = 1, . . . , N , we have the constants
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cI = (cI,1, . . . , cI,N ). In this case, the model for
multichannel segmentation will be:

Fn(cI , �) =
∑

1≤I≤n=2m

N∑
i=1

∫
�

|u0,i − cI,i |2χI dx dy

+
∑

1≤i≤m

ν

∫
�

|∇ H (φi )|.

Note that, even if we work with vector-valued images,
the level set functions are the same for all channels (i.e.
we do not need additional level set functions for each
channel). The associated Euler-Lagrange equations can
easily be deduced.

3. Description of the Model
in the Piecewise-Smooth Case

In this section, we propose a multi-phase level set for-
mulation and algorithm for the general problem of
Mumford and Shah (1989) in image processing (1),
to compute piecewise smooth optimal approximations
of a given image. We consider the cases:

(1) In one dimension: for signal segmentation and de-
noising, we show that, using only one level set
function, we can represent any signal with any
number of segments in the partition.

(2) In two dimensions:

(i) we generalize the 2-phase piecewise-constant
model from Chan and Vese (1999, 2001), to
piecewise-smooth optimal approximations us-
ing only one level set function: different re-
gions of distinct intensities can be represented
and detected with the correct intensities.

(ii) following the idea of the multi-phase level set
partition from the previous section, we show
that, in the piecewise-smooth case, using only
two level set functions, producing up to four
phases, any general case can be considered
and represented by the proposed formulation.
Our main idea is based on The Four-Color
Theorem.

3.1. The One-Dimensional Case: Signal Denoising
and Segmentation

In many applications, we deal with a source signal u on
� = (a, b). The problem of reconstructing u from a dis-
turbed input u0 deriving from a distorted transmission,

can be modeled as finding the minimum

min
u,C

{
µ

∫
(a,b)\C

|u′|2dx +
∫ b

a
|u − u0|2dx + ν#(C)

}
,

(9)

where C denotes the set of discontinuity points of u, and
#(C) denotes the cardinal of C (the counting measure).

We let C = {x ∈ (a, b) | φ(x) = 0}, with φ be-
ing a one dimensional level set function, and we in-
troduce two functions u+ and u−, such that u(x) =
u+(x)H (φ(x)) + u−(x)(1 − H (φ(x)). These two func-
tions replace the two unknown constants used in Chan
and Vese (1999, 2001), and are such that u+ ∈ C1({φ ≥
0}), and u− ∈ C1({φ ≤ 0}). Then the energy (9) can
be written in the level set formulation as:

min
u+,u−,φ

{
µ

∫ b

a
|(u+)′|2 H (φ) dx

+ µ

∫ b

a
|(u−)′|2(1 − H (φ)) dx

+
∫ b

a
|u+ − u0|2 H (φ) dx

+
∫ b

a
|u− − u0|2(1 − H (φ)) dx

+ ν

∫ b

a
|H (φ)′|.

}

Minimizing this energy with respect to u+, u−, and
φ, we obtain the associated Euler-Lagrange equations,
embedded in a dynamical scheme:

u+ = u0 + µ(u+)′′ in {x : φ(t, x) > 0},
(u+)′ = 0 on {x : φ(t, x) = 0},

u− = u0 + µ(u−)′′ in {x : φ(t, x) < 0},
(u−)′ = 0 on {x : φ(t, x) = 0},

∂φ

∂t
= δε(φ)

[
ν

(
φ′

|φ′|
)′

− |u+ − u0|2 + |u− − u0|2

− µ|(u+)′|2 + µ|(u−)′|2
]
.

Note that, in one dimension for signal segmentation,
only one level set function suffices to represent a piece-
wise smooth function u, together with its set of jumps.

3.2. The Two-Dimensional Case: Two-Phase Model

We consider the corresponding two-dimensional case,
under the assumption that the edges (denoted by C) in
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the image can be represented by one level set function
φ, i.e. C = {(x, y) | φ(x, y) = 0}. The most general
case, allowing for any type of edges, including triple
junctions, will also be considered.

As in the 1-dimensional case, the link between the
unknowns u and φ can be expressed by introducing two
functions u+ and u−, such that

u(x, y) =
{

u+(x, y) if φ(x, y) ≥ 0,

u−(x, y) if φ(x, y) < 0.

We assume that u+ and u− are C1 functions on φ ≥ 0
and on φ ≤ 0 respectively (and therefore with continu-
ous derivatives up to all boundary points, i.e. up to the
boundary {φ = 0}). We illustrate our formulation in
Fig. 3 (left).

Then we obtain the following minimization problem
from (1):

inf
u+,u−,φ

{
F(u+, u−, φ) =

∫
�

|u+ − u0|2 H (φ) dx dy

+
∫

�

|u− − u0|2(1 − H (φ)) dx dy

+ µ

∫
�

|∇u+|2 H (φ)) dx dy

+ µ

∫
�

|∇u−|2(1 − H (φ)) dx dy

+ ν

∫
�

|∇ H (φ)|.
}

Minimizing F(u+, u−, φ) with respect to u+, u−,
and φ, we obtain the following Euler-Lagrange

u=u-
u=u-

u=u-

u=u-
u=u+

u=u+

u=u+

φ>0
φ<0

φ<0

φ>0
φ<0

φ>0

u=u++

u=u+-

u=-+

u=u++

u=u+-

u=u+-

u=u+-

φ1>0
φ2>0

φ1>0
φ2<0

φ1<0
φ2>0

φ1>0
φ2>0

φ1>0
φ2<0

Figure 3. Left: example of partition of the image u in regions with boundaries represented via a single level set function {φ = 0}, and with
smooth value-functions u+, u− on each side of the curve. Right: example of partition of the image u in regions with boundaries represented via
two level set functions {φ1 = 0} ∪ {φ2 = 0}, and with smooth value-functions u++, u+−, u−+ and u−−, on all sides of the curves.

equations (embedded in a dynamical scheme for φ):

u+ − u0 = µ�u+ in {(x, y) : φ(t, x, y) > 0},
∂u+

∂ �n = 0 on {(x, y) : φ(t, x, y) = 0} ∪ ∂�, (10)

u− − u0 = µ�u− in {(x, y) : φ(t, x, y) < 0},
∂u−

∂ �n = 0 on {(x, y) : φ(t, x, y) = 0} ∪ ∂�, (11)

∂φ

∂t
= δε(φ)

[
ν∇

( ∇φ

|∇φ|
)

− |u+ − u0|2 − µ|∇u+|2

+ |u− − u0|2 + µ|∇u−|2
]
, (12)

where ∂/∂ �n denotes the partial derivative in the nor-

mal direction �n at the corresponding boundary. We also
associate the boundary condition ∂φ

∂�n = 0 on ∂� to
Eq. (12).

The equations for u+ and u− will have a smoothing
and denoising effect on the image u0, but only inside
homogeneous regions, and not across edges.

We would like to mention that ideas very similar with
those from the above case, have been also developed
by Tsai et al. (2001), independently and contempo-
raneously. Also, after this work had been completed,
the authors noticed that L. Cohen and collaborators
have previously used a level set method for a variant
of the Mumford and Shah model, related with the one
described in this subsection. The authors used this to
detect the boundary of a lake (see Cohen et al., 1993;
Cohen, 1997).
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3.3. The Two-Dimensional Case: Four-Phase
Model

In the previous two cases, we have shown how we
can minimize the general Mumford-Shah functional
for segmentation in the case where the set of contours
C can be represented by a single level set function,
i.e. C = {φ = 0} and φ has opposite signs on each side
of C . By this method, we can already detect several ob-
jects of distinct gray-levels, but we have a constraint on
the type of edges. There are cases where the boundaries
of regions forming a partition of the image could not
be represented in this way (i.e. using a single level set
function). Again, the natural idea is to use more than
one level set function, as in Section 2.

We show that in the general case, the problem can
be solved using only two level set functions, and we
do not have to know a-priori how many gray-levels the
image has (or how many segments). The idea is based
on The Four-Color Theorem and is as follows.

Based on this observation, we can “color” all the
regions in a partition using only four “colors,” such
that any two adjacent regions have different “col-
ors.” Therefore, using two level set functions, we
can identify the four “colors” by the following (dis-
joint) sets: {φ1 > 0, φ2 > 0}, {φ1 > 0, φ2 < 0},
{φ1 < 0, φ2 > 0}, {φ1 < 0, φ2 < 0}. The boundaries
of the regions forming the partition will be given by
{φ1 = 0} ∪ {φ2 = 0}, and this will be the set of curves
C . Again, in our particular multiphase formulation of
the problem, we do not have the problems of “over-
lapping” or “vacuum,” (i.e. the phases are disjoint, and
their union is the entire domain �).

As in the previous case, the link between the func-
tion u and the four regions can be made by introduc-
ing four functions u++, u+−, u−+, u−−, which are in
fact the restrictions of u to each of the four phases, as
follows:

u(x, y)

=




u++(x, y), if φ1(x, y) > 0 and φ2(x, y) > 0,

u+−(x, y), if φ1(x, y) > 0 and φ2(x, y) < 0,

u−+(x, y), if φ1(x, y) < 0 and φ2(x, y) > 0,

u−−(x, y), if φ1(x, y) < 0 and φ2(x, y) < 0.

These notations are illustrated in Fig. 3 (right).
Again, using the Heaviside function, the relation

between u, the four functions u++, u+−, u−+, u−−,
and the level set functions φ1 and φ2 can be expressed

by:

u = u++ H (φ1)H (φ2) + u+− H (φ1)(1 − H (φ2))

+ u−+(1 − H (φ1))H (φ2)

+ u−−(1 − H (φ1))(1 − H (φ2)).

Using the notation � = (φ1, φ2), we introduce an
energy in level set formulation, based on the Mumford-
Shah functional (1):

F(u, �)

=
∫

�

|u++ − u0|2 H (φ1)H (φ2) dx dy

+ µ

∫
�

|∇u++|2 H (φ1)H (φ2) dx dy

+
∫

�

|u+− − u0|2 H (φ1)(1 − H (φ2)) dx dy

+ µ

∫
�

|∇u+−|2 H (φ1)(1 − H (φ2)) dx dy

+
∫

�

|u−+ − u0|2(1 − H (φ1))H (φ2) dx dy

+ µ

∫
�

|∇u−+|2(1 − H (φ1))H (φ2) dx dy

+
∫

�

|u−− − u0|2(1 − H (φ1))(1 − H (φ2)) dx dy

+ µ

∫
�

|∇u−−|2(1 − H (φ1))(1 − H (φ2)) dx dy

+ ν

∫
�

|∇ H (φ1)| + ν

∫
�

|∇ H (φ2)|.

As in Section 2, we note that the expression∫
�

|∇ H (φ1)| + ∫
�

|∇ H (φ2)| is not exactly the length
term of C , it is just an approximation and simplification.
In practice, we have obtained satisfactory results using
the above formula, and the associated Euler-Lagrange
equations are simplified.

We obtain the associated Euler-Lagrange equations
as in the previous cases, embedded in a dynamic
scheme, assuming (t, x, y) �→ φi (t, x, y): minimizing
the energy with respect to the functions u++, u+−, u−+,
u−−, we have, for each fixed t :

u++ − u0 = µ�u++ in {φ1 > 0, φ2 > 0},
∂u++

∂�n = 0 on {φ1 = 0, φ2 ≥ 0}, {φ1 ≥ 0, φ2 = 0};
u+− − u0 = µ�u+− in {φ1 > 0, φ2 < 0},

∂u+−

∂�n = 0 on {φ1 = 0, φ2 ≤ 0}, {φ1 ≥ 0, φ2 = 0};
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u−+ − u0 = µ�u−+ in {φ1 < 0, φ2 > 0},
∂u−+

∂�n = 0 on {φ1 = 0, φ2 ≥ 0}, {φ1 ≤ 0, φ2 = 0};
u−− − u0 = µ�u−− in {φ1 < 0, φ2 < 0},

∂u−−

∂�n = 0 on {φ1 = 0, φ2 ≤ 0}, {φ1 ≤ 0, φ2 = 0}.

The Euler-Lagrange equations evolving φ1 and φ2, em-
bedded in a dynamic scheme, formally are:

∂φ1

∂t
= δε(φ1)

[
ν∇

( ∇φ1

|∇φ1|
)

− |u++ − u0|2 H (φ2)

− µ|∇u++|2 H (φ2) − |u+− − u0|2(1 − H (φ2))

− µ|∇u+−|2(1 − H (φ2)) + |u−+ − u0|2 H (φ2)

+ µ|∇u−+|2 H (φ2) + |u−− − u0|2(1 − H (φ2))

+ µ|∇u−−|2(1 − H (φ2))

]
= 0,

∂φ2

∂t
= δε(φ2)

[
ν∇

( ∇φ2

|∇φ2|
)

− |u++ − u0|2 H (φ1)

− µ|∇u++|2 H (φ1) + |u+− − u0|2 H (φ1)

+ µ|∇u+−|2 H (φ1) − |u−+ − u0|2(1 − H (φ1))

− µ|∇u−+|2(1 − H (φ1)) + |u−− − u0|2

× (1 − H (φ1)) + µ|∇u−−|2(1 − H (φ1))

]
.

We have mentioned in the introduction existence
results for the Mumford-Shah minimization problem.
The global minimizer is not unique in general. We can
also show, by standard techniques of the calculus of
variations on the spaces BV(�) and SBV(�) (functions
of bounded variation and special functions of bounded
variation respectively), and a compactness result due
to Ambrosio (1989), that the proposed minimization
problems from this paper, in the level set formulation,
have a minimizer. Finally, because there is no unique-
ness among minimizers, and because the problems are
non-convex, the numerical results may depend on the
initial choice of the curves, and we may compute a local
minimum only. We think that, using the seed initializa-
tion (see Section 4), the algorithms have the tendency
of computing a global minimum.

4. Numerical Results

We fix the space steps h = �x = �y = 1, the time
step �t = 0.1, and ε = h.

4.1. Numerical Results in the Piecewise-Constant
Case (2D)

We show now numerical results using the models from
Section 2, and in particular using the four-phase (with
two level set functions) and the eight-phase (with three
level set functions) models. The only varying parameter
is ν, the coefficient of the length term. We give the
cpu time in seconds for our calculations, performed
on a 140 MHz Sun Ultra 1 with 256 MB of RAM. In
our numerical algorithm, we first initialize the level set
functions by φ0

i , then we compute the averages cI , and
we solve one step of the PDE’s in φi . Then we iterate
these last two steps.

We show in particular that triple junctions can be
represented and detected using only two level set func-
tions, that interior contours are automatically detected
and also that the model is robust in the presence of
noise and complex topologies.

We begin with a noisy synthetic image with four re-
gions (Figs. 4, 5 and 6), and we consider several differ-
ent initial conditions. For the initial conditions (a), (b),
(c) we use the four-phase piecewise constant model,
while for (d) we use the eight-phase piecewise constant
model. The energy decrease is shown in Fig. 4 bottom
for the initial conditions (a)–(d). The image contains
three objects of distinct intensities, all correctly de-
tected and segmented for initial conditions (a), (c), (d).
This is an improvement of the authors previous 2-phase
active contour model (Chan and Vese, 1999, 2001),
with which all three objects would have the same in-
tensity in the segmented image, belonging to the same
segment or phase.

Because the energy which is minimized is not con-
vex, and also that there is no uniqueness for the min-
imizers, the algorithm may not converge to a global
minimizer for a given initial condition. It is then natu-
ral to consider different initial conditions for the same
image with the same parameters, and to compare the
steady-state solutions from our numerical algorithm.
For (c), we seed with small initial curves. Only us-
ing the initial conditions (a), (c), (d) do we compute
a global minimizer for this image. For (b), the algo-
rithm is trapped in a local minimum. In general, for
real images with more complicated features, we think
that initial conditions of the types (c), (d) should be
used, which have the tendency to converge to a global
minimizer. This type of initial condition is also related
to the region growing algorithm (Koepfler et al., 1994).
We also note that using the initial condition (c), the
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Figure 4. Four different initial conditions and the energies versus iterations.

algorithm is much faster (see Fig. 6 left). In Fig. 6
right, we show a numerical result on the same
image with four segments, but using the 8-phase
model with 3 level set functions. The correct seg-
mentation is obtained, and four final segments are
empty.

In Fig. 7 we show a noisy synthetic image with a
triple junction. Using only one level set function, the
triple junction cannot be represented. Most of the mod-
els need three level set functions, as in Zhao et al. (1996)
and Samson et al. (1999, 2000). Here, we need only two
level set functions to represent the triple junction. We

show their zero level sets, which have to overlap on a
segment of the triple junction.

We show next numerical results on two real pictures
(an MRI brain image and a house), in Figs. 8, 9 and 10.
We use here two level set functions, detecting four
phases. We also show the final four segments detected
by the algorithm. We see how the model can handle
complex topologies, and also that the four phases in
Fig. 9 identify quite well the gray matter, the white
matter, etc.

In Fig. 11 we show an example of a color RGB
image (three channels) with contours without gradient
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Figure 5. Segmentation of a noisy synthetic image, using the 4-phase piecewise constant model. First and 3rd columns: the evolving contours
overlay on the original image; 2nd and 4th columns: computed averages of the four segments c11, c10, c01, c00. Left: (a) ν = 0.0165 · 2552,
size = 100 × 100, cpu = 30.00 sec. Right: (b) ν = 0.0165 · 2552, size = 100 × 100, steady state (the algorithm computes only a local minimum
in this case).

(cognitive contours following Kanizsa (1997)). We
also see that this result is an improvement of the result
on the same picture from Chan et al. (2000), where the
three objects had the same intensity in the end. Here,
the correct intensities are detected, for each object.
Again, this generalized model can detect “contours
without edges.”

In Fig. 12 we show how the model works on an-
other color RGB image, where we use three level set
functions φ1, φ2, φ3, representing up to eight phases or
colors. The algorithm detects six segments and junc-
tions. In the classical approaches, it would have been
necessarily to consider at least six level set functions
(here, 2 of the final 8 segments are empty).
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Figure 6. Left: (c) ν = 0.0165 · 2552, size = 100 × 100, cpu = 8.46 sec (very fast). Right: (d) three-level sets evolution with up to 8 phases
(at steady state the correct segmentation is obtained, with four segments, while the other four segments are empty). ν = 0.0165 · 2552,
size = 100 ×100.

Figure 7. Results on a synthetic image, with a triple junction, using the 4-phase piecewise constant model with 2 level set functions. We also
show the zero level sets of φ1 and φ2. ν = 0.05 · 2552, size = 64 × 64, cpu = 3.51 sec.
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Figure 8. Segmentation of an MRI brain image, using two level set functions and four constant phases. ν = 0.01 · 2552, size = 163 × 181,
cpu = 12.86 sec.

Figure 9. The algorithm depicts quite well the final four segments from the previous result (white matter, gray matter, etc.). The final averages
are c11 = 45, c10 = 159, c01 = 9, c00 = 103.



286 Vese and Chan

Figure 10. Segmentation of a real outdoor picture, using two level set functions and four constant phases. In the bottom row, we show the final
four segments obtained. The final averages are: c11 = 159, c10 = 205, c01 = 23, and c00 = 97. ν = 0.01 ·2552, size = 103 × 89, cpu = 7.88 sec.

4.2. Numerical Results in the Piecewise-Smooth
Case (1D & 2D)

We begin this part by an experimental result for sig-
nal denoising and segmentation. We show in Fig. 13
left an original signal and its noisy version, together
with two points, where φ = 0 at the initial time.
In Fig. 13 right, we show the segmented signal, and
the detected set of jumps given by φ = 0 at the
steady state, using the proposed level set algorithm
in dimension 1, from Section 3. Note that piecewise-
smooth regions are very well reconstructed by the
model, and that the jumps are well located and without
smearing.

We show in Figs. 14 and 15 two numerical results
using the 2-phase algorithm from Section 3: the

evolving curves are superposed over the initial noisy
image u0, and the denoised versions u of u0 are also
shown. In Fig. 14, we see that the model performs
as active contours, denoising and edge-detection, and
several objects of distinct intensities can be correctly
segmented with only one level set function. In Fig. 15,
we apply the model to a real piecewise-smooth
image. As we have already mentioned, similar results
with those from Figs. 14 and 15 have been obtained
independently and contemporaneously by Tsai et al.
(2001).

Finally, we show in Fig. 16 numerical results on
a real noisy image, using the four-phase model from
Section 3. At the initial time, the two curves given by
{φ1 = 0} and {φ2 = 0} are shown in different colors
(we use again the seed initialization).
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Figure 11. Numerical results on a synthetic color picture. We show in particular that contours not defined by gradient can be detected. These
are called cognitive contours (Kanizsa, 1997). ν = 0.4 × 2552, size = 48 × 100, cpu = 42.17 sec.

Figure 12. Color noisy picture with junctions. We use three level set functions representing up to eight constant regions. Here six segments
are detected. We show the final zero-level sets of φ1, φ2, φ3. ν = 0.02 · 2552, size = 100 × 100, cpu = 65.45 sec.
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Figure 13. Left: original and noisy signal, together with the set of points where φ = 0 at the initial time, represented by squares on the x-axis.
Right: reconstructed signal, noisy signal, and the set of points where φ = 0 at the steady state (the jumps).

Figure 14. Results on a noisy image, using the 2-phase level set algorithm for the piecewise smooth Mumford-Shah model. The algorithm
performs as active contours, denoising and edge detection.

Figure 15. Numerical result using the 2-phase piecewise-smooth Mumford-Shah level set algorithm, on a piecewise-smooth real image.
ν = 0.0305 ∗ 2552, µ = 10, size = 110 × 112.
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Figure 16. First row: original and noisy image. 2nd–5th rows: curves over u0, denoised u and the four artificial phases for increasing times, by
the 4-phase piecewise-smooth model from Section 3. ν = 0.004 ∗ 2552, µ = 5, size = 152 × 100, with re-initialization to the distance function.

5. Conclusion

In this paper, we have introduced a new multiphase
model for Mumford-Shah image segmentation, by level
sets. The proposed model is a common framework to
perform active contours, denoising, segmentation, and
edge detection. The multiphase formulation is differ-
ent than the classical approaches, and has the advan-
tages that the phases cannot produce vacuum or over-
lap, by construction (there is no additional constraint
to prevent vacuum or overlap), and it minimizes as
much as possible the computational cost, considerably

reducing the number of level set functions. We show
in particular that triple junctions can be represented
and detected using only two level set functions. In the
piecewise-constant case, we only need to know an up-
per bound of the segments, while in the four-phase
piecewise-smooth case, we do not need to know a-
priori how many segments the image has. These models
can be applied to other problems, such as texture seg-
mentation and discrimination. Finally, we validated the
proposed models by various numerical results in one
and two dimensions.
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Appendix: The Description of the Numerical
Algorithms

Let h = �x = �y be the space steps, �t be the
time step, ε = h, (xi , y j ) = (ih, jh) be the discrete
points, for 1 ≤ i, j ≤ M , and u0,i, j ≈ u0(xi , y j ),
φn

i, j ≈ φ(n�t, xi , y j ), with n ≥ 0. We set:

Hε(x) = 1

2

[
1 + 2

π
arctan

(
x

ε

)]
,

δε(x) = H ′
2,ε(x) = 1

π

ε

ε2 + x2
.

A.1. The Piecewise Constant Case

For the purpose of illustration, we give the details of
the numerical algorithm for the four-phase model from
Section 2, by solving the equations:

c11(�) =
∫
�

u0 Hε(φ1)Hε(φ2) dx dy∫
�

Hε(φ1)Hε(φ2) dx dy
,

c10(�) =
∫
�

u0 Hε(φ1)(1 − Hε(φ2)) dx dy∫
�

Hε(φ1)(1 − Hε(φ2)) dx dy
,

c01(�) =
∫
�

u0(1 − Hε(φ1))Hε(φ2) dx dy∫
�

(1 − Hε(φ1))Hε(φ2) dx dy
,

c00(�) =
∫
�

u0(1 − Hε(φ1))Hε(φ2) dx dy∫
�

(1 − Hε(φ1))Hε(φ2) dx dy
,

∂φ1

∂t
= δε(φ1)

{
νdiv

( ∇φ1

|∇φ1|
)

− [((u0 − c11)2 − (u0 − c01)2)H (φ2)

+ ((u0 − c10)2 − (u0 − c00)2)(1 − H (φ2))]

}
,

∂φ2

∂t
= δε(φ2)

{
νdiv

( ∇φ2

|∇φ2|
)

− [((u0 − c11)2 − (u0 − c10)2)H (φ1)

+ ((u0 − c01)2 − (u0 − c00)2)(1 − H (φ1))]

}
.

Set n = 0, φ0
1,i, j and φ0

2,i, j given (the initial set of
curves). For each n > 0 until steady state:

1. compute by the above formulas the averages cn
11,

cn
10, cn

01, cn
00.

2. compute φn+1
1,i, j , φn+1

2,i, j as follows (using a semi-
implicit finite differences scheme): let

C1 = 1√(
φn

1,i+1, j −φn
1,i, j

h

)2
+

(
φn

1,i, j+1−φn
1,i, j−1

2h

)2
,

C2 = 1√(
φn

1,i, j −φn
1,i−1, j

h

)2
+

(
φn

1,i−1, j+1−φn
1,i−1, j−1

2h

)2
,

C3 = 1√(
φn

1,i+1, j −φn
1,i−1, j

2h

)2
+

(
φn

1,i, j+1−φn
1,i, j

h

)2
,

C4 = 1√(
φn

1,i+1, j−1−φn
1,i−1, j−1

2h

)2
+

(
φn

1,i, j −φn
1,i, j−1

h

)2
.

Let m1 = �t
h2 δε(φ1,i, j )ν, C = 1 + m1(C1 + C2 + C3 +

C4),

φn+1
1,i, j = 1

C

[
φn

1,i, j + m1
(
C1φ

n
1,i+1, j + C2φ

n
1,i−1, j

+ C3φ
n
1,i, j+1 + C4φ

n
1,i, j−1

)
+ �tδε(φ1,i, j )

(−(
u0,i, j − cn

11

)2
Hε

(
φn

2,i, j

)
− (

u0,i, j − cn
10

)2(
1 − Hε

(
φn

2,i, j

))
+ (

u0,i, j − cn
01

)2
Hε

(
φn

2,i, j

)
+ (

u0,i, j − cn
00

)2(
1 − Hε

(
φn

2,i, j

)))]
.

Similarly, let

D1 = 1√(
φn

2,i+1, j −φn
2,i, j

h

)2
+

(
φn

2,i, j+1−φn
2,i, j−1

2h

)2
,

D2 = 1√(
φn

2,i, j −φn
2,i−1, j

h

)2
+

(
φn

2,i−1, j+1−φn
2,i−1, j−1

2h

)2
,

D3 = 1√(
φn

2,i+1, j −φn
2,i−1, j

2h

)2
+

(
φn

2,i, j+1−φn
2,i, j

h

)2
,

D4 = 1√(
φn

2,i+1, j−1−φn
2,i−1, j−1

2h

)2
+

(
φn

2,i, j −φn
2,i, j−1

h

)2
.
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Let m2 = �t
h2 δε(φ2,i, j )ν, D = 1 + m2(D1 + D2 + D3 +

D4),

φn+1
2,i, j = 1

D

[
φn

2,i, j + m2
(
D1φ

n
2,i+1, j + D2φ

n
2,i−1, j

+ D3φ
n
2,i, j+1 + D4φ

n
2,i, j−1

)
+ �tδε

(
φ2,i, j

)(−(
u0,i, j − cn

11

)2
Hε

(
φn

1,i, j

)
+ (

u0,i, j − cn
10

)2
Hε

(
φn

1,i, j

)
− (

u0,i, j − cn
01

)2(
1 − Hε

(
φn

1,i, j

))
+ (

u0,i, j − cn
00

)2(
1 − Hε

(
φn

1,i, j

)))]
.

A.2. The Piecewise Smooth Case

We give here the details of the numerical algorithm for
solving the following equations from Section 3, written
in the form:

u+ Hε(φ) = u0 Hε(φ) + µdiv(Hε(φ)∇u+),

u−(1−Hε(φ)) = u0(1−Hε(φ))

+ µdiv((1 − Hε(φ))∇u−),
∂φ

∂t
= δε(φ)

[
ν∇

( ∇φ

|∇φ|
)

− |u+ − u0|2

−µ|∇u+|2 +|u− − u0|2 + µ|∇u−|2
]
.

Set n = 0, φ0
i, j given (the initial curve). For each n > 0

until steady state:

(1) compute un,+
i, j and un,−

i, j ,
(2) compute a C1 extension of un,+

i, j to {φn
i, j ≤ 0} and

a C1 extension of un,−
i, j to {φn

i, j ≥ 0},
(3) compute φn+1

i, j , as follows:

c = Hε

(
φn

i, j

) + µ

h2

(
2Hε

(
φn

i, j

) + Hε

(
φn

i−1, j

)
+ Hε

(
φn

i, j−1

))
,

un+1,+
i, j = 1

c

[
µ

h2

(
Hε

(
φn

i, j

)
un,+

i+1, j + Hε

(
φn

i−1, j

)
un,+

i−1, j

+ Hε

(
φn

i, j

)
un,+

i, j+1 + Hε

(
φn

i, j−1

)
un,+

i, j−1

)
+ Hε

(
φn

i, j

)
u0,i, j

]
,

d = (
1 − Hε

(
φn

i, j

)) + µ

h2

(
2
(
1 − Hε

(
φn

i, j

))
+ (

1 − Hε

(
φn

i−1, j

)) + (
1 − Hε

(
φn

i, j−1

)))
,

un+1,−
i, j = 1

d

[
µ

h2

((
1 − Hε

(
φn

i, j

))
un,−

i+1, j

+ (
1 − Hε

(
φn

i−1, j

))
un,−

i−1, j

+ (
1 − Hε

(
φn

i, j

))
un,−

i, j+1

+ (
1 − Hε

(
φn

i, j−1

))
un,−

i, j−1

+ (
1 − Hε

(
φn

i, j

))
u0,i, j

]
,

C1 = 1√(
φn

i+1, j −φn
i, j

h

)2
+

(
φn

i, j+1−φn
i, j−1

2h

)2
,

C2 = 1√(
φn

i, j −φn
i−1, j

h

)2
+

(
φn

i−1, j+1−φn
i−1, j−1

2h

)2
,

C3 = 1√(
φn

i+1, j −φn
i−1, j

2h

)2
+

(
φn

i, j+1−φn
i, j

h

)2
,

C4 = 1√(
φn

i+1, j−1−φn
i−1, j−1

2h

)2
+

(
φn

i, j −φn
i, j−1

h

)2
.

Let m = �t
h2 δε(φi, j )ν, C = 1 + m(C1 +C2 +C3 +C4).

gradn,+
i, j =

(
un,+

i+1, j − un,+
i−1, j

2h

)2

+
(

un,+
i, j+1 − un,+

i, j−1

2h

)2

,

gradn,−
i, j =

(
un,−

i+1, j − un,−
i−1, j

2h

)2

+
(

un,−
i, j+1 − un,−

i, j−1

2h

)2

,

φn+1
i, j = 1

C

[
φn

i, j + m
(
C1φ

n
i+1, j + C2φ

n
i−1, j

+ C3φ
n
i, j+1 + C4φ

n
i, j−1

) + �tδε(φi, j )

× (−(
u0,i, j − un,+

i, j

)2 + (
u0,i, j − un,−

i, j

)2

− µgradn,+
i, j + µgradn,−

i, j

)]
.

We need the extension from step 2) above, to com-
pute the jumps (u+−u0)2−(u−−u0)2, |∇u+|2−|∇u−|2
along the curve. For instance, to extend u+ to the region
{φ ≤ 0}, we solve �u+ = 0 on {φ ≤ 0}, with given
prescribed values on {φ > 0}. This can be done by
iterating the scheme: uk+1,+

i, j = 0.25(uk,+
i+1, j + uk,+

i, j+1 +
uk,+

i−1, j + uk,+
i, j−1), where u0,+ = un,+ (n is fixed for

varying k). Other possibilities for the extension step
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can be found in Zhao et al. (1996), Chen et al. (1997),
Fedkiw et al. (1999), Fedkiw (1999), Jensen (1993),
and Caselles et al. (1997).

A usual procedure, when working with level set func-
tions, is reinitialization to the distance function. We
have used this procedure only in the last numerical re-
sult from Fig. 16. For details, we refer to Sussman et al.
(1994).
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