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Abstract

This paper is devoted to the decomposition of an image f into u + v, with u a piecewise-smooth or “cartoon” component, and v

an oscillatory component (texture or noise), in a variational approach. Y. Meyer [Y. Meyer, Oscillating Patterns in Image Process-
ing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, Amer. Math. Soc., Providence, RI, 2001] proposed
refinements of the total variation model [L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms,
Phys. D 60 (1992) 259–268] that better represent the oscillatory part v: the weaker spaces of generalized functions G = div(L∞),
F = div(BMO), and E = Ḃ−1∞,∞ have been proposed to model v, instead of the standard L2 space, while keeping u ∈ BV , a func-
tion of bounded variation. Such new models separate better geometric structures from oscillatory structures, but it is difficult to
realize them in practice. D. Mumford and B. Gidas [D. Mumford, B. Gidas, Stochastic models for generic images, Quart. Appl.
Math. 59 (1) (2001) 85–111] also show that natural images can be seen as samples of scale invariant probability distributions
that are supported on distributions only, and not on sets of functions. In this paper, we consider and generalize Meyer’s (BV,E)

model, using the homogeneous Besov spaces Ḃα
p,q , −2 < α < 0, 1 � p,q � ∞, to represent the oscillatory part v. Theoretical,

experimental results and comparisons to validate the proposed methods are presented.
© 2007 Published by Elsevier Inc.

1. Introduction and motivations

In what follows, we assume that a given grayscale image can be represented by a function (or sometimes distri-
bution) f , defined on a rectangle Ω of R

2. Sometimes, we may assume that the image f is periodic (obtained by
reflection), or defined on the whole plane R

2. We limit our presentation to the two-dimensional case, but our results
can be generalized to R

n.
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We are interested in decomposing f into u + v via an energy minimization problem

inf
(u,v)∈X1×X2

{
K(u, v) = F1(u) + λF2(v): f = u + v

}
,

where F1,F2 � 0 are functionals, and X1, X2 are spaces of functions or distributions such that F1(u) < ∞, F2(v) <

∞, if and only if (u, v) ∈ X1 × X2. It is assumed that f ∈ X1 + X2. The constant λ > 0 is a tuning parameter.
An important problem in image analysis is to separate different features in images. For instance, in image denoising,

f is the observed noisy version of the true unknown image u, while v represents additive Gaussian noise of zero mean.
Another related problem is the separation of the geometric (cartoon) component u of f from the oscillatory component
v, representing texture. In other cases, u can be seen as a geometric or structure component of f , while v is clutter
(see S.C. Zhu and D. Mumford [63]). A good model for K is given by a choice of X1 and X2 such that with the above
given properties of u and v, F1(u) � F1(v) and F2(v) � F2(u).

We give here two classical examples of image decomposition models that use the space L2(Ω) to model the
oscillatory components by variational methods. However, many other previous work (variational or non-variational)
can be seen as decompositions of f into u + v.

In the Mumford–Shah model for image segmentation [45], f ∈ L∞(Ω) ⊂ L2(Ω) is decomposed into u ∈ SBV(Ω)

[5,43], (a piecewise-smooth function with its discontinuity set Ju composed of a union of curves of total finite length),
and v = f − u ∈ L2(Ω) representing noise or texture. The problem in the weak formulation is [43,45]

inf
(u,v)∈SBV(Ω)×L2(Ω)

{ ∫
Ω\Ju

|∇u|2 + αH1(Ju) + β‖v‖2
L2(Ω)

, f = u + v

}
, (1)

where H1 denotes the 1-dimensional Hausdorff measure, and α,β > 0 are tuning parameters. With the above nota-
tions, the first two terms in the energy from (1) compose F1(u), while the third term makes F2(v).

A related decomposition is obtained by the total variation minimization model of Rudin, Osher, and Fatemi [50]
for image denoising, where SBV(Ω) is replaced by the slightly larger space BV(Ω) of functions of bounded variation
[29]. The Rudin–Osher–Fatemi restoration model [50] can be written as a decomposition model [42] by

inf
(u,v)∈BV(Ω)×L2(Ω)

{
J (u, v) = |u|BV(Ω) + λ‖v‖2

L2(Ω)
, f = u + v

}
, (2)

where λ > 0 is a tuning parameter, and |u|BV(Ω) = ∫
Ω

|∇u| denotes the total variation of u or the semi-norm of
BV(Ω). In the original TV model, v represents additive Gaussian noise of zero mean. This model provides a unique
(BV(Ω),L2(Ω)) decomposition of f ∈ L2(Ω), for each λ > 0 (see [1,18], or [60] for a more general case). The
model is strictly convex, easy to solve in practice, and denoises well piecewise-constant images while preserving
sharp edges. However it has some limitations. For instance, if f is the characteristic function of a convex, smooth
domain D of finite perimeter, the model should produce u = f , v = 0. But this is not true for any finite value of λ,
[7,42,55]. Cartoon or BV pieces of f are sent to v, and the model does not always represent well texture or oscillatory
details, as it has been analyzed in [42].

In [56], the authors E. Tadmor et al., have proposed a hierarchical multiscale (BV(Ω),L2(Ω)) decomposition
method, to better locate the scale λ and a splitting f = uλ + vλ. The main idea in [56] is to first compute an ROF
optimal pair (uλ, vλ) as a splitting at scale λ with given data f . Then this process is iterated, by computing another
ROF optimal pair (u2λ, v2λ) with data vλ, and so on. Thus, f ≈ ∑

k uk and residual vk gives a better splitting of f

than the ROF model. Theoretical and experimental results are also presented. Also, in [2,32], it has been shown that
natural images are not well represented only by functions of bounded variation.

Earlier work for image analysis and denoising by variational methods using Besov spaces in a wavelet framework
are by [17,19,25–27], among others. We also mention a recent work of A.S. Carasso [16] for using Bα

2,∞(Ω) with
0 < α < 1 to model u instead of BV(Ω) in the recovery of details and piecewise-smooth regions in image deblurring,
based on the Poisson kernel formulation of Besov spaces.

Substituting L2(Ω) in (2) by L1(Ω) has been earlier proposed in [3,4] in the discrete case, and later analyzed in
[20,21,46], among others. However, oscillatory components do not have small norms in L2(Ω) or L1(Ω) ([37,42]).
Here we are interested in a better choice for the oscillatory component v or for the space X2, which has to give small
norms for oscillatory functions, while keeping X1 = BV(Ω). Our discussion follows Y. Meyer [42], with motivations
from D. Mumford and B. Gidas [44]. The idea is to use weaker norms for the oscillatory component v, instead of the
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L2(Ω) norm, and this can be done using generalized functions or distributions. For more motivations on the choice
of such spaces over the standard L2(Ω) approach, we refer the reader to the inspirational notes [42] and subsequent
work [8,11–13,37,39,47–49,61,62].

Y. Meyer [42] theoretically proposed decompositions of f ∈ X2, with X1 = BV(R2) ⊂ X2, via

inf
(u,v)∈BV(R2)×X2

{
K(u, v) = |u|BV(R2) + λ‖v‖X2, f = u + v

}
,

as a refinement of the ROF model [50], where (X2,‖ · ‖X2) is one of the spaces denoted below by (G(R2),‖.‖G(R2)),
(F (R2),‖.‖F(R2)), or (E(R2),‖.‖E(R2)), that are introduced in Definitions 2, 3, and 4.

Definition 1. Let S = S(R2) be the space of all functions φ on R
2 that are infinitely differentiable and, together with

all their derivatives, are rapidly decreasing (i.e., remain bounded when multiplied by arbitrary polynomials, or more
precisely |x|k|Dαφ(x)| → 0 as |x| → ∞, ∀k ∈ N, ∀α ∈ N

2). The space of all tempered distributions on R
2, i.e., the

set of continuous linear forms on S , is denoted by S ′ = L(S(R2),R). S ′(R2) is given the weak-star topology as dual
of S(R2).

Definition 2. (See [42].) Let G(R2) consist of distributions v in S ′ which can be written as

v = div(
g) in S ′, 
g = (g1, g2) ∈ (
L∞(

R
2))2

,

with

‖v‖G(R2) = inf
{∥∥∥√

(g1)2 + (g2)2
∥∥∥

L∞(R2)
: v = div(
g) in S ′, 
g ∈ L∞(

R
2,R

2)}.

The space F(R2) is obtained by replacing L∞(R2) above with BMO(R2), the John–Nirenberg space of bounded
mean oscillation [53].

Definition 3. Let F(R2) consist of generalized functions v which can be written as

v = div(
g), 
g = (g1, g2) ∈ BMO
(
R

2,R
2),

with

‖v‖F(R2) = inf
{(‖g1‖BMO(R2) + ‖g2‖BMO(R2)

)
: v = div(
g), 
g = (g1, g2) ∈ BMO

(
R

2,R
2)}.

Definition 4. Let E(R2) = Ḃ−1∞,∞(R2) consists of generalized functions v = �g, with g satisfying the Zygmund
condition

sup
|y|>0

‖g(· + y) − 2g(·) + g(· − y)‖L∞(·)
|y| < ∞, (3)

endowed with

‖v‖E(R2) = inf

{
sup
|y|>0

‖g(· + y) − 2g(·) + g(· − y)‖L∞(·)
|y| : v = �g, g satisfies (3)

}
.

Remark 1. The spaces G(R2) and F(R2) (as defined above) consist of first order derivatives of vector fields in
L∞(R2) and BMO(R2), respectively, while the homogeneous Besov space E(R2) = Ḃ−1∞,∞(R2) = �(Ḃ1∞,∞) consists
of second order derivatives of functions that satisfy the Zygmund condition (3). The following embeddings hold in R

2,

Ḃ1
1,1 ⊂ BV ⊂ L2 ⊂ G ⊂ F ⊂ E, (4)

where Ḃ1
1,1(R

2) is the pre-dual of Ḃ−1∞,∞(R2) and G can be seen as a good approximation of the dual of BV . Thus, the

spaces G, F and E are larger spaces with weaker norms than the L2 space, therefore less demanding on a minimizing
pair (u, v = f − u). However, the difficulty is how to compute (BV,G), (BV,F ) or (BV,E) decompositions in
practice. Analyzing such problems opens new and interesting computational challenges.
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In [61,62], the authors proposed to model oscillatory components as first order derivatives of vector fields in Lp ,
for 1 � p < ∞ as an approximation to Meyer’s (BV,G) model. For a bounded domain Ω , this has been done by
minimizing

inf
u,
g=(g1,g2)

{
G(u, g1, g2) = |u|BV(Ω) + μ

∥∥f − u − div(
g)
∥∥2

L2(Ω)
+ λ

∥∥∥√
g2

1 + g2
2

∥∥∥
Lp(Ω)

}
. (5)

By this model, f ∈ L2(Ω) is decomposed into u + v + w. As μ → ∞ and p → ∞, this model approaches Meyer’s
(BV,G) model. The space G(Ω) = W−1,∞(Ω) is approximated by W−1,p(Ω), with p < ∞ (when p = 2, v belongs
to the dual space Ḣ−1(Ω) of Ḣ 1(Ω)).

In [49], the last author together with S. Osher and A. Solé, proposed a simplified approximated method correspond-
ing to the case p = 2. Let 
g = ∇g, with g a scalar function. Using f − u = v = div(
g) = �g, i.e., g = �−1(f − u),
(5) becomes an exact decomposition model,

inf
u

{
G(u) =

∫
Ω

|∇u| + λ

∫
Ω

∣∣∇(
�−1(f − u)

)∣∣2
dx

}
. (6)

Note that the oscillatory component v is modeled as second order derivatives (as in E) of functions in the homogeneous
Sobolev space Ḣ 1(Ω). This model gives an exact decomposition f = u + v, with u ∈ BV(Ω) and v ∈ Ḣ−1(Ω) , and
the minimization problem has been solved using a fourth-order non-linear PDE. In [22,23], I. Daubechies and G.
Teschke proposed a wavelets approach with residual term where u ∈ Ḃ1

1,1(Ω) and v ∈ H−1(Ω). L. Lieu and L. Vese
[38] recently proposed another method to solve (6) without having to solve a fourth-order PDE, and generalized the
model [49] to Hs , s < 0 for modeling the oscillatory component v. We mention J.-F. Aujol and A. Chambolle [13] for
modeling the v component using generalized Hilbert spaces and in particular using the space E for the texture norm,
in a wavelets framework, and for an alternative approach for solving (6).

In [37], the authors proposed approximations to Meyer’s (BV,F ) model. These approximations have been obtained
by the energy minimizations

inf
u,
g=(g1,g2)

{
G(u, g1, g2) = |u|BV(Ω) + μ

∥∥f − u − div(
g)
∥∥2

L2(Ω)
+ λ

[‖g1‖BMO(Ω) + ‖g2‖BMO(Ω)

]}
, (7)

and

inf
u,g

{
G(u, g) = |u|BV(Ω) + μ‖f − u − �g‖2

L2(Ω)
+ λ

[‖gx‖BMO(Ω) + ‖gy‖BMO(Ω)

]}
. (8)

In the continuous case, the models (7) and (8) are very similar. However, in the discrete case, (8) gives a more isotropic
decomposition. Note that in (8), the component v is modeled as second order derivatives of g, where ∇g = (gx, gy) ∈
BMO(Ω)2. Figure 1 shows a comparison between the models (7) and (8) with the Rudin–Osher–Fatemi model (2).

The present paper is a continuation of the previous work [37,49,61,62], and we model the oscillatory components
v by second order derivatives of functions in the homogeneous Besov spaces Ḃα

p,q(Ω), 0 < α < 2 (or equivalently

v ∈ Ḃα−2
p,q (Ω)), while keeping u ∈ BV(Ω) as a function of bounded variation, in a variational approach. In other

words, v = �g, where g satisfies the following Lipschitz condition(∫
Ω

(‖g(x + y) − 2g(x) + g(x − y)‖Lp(Ω)

|y|α
)q

dy

|y|n
)1/q

< ∞, when 1 � q < ∞, or (9)

sup
|y|>0

{‖g(x + y) − 2g(x) + g(x − y)‖Lp(Ω)

|y|α
}

< ∞, when q = ∞. (10)

Here, n = 2 is the dimension. In practice we only consider the case q = ∞, therefore the rougher or largest Besov
spaces, with weaker norms. Y. Meyer’s (BV,E) model corresponds to the case p = q = ∞, and α = 1.

Other related models for image decomposition into cartoon and texture have been proposed recently. We mention
Daubechies and Teschke [22,23], Starck, Elad, and Donoho [52], Candes and Guo [15], among others for variational
and wavelets approaches. In particular, we refer to Aujol et al. [11,12], and Aubert and Aujol [8] for more properties
of the space G both in theory and practice, and another approximation of the Meyer’s (BV,G) model on bounded
domains. Aujol and Chambolle [13] discuss the properties of norms that are dual to negative Sobolev and Besov norms,
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Fig. 1. Here f is a given image to be decomposed. The first decomposition f = u1 + v1 is obtained by the ROF model (2). The second decompo-
sition f = u2 + v2 is obtained by (7) with first order derivatives [37]. The third decomposition f = u3 + v3 is obtained by (8) with second order
derivatives [37]. We can notice the improvement from left to right in terms of cartoon and texture decomposition, because in u1 and u2 there are
still more oscillations kept in the BV component.

in particular, the space E (in wavelet formulation). Malgouyres [41], Lintner and Malgouyres [40] also consider
modeling the oscillatory component v with the constraint supψ∈D |〈v,ψ〉| < ∞, where D is a dictionary of features
(usually union of wavelet bases), while keeping u ∈ BV . This is related with imposing v ∈ Ḃα∞,∞, for some α (as will
be seen from the definition of Ḃα

p,q in the later section).
As we have mentioned earlier, Besov spaces often arise in image analysis in the wavelets framework. Our analysis

and computations are purely in a variational and PDE approach, using the Poisson or the Gaussian kernel formulations.
Finally, we refer the interested reader to the recent PhD thesis manuscripts of J.-F. Aujol [10], A. Haddad [34], T. Le
[35], L. Lieu [36] and J. Gilles [31] for more complete expositions and results on the subject.
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2. Function spaces

For definitions and properties of the space of functions of bounded variation BV(Ω) we refer the reader to [29],
and for convex functions of measures (with linear growth at infinity, as generalization of the total variation) we refer
to [24].

We recall below the definitions of the Besov spaces using the Poisson and Gaussian kernel formulations in the
periodic case, since this is the framework that we use to model in practice the oscillatory component v. Equivalent
definitions using wavelets, modulus of continuity, or finite differences can be given (for instance, we refer the reader
to E. Stein [54], Chapter V, [54] on Lipschitz spaces, H. Triebel [59], Section 1.8, [58] for the homogeneous versions
of Besov spaces, [51] for periodic spaces, and M.H. Taibleson [57] for periodic Lipschitz spaces using the Poisson or
Gaussian kernel formulations, the most relevant for our work).

We can consider images as functions defined on the entire domain, to which we can associate their periodization
(with a fundamental domain Ω), as explained below. Or, we can consider images defined initially on a rectangle
Ω , that we can extend by reflection or mirror to the entire plane (thus obtaining again a periodic function with a
fundamental domain Ω ′ made up of four rectangles of the same size as Ω). The second method is the standard one in
image analysis.

Let x ∈ R
n and t > 0 (for us, n = 2). Denote the Gauss–Weierstrass kernel

Wt(x) = ant
−n/2e− π |x|2

2t (11)

and the Cauchy–Poisson kernel

Pt (x) = cn

t

(t2 + |x|2)(n+1)/2
(12)

with W0 = P0 = Id. Here the constants an and cn are chosen such that
∫

Wt(x)dx = ∫
Pt (x) dx = 1. Let g ∈ Lp ,

1 � p � ∞. We denote, for x ∈ R
n and t � 0,

u(x, t) = Wt ∗ g(x) = ant
−n/2

∫
e− π |x−y|2

2t g(y) dy = (
e−2πt |ξ |2 ĝ(ξ)

)∨
(x),

v(x, t) = Pt ∗ g(x) = cn

∫
t

(t2 + |x − y|2)(n+1)/2
g(y)dy = (

e−2πt |ξ |ĝ(ξ)
)∨

(x),

where ĝ denotes the Fourier transform of g, and ∨ the inverse Fourier transform.
Furthermore, we have

∂u(x, t)

∂t
= �u(x, t) in R

n+1+ and u(x,0) = g(x),

∂2v(x, t)

∂t2
= −�v(x, t) in R

n+1+ and u(x,0) = g(x).

Hence u(x, t) is a solution of the heat equation in R
n+1+ and v(x, t) is a harmonic function in R

n+1+ . In other words,
u(x, t) is a thermic extension of g from R

n to R
n+1+ and v(x, t) is a harmonic extension of g from R

n to R
n+1+ . We

will define below the periodic Besov spaces, in terms of harmonic and thermic extensions.
In our numerical calculations we use q = ∞ and we work with homogeneous versions (modulo polynomials), in

the periodic formulation using kernels. These can be seen as periodized versions of functions on R
n (obtained by the

periodization process using the Poisson summation formula), or simply as periodic extensions by reflection from Ω to
R

n, as described before. The periodic Besov spaces are defined below, following [57] (see also [51]). Our case applies
to n = 2.

Let Z
n denote the additive group of points in R

n having integer coordinates. We consider the coset space
R

n/Z
n, and identify functions on R

n/Z
n with periodic functions on R

n. R
n/Z

n is naturally identified with the n-
torus T n = {(e2πix1 , . . . , e2πixn): (x1, . . . , xn) ∈ R

n/Z
n}. This identification is given by the mapping (x1, . . . , xn) →

(e2πix1 , . . . , e2πixn). From this, periodic functions on R
n are identified with functions on Ω = {x ∈ R

n: −1/2 < xj �
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1/2, j = 1, . . . , n}, the fundamental domain, and such that f (x +m) = f (m) for all lattice points m ∈ Z
n. Integration

on T n in space is defined as integration on Ω in space,∫
T n

f dx =
∫
Ω

f dx.

Denote the functional spaces X(T n) by X(Ω).
There are several approaches to periodize the kernels Pt and Wt . The first is by the following periodization process,

that will be applied to the kernels Pt and Wt . Given a function f defined on R
n, a natural process to obtain the periodic

function from f is through the construction∑
m∈Zn

f (x + m). (13)

We refer to (13) as the periodization of f .
Thus, for example the Poisson kernel on T n will be P ∗

t (x) = ∑
m∈Zn Pt (x + m), with Pt defined in (12), and for

any function f ∈ L1(Tn), define its Poisson integral by f (x) ∗ P ∗
t (x), which is harmonic in Ω × (0,∞).

A second approach amounts to define P ∗
t (x) = ∑

m∈Zn e−2π |m|t e2πim·x , and we let, for x ∈ Ω ,

P ∗
t ∗ g(x) =

∑
m∈Zn

e−2πt |m|ĝ(m)e2πim·x,

and

W ∗
t ∗ g(x) =

∑
m∈Zn

e−2πt |m|2 ĝ(m)e2πim·x.

The spaces Ḃα
p,q(Ω) = Ḃα

p,q(T n) can be defined as follows (based on [57] and [51], these definitions of the periodic
Besov spaces are equivalent to all other definitions; note that we use the notations Pt and Wt for the above periodic
versions P ∗

t and W ∗
t respectively, for simplicity of notation).

Definition 5. Let α ∈ R, p � 1, 1 � q < ∞, m ∈ N0 and k ∈ N0 with m > α
2 and k > α. Then the distribution

g ∈ Ḃα
p,q(Ω) if

‖g‖Ḃα
p,q (Ω) =

( ∞∫
0

(
tm−(α/2)

∥∥∥∥∂mWt

∂tm
∗ g

∥∥∥∥
Lp(Ω)

)q
dt

t

)1/q

< ∞ (14)

≈
( ∞∫

0

(
tk−α

∥∥∥∥∂kPt

∂tk
∗ g

∥∥∥∥
Lp(Ω)

)q
dt

t

)1/q

< ∞, (15)

where “≈” denotes equivalent norms. Similarly, for q = ∞, the distribution g ∈ Ḃα
p,∞(Ω) if

‖g‖Ḃα
p,∞(Ω) = sup

t�0

{
tm−(α/2)

∥∥∥∥∂mWt

∂tm
∗ g

∥∥∥∥
Lp(Ω)

}
< ∞ (16)

≈ sup
t�0

{
tk−α

∥∥∥∥∂kPt

∂tk
∗ g

∥∥∥∥
Lp(Ω)

}
< ∞. (17)

Equipped with ‖ · ‖Ḃα
p,q (Ω), Ḃα

p,q(Ω) becomes a Banach space (where g is defined modulo polynomials only).

Equivalent definitions and equivalent norms are obtained for any integers m,k satisfying m > α
2 and k > α. Thus,

m,k are not additional parameters in the definition above.

Proposition 1. We have the following continuous embeddings

Ḃα1
p,q1

(
T n

) ⊂ Ḃα2
p,q2

(
T n

)
, (18)

if either α2 < α1, or α1 = α2 and 1 � q1 � q2 � ∞.
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Remark 2. Let α ∈ R. Then the space of second derivatives of functions in Ḃα
p,q(T n) coincides isometrically with the

space Ḃα−2
p,q (T n). In other words, �Ḃα

p,q(T n) = Ḃα−2
p,q (T n) (see [57]).

Remark 3. We have the following duality results for α ∈ R, 1 � p,q < ∞: (Bα
p,q(T n))′ = B−α

p′,q ′(T n), with 1
p

+ 1
p′ =

1 if 1 < p < ∞ and p′ = ∞ if p = 1. Therefore, these spaces are dual spaces for p,q > 1. We also have that these
spaces are separable if 1 � p � ∞ and 1 � q < ∞.

3. u + v decomposition models

Here we consider only the case n = 2 for simplicity, however, the proposed models can also be applied in any
dimension n. Given a periodic image f defined on the fundamental domain Ω (a square), we are interested in de-
composing f into u + v, where u is cartoon or piecewise smooth, and v is noise or texture. Here we are interested in
modeling v as

v = �g, where g ∈ Ḃα
p,q(Ω), 0 < α < 2, 1 � p,q � ∞, (19)

while keeping u ∈ BV(Ω). Note that v ∈ Ḃα−2
p,q (Ω). For simplicity, we write L2 for L2(Ω), BV for BV(Ω), etc, from

now on.
Let ϕ: R

2 → R be positive everywhere except at 0, continuous, convex and even function, such that ϕ(0) = 0 and
there exist a > 0, b � 0 satisfying

−b + a|x| � ϕ(x) � b + a|x|, ∀x ∈ R
2+. (20)

The above condition imposes ϕ to have linear growth at infinity, and examples include ϕ(x) = |x|, ϕ(x) = √
1 + |x|2 −

1, ϕ(x) = |x1|+ |x2|, ϕ(x) = log cosh |x|, among others. We refer to Demengel and Temam [24] for a study of convex
functions of measures and to Bouchitté and Buttazzo [6,14] on the lower semi-continuity results on BV and other
types of functionals. Denote by ∇u the distributional derivative of u, as a Radon measure.

We study both the exact and the approximated (with L2 square residual) minimization problems,

inf
u

{∫
Ω

ϕ(∇u) + λ‖f − u‖
Ḃα−2

p,q
, 1 � p,q � ∞, 0 < α < 2

}
, (21)

inf
u,g

{∫
Ω

ϕ(∇u) + μ

∫
Ω

|f − u − �g|2 + λ‖g‖Ḃα
p,q

, 1 � p,q � ∞, 0 < α < 2

}
. (22)

When ϕ(x1, x2) =
√

x2
1 + x2

2 , we obtain ϕ(∇u) = ∫
Ω

|∇u| the total variation of u in Ω .
Theoretically, the model (21) is an exact decomposition f = u+v, therefore it is simpler, whereas (22) decomposes

f = u + v + r , where r ∈ L2 is a residual. Moreover, (21) only has one parameter λ, and (22) has two parameters λ

and μ. However, based on numerical experiments, (22) converges faster to a satisfactory decomposition.

Remark 4. When α = 1, p = ∞, and q = ∞, v belongs to the Besov space Ḃ−1∞,∞, that Y. Meyer proposes in [42] to
model oscillatory patterns.

Remark 5. (i) It is reasonable to assume that f ∈ L2(Ω) (assume here that 1 < p,q � ∞). Since u ∈ BV(Ω) ⊂
L2(Ω) in two dimensions, we deduce that v = f − u ∈ L2(Ω) ∩ Ḃα−2

p,q (Ω) in (21). Similarly in (22), we have

f ∈ L2(Ω), u ∈ BV(Ω) ⊂ L2(Ω), f − u − v = f − u − �g ∈ L2(Ω),

thus v = �g ∈ L2(Ω) ∩ Ḃα−2
p,q (Ω). The texture component v still belongs to L2(Ω), as in the ROF model [50], but

now v is modeled as a function in Ḃα−2
p,q (Ω). Thus, for any v ∈ Ḃα−2

p,q (Ω) = (Ḃ2−α
p′,q ′(Ω))′, we can define

‖v‖(α−2) = ‖v‖
Ḃα−2

p,q (Ω)
= sup

w∈Ḃ2−α

p′,q′ (Ω), ‖w‖
Ḃ

2−α′ ′ (Ω)
�=0

∫
Ω

vw dx

‖w‖
Ḃ2−α

p′,q′ (Ω)

.

p ,q
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Then, we can show that for v ∈ L2(Ω) ∩ Ḃα−2
p,q (Ω), we have

∫
Ω

v(x)dx = 0. Indeed, assume by contradiction that∫
Ω

v(x)dx �= 0. Then for arbitrary constant c �= 0, we have∫
Ω

v(w + c) dx

‖w + c‖(2−α)

=
∫
Ω

v(x)w(x)dx + c
∫
Ω

w(x)dx

‖w‖(2−α)

which cannot stay finite if |c| → ∞, unless
∫
Ω

v(x)dx = 0. In practice, we may have to reinforce this property, by

imposing ∂g
∂ 
n = 0 on ∂Ω .

(ii) The above remark will imply that, if u is such that the energy in (21) is finite, then
∫
Ω

f (x)dx = ∫
Ω

u(x)dx.

We can show that a similar property holds for (22). First, if (u, g) are such that the energy in (22) is finite, then v = �g

can be identified with an element of Ḃα−2
p,q (Ω), with 0 < α < 2, thus using (i) we must have

∫
Ω

v(x)dx = 0. We also
have that

∫
Ω

(f − u − �g)dx = 0 if in addition (u, g) are minimizers of (22). Indeed, in this case, we have

min
c∈R

∫
Ω

∣∣f − (u + c) − �g
∣∣2

dx =
∫
Ω

|f − u − �g|2 dx.

But c = 0 is the unique minimizer of this quadratic function, and in addition c = ∫
Ω

(f − u − �g)dx. Thus, we must
have

∫
Ω

(f − u − �g)dx = 0, therefore
∫
Ω

f dx = ∫
Ω

udx, if (u, g) are minimizers of (22).
(iii) Both energies in (21) and (22) are bounded from below by 0 and take finite values for f ∈ L2(Ω), thus their

infimum values are finite. Indeed, take for both u =
∫
Ω f dx

|Ω| and g = 0 in (22).

3.1. Existence and uniqueness of minimizers

Next, we would like to show existence of minimizers for the proposed models in the cases 1 < p,q � ∞. The
spaces Ḃα

p,q are reflexive for 1 < p,q < ∞, therefore any bounded sequence gk weekly converges to a limit g.
For the cases 1 < p � ∞, q = ∞ or p = ∞, 1 < q � ∞, these are dual spaces of separable spaces, therefore a
bounded sequence gk converges weakly-star. In both cases, we will obtain the lower semi-continuity of the norm
‖g‖Ḃα

p,q
� lim infk ‖gk‖Ḃα

p,q
. We also recall that ‖u‖BV(Ω) = ‖u‖L1(Ω) + |u|BV(Ω), with |u|BV(Ω) = ∫

Ω
|∇u|.

Theorem 1. Let f ∈ L2(Ω), let ϕ be as above, and 0 < α < 2, 1 < p,q � ∞. Then there exists a minimizer
(u, g) ∈ (BV, Ḃα

p,q) of the energy

inf
(u,g)

{
J (u, g) =

∫
Ω

ϕ(∇u) + μ

∫
Ω

|f − u − �g|2 + λ‖g‖Ḃα
p,q

}
. (23)

Moreover the minimizer (u, v = �g) ∈ (BV, Ḃα−2
p,q ) is unique if ϕ is strictly convex (if ϕ is only convex, then u + v is

unique).

Proof. Recall that Ω = (0,1)2, or |Ω| = 1. Let (uk, gk) ∈ (BV, Ḃα
p,q) be a minimizing sequence of (23). We know

that, for vk = �gk , we have
∫
Ω

vk(x) dx = 0, since vk ∈ L2(Ω) ∩ Ḃα−2
p,q (Ω). For each uk , we can obtain another

minimizing sequence uk + ck such that ck minimizes
∫
Ω

|f − (uk + ck) − �gk|2 dx. The unique minimizer of this
quadratic function in ck is ck = ∫

Ω
(f − uk − �gk)dx. Thus, for the new minimizing sequence uk + ck , we have that∫

Ω
(f − (uk +ck)−�gk)dx = ∫

Ω
(f −uk −�gk)dx −ck = 0. Therefore, we could have assumed from the beginning

that the minimizing sequence (uk, gk) satisfies
∫
Ω

(f − uk − �gk)dx = 0, from which we deduce
∫
Ω

f (x)dx =∫
Ω

uk(x) dx.
The following uniform bounds hold, for all k,∫

Ω

ϕ(∇uk) � C, (24)

∫
Ω

|f − uk − �gk|2 � C, (25)

‖gk‖ ˙ α � C. (26)
Bp,q
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The first condition (24) together with the properties on ϕ imply that |uk|BV � C, for all k.
By Poincaré–Wirtinger inequality,∥∥∥∥uk − 1

|Ω|
∫
Ω

uk

∥∥∥∥
L2

� C|uk|BV , (27)

and we therefore have ‖uk‖L1 � C′‖uk‖L2 � C, for all k. This implies that

‖uk‖BV � C, ∀k. (28)

Therefore, there exists a function u ∈ BV(Ω) such that, up to a subsequence, uk converges to u in the BV-weak*
topology (strongly in L1 and ∇uk → ∇u weakly in the sense of measures). We also have∫

Ω

ϕ(∇u) � lim inf
k→∞

∫
Ω

ϕ(∇uk). (29)

The condition (25) and the fact that f − uk ∈ L2 is uniformly bounded, imply that gk is uniformly bounded in the
homogeneous Sobolev space Ḣ 2. Therefore, there exists an h in Ḣ 2 such that gk converges to h weakly in Ḣ 2.

The condition (26) implies that there exists a g ∈ Ḃα
p,q such that, up to a subsequence, gk converges to a function g

weakly (or weakly-star) in Ḃα
p,q . We must have g = h a.e., and

‖g‖Ḃα
p,q

� lim inf
k→∞ ‖gk‖Ḃα

p,q
. (30)

Similarly,

‖f − u − �g‖L2 � lim inf
k→∞ ‖f − uk − �gk‖L2 . (31)

Finally, conditions (29), (30), and (31) imply that J (u, g) � J (uk, gk), for all k. Therefore (u, g) minimizes J .
To discuss uniqueness, we first rewrite the minimization problem (23) as

inf
(u,v)

{
J (u, v) =

∫
Ω

ϕ(∇u) + μ

∫
Ω

|f − u − v|2 + λ‖v‖
Ḃα−2

p,q

}
, (32)

for simplicity.
The functional J (u, v) in (32) is a sum of three convex functions. The second term F(u, v) = ∫

Ω
|f − u − v|2 dx

is not strictly convex in the direction (w,−w). If ϕ is strictly convex, then the functional is strictly convex and we
obtain uniqueness of minimizers. If ϕ is only convex, but not strictly convex (like the total variation), then we obtain
that if (u1, v1) and (u2, v2) are minimizers, then u1 + v1 = u2 + v2; thus we can say that if (u, v) is a minimizer, then
u + v is unique. �

A similar existence proof can be used to show the following theorem (see also [8]).

Theorem 2. Let f ∈ L2(Ω), let ϕ be as above, 0 < α < 2, and 1 < p,q � ∞. Then there exists u ∈ BV(Ω) (and
v = f − u ∈ L2(Ω) ∩ Ḃα−2

p,q (Ω)) which minimizes the energy

inf
u

{
J (u) =

∫
Ω

ϕ(∇u) + λ‖f − u‖
Ḃα−2

p,q

}
. (33)

3.2. Interpretation of parameters μ and λ

Recall the dilating operator τδf (x) = f (δx), δ > 0. Suppose that
∫
Ω

ϕ(∇(τδu)) = δs
∫
Ω

ϕ(∇u). Note that if in R
n,

ϕ(∇u) = |∇u|, then s = 1 − n. Next we would like to characterize the parameter λ in the model (21) with F1(u) =∫
ϕ(∇u)dx, F2(v) = ‖v‖ ˙ α−2 , when the image is being dilated (zoom in when 0 < δ < 1 and zoom out when δ > 1).
Bp,q
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Lemma 1. Let Fi be functionals with the dilating properties Fi(τδg) = δsi Fi(g), i = 1,2.
For a fixed f and λ > 0, let (uλ, vλ = f − uλ) be a minimizer for the following energy,

J(f,λ) = F1(u) + λF2(f − u). (34)

Then for λ′ = λδs1−s2 , (τδuλ, τδvλ = τδf − τδuλ) is a minimizer for the energy J(τδf,λ′).

Proof. Applying τδuλ and τδvλ to J(τδf,λ′), we have

J(τδf,λ′)(τδuλ) = F1(τδuλ) + λ′F2(τδvλ) = δs1F1(uλ) + λ′δs2F2(vλ).

Since (uλ, vλ) is a minimizer for J(f,λ), we have δ−s1J(τδf,λ′)(τδuλ) is minimized when λ′ = λδs1−s2 . Therefore,
(τδuλ, τδvλ) minimizes the energy J(τδf,λ′). �

Similarly, we have the following characterization of the parameters μ and λ for the model (22), with F1(u) =∫
ϕ(∇u)dx, R(f − u − v) = ‖f − u − v‖2

L2 , and F2(v) = ‖v‖
Ḃα−2

p,q
.

Lemma 2. Suppose we are in R
n. Let Fi and R be functionals with the dilating properties Fi(τδg) = δsi Fi(g), i = 1,2,

and R(τδg) = δrR(g).
For a fixed f , μ and λ > 0, let (uμ,λ, vμ,λ) be a minimizer for the following energy,

J(f,μ,λ) = F1(u) + μR(f − u − v) + λF2(v). (35)

Then for μ′ = μδs1−r and λ′ = λδs1−s2 , (τδuμ,λ, τδvμ,λ) is a minimizer for the energy J(τδf,μ′λ′).

From Lemma 1, we see that the decomposition (34) is invariant under dilation when s1 = s2, i.e., λ′ = λ. It is
understood that noise is scale invariant. However, this scale invariance property is different for texture. When the
image is being dilated, we expect the scale of the texture component to change as well.

The same analysis can be applied to variational models of the form (35). Suppose

F1(u) =
∫
Ω

ϕ(∇u)dx =
∫
Ω

|∇u|dx = |u|BV .

In R
n, n = 2, s1 = 1 − n = −1. Ideally, we would like the parameter μ in (35) to be scale invariant, i.e., r = s1.

Therefore, in R
n, with n = 2, R(w) = ‖w‖L2 would be more appropriate than R(w) = ‖w‖2

L2 if w denotes a small
noisy residual. However, in practice, the residual term R(f −uμ,λ − vμ,λ) for the minimizer (uμ,λ, vμ,λ) is negligible
for large μ. We choose to keep R(w) = ‖w‖2

L2 , since in this way we ensure uniqueness for the model. Moreover, we
can also obtain a characterization of minimizers, as explained next.

3.3. Characterization of minimizers

Recall the variational problem of decomposing f via (23) which can be written as

inf
(u,v)

{
J (u, v) = ϕ(∇u)(Ω) + μ‖f − u − v‖2

L2 + λ‖v‖
Ḃα−2

p,q
,

∫
Ω

u =
∫
Ω

f

}
, (36)

for 0 < α < 2. Here we denote ϕ(∇u)(Ω) = ∫
Ω

ϕ(∇u).

Definition 6. Given a function w ∈ L2 and λ > 0, define

‖w‖∗,λ = sup
(g,h)∈(BV,Ḃα−2

p,q )

〈w,g + h〉
ϕ(∇g)(Ω) + λ‖h‖

Ḃα−2
p,q

, ϕ(∇g)(Ω) + λ‖h‖
Ḃα−2

p,q
�= 0, (37)

where 〈·, ·〉 is the L2 inner product.

The following result is a general characterization of the minimizer, and we refer to [37] for the proof, inspired by
[42]. We assume in addition that ϕ is homogeneous of degree 1.
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Lemma 3. Let (u, v) be an optimal decomposition of f ∈ L2 via (36), and denote w = f − u − v. Then we have the
following:

(1) ‖f ‖∗,λ � 1
2μ

⇔ u = 0, v = 0, and w = f .

(2) Suppose ‖f ‖∗,λ > 1
2μ

; then (u, v) is characterized by the two conditions

‖w‖∗,λ = 1

2μ
and 〈w,u + v〉 = 1

2μ

(
ϕ(∇u)(Ω) + λ‖v‖

Ḃα−2
p,q

)
. (38)

We note that the polar norm computed in (37) is the maximum of the polar norms of each term (this will be seen
again below). Also, obviously, the inf-convolution of the first and last term in (36) is an interpolated norm, thus the
problem becomes “similar” with the ROF model, but now the BV semi-norm is substituted by the interpolated norm.

Another interpretation of the above characterization of minimizers and additional results are included in the fol-
lowing analysis, aimed to discuss a problem raised by J. Gilles in his Ph.D. [31]. In the model proposed in this present
paper, an image f is split into a sum u + v + w between three components. Let us assume for now that we work
on the entire domain R

2. The first component u is modeling the objects which are contained in f. In other words, u

yields the geometric component of the image f . J. Gilles speculated that the second piece v would be the textured
component of f , and w would be the noise. In our paper, we say that v is noise or texture and w is a residual (this
residual is not given a meaning). Recall that the decomposition f = u + v + w is obtained in a variational approach,
and the energy which is minimized over all decompositions f = u + v + w of f can be rewritten as

E(u,v,w) = |u|BV + μ‖w‖2
2 + λ‖v‖(−α). (39)

This energy contains three terms: |u|BV and ‖w‖2
2 are reminiscent of the Rudin–Osher–Fatemi model [50]. The third

term is the Besov norm of v. The smoothness exponent −α is negative and this means that v can be a tempered
distribution (α > 0). The norm in the homogeneous Besov space Ḃ−α

p,q will be denoted by ‖ · ‖(−α) and the norm in

the pre-dual space Ḃα
p′,q ′ by ‖ · ‖α. Let us consider the simplest case of an image corrupted by an additive white noise

(random noise function whose Fourier spectrum is a constant). Then we immediately observe that J. Gilles’ conjecture
is inconsistent, since white noise is not a function in L2(R2) (see, for instance, [42], p. 31, regarding “deterministic
white noise”, and [44] where it is recalled that white noise probability measure is supported in

⋂
ε>0 H

−n/2−ε

loc ). Thus
the role played by the texture and the noise could be intertwined. These remarks imply that there is a need to better
understand the meanings of v and w, and this is the goal of the following two theorems.

For computing u,v, and w, we first write m = u+ v and define the norm of m in the Banach space Y = BV + Ḃ−α
p,q

as

|||m||| = inf
{|u|BV + λ‖v‖(−α)

}
, (40)

where the lower bound is computed over all decompositions of m into a sum m = u + v. Then one is led to find the
optimal m ∈ Y which minimizes

μ‖f − g‖2
2 + |||m|||.

Once m is computed, one will optimally split m into u+v. The general theory in [42] tells us that one should compute
the dual norm in Y ∗ which is ‖h‖∗∗ = max{ ‖h‖α

λ
, ‖h‖∗}, where the norm ‖h‖∗ = ‖·‖G is computed in the “dual space"

of BV as explained in [42]. Our first result says what happens if μ is small.

Theorem 3. We have u = v = 0 and f = w if and only if ‖f ‖∗ � 1
2μ

and ‖f ‖(α) � λ
2μ

.

Theorem 3 tells us that we cannot expect that w be the noise contained in f. One could also say that μ should not
be small. If μ is large while λ is much larger, then Theorem 3 still yields u = v = 0. In this case, the price paid to use
the v-component is too high. The proof of Theorem 3 is straightforward if the general theory of [42] is used.

If λ and μ are fixed and if f is highly oscillating, one would expect ‖f ‖(α) > λ
2μ

. The following theorem will tell
us about what is happening to v.



J.B. Garnett et al. / Appl. Comput. Harmon. Anal. 23 (2007) 25–56 37
Theorem 4. Let us write η = (4−2
√

3)π
λμ

. If ‖f ‖∗ � η, ‖f ‖(−α) = ε � η, and ‖f ‖(α) > λ
2μ

, then u = 0, ‖w‖(α) = λ
2μ

,

and ‖w‖2 �
√

λε
μ

.

This theorem says that the energy of w is small. Moreover w is smooth which is a surprise. Viewed as a function
in the Besov space Ḃα

p′,q ′ , w is not small. Most of the energy of f is carried by v and this settles a problem raised by
J. Gilles. Let us assume that the given image is a sum f + σz where f is as above, σ is a positive parameter and z is
a stationary Gaussian process with a power spectrum |ξ |−γ and γ is a small positive number. Everything is assumed
to take place on the two-dimensional torus. Then the noise belongs to the “dual space” of BV . This would not be true
for the standard white noise. If α > 1 − γ

2 , the Besov norm of our Gaussian process is finite and does not exceed Cσ .
If σ is small enough, Theorem 4 applies and says that the noise cannot appear in w since w is smooth.

Let us prove Theorem 4. We first compare the optimal decomposition of f to the trivial one given by u = 0, v = f ,
and w = 0. We then have

|u|BV + μ‖w‖2
2 + λ‖v‖(−α) � λ‖f ‖(−α) � λε.

This provides us with bounds on the first two terms of the left-hand side. We obtain |u|BV � λε,‖w‖2 �
√

λε
μ

. Using

the isoperimetric inequality, we have

‖u‖∗ � 1

2
√

π
‖u‖2 � 1

4π
|u|BV , (41)

which yields ‖u‖∗ � λη
4π

and ‖w‖∗ � 1
2
√

π

√
λη
μ

. The value of η is tailored to yield ‖f −v‖∗ � ‖u‖∗ +‖w‖∗ � 1
2μ

. We

freeze v and minimize E(u,v,w) as a functional in u. The general theory of [42] gives u = 0, as announced. Then
one is left with μ‖w‖2

2 + λ‖v‖(−α) to which the general theory applies again.

3.4. Numerical computations of the models

From the continuous embedding (18), we restrict the decompositions (22) and (21) to cases where q = ∞, thus
providing weaker norms for the texture component v. The computations of ‖.‖Ḃα

p,∞ require taking the supremum over
all t > 0. In practice, for discrete images defined on a bounded domain, it is sufficient to take the supremum only over
a discrete set of values

{ti = 2.5τ i : τ = 0.9, i = 1, . . . ,N = 150}.
These ti ’s are chosen so that discretely Pt1(x) is a constant and PtN (x) approximates the Dirac delta function.

Our calculations involve associated Euler–Lagrange equations. These are not well defined for BV functions (this
could be done in a rigorous way using the techniques from [60]). However, we formally assume in this section that
we work with functions u ∈ W 1,1(Ω), a dense subset of BV(Ω) and for which these Euler–Lagrange equations are
well defined. We also assume that the function ϕ is differentiable everywhere (therefore, we work for instance with
ϕ(x) = √

ε2 + |x|2 instead of ϕ(x) = |x|, for a small parameter ε > 0).
Recall the minimization problem (22):

inf
u,g

{∫
Ω

ϕ(∇u)dx + μ

∫
Ω

|f − u − �g|2 dx + λ‖g‖Ḃα
p,∞

}
. (42)

Let Kα
t denotes either (t2−α ∂2Pt

∂t2 ) or (t1−α/2 ∂Wt

∂t
) (in the periodic formulations).

3.4.1. The case p < ∞
For 1 � p < ∞, and 0 < α < 2, (42) can be written as

inf
u,g

{∫
ϕ(∇u)dx + μ

∫
|f − u − �g|2 dx + λ sup

t>0

(∫ ∣∣Kα
t ∗ g

∣∣p dx

)1/p
}

. (43)
Ω Ω Ω
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This can also be written as a minimax problem

inf
u,g

{
sup
t>0

L(u,g, t)
}
,

with

L(u,g, t) =
∫
Ω

ϕ(∇u)dx + μ

∫
Ω

|f − u − �g|2 dx + λ

(∫
Ω

∣∣Kα
t ∗ g

∣∣p dx

)1/p

,

whose optimal solution (ū, ḡ, t̄) is a saddle point.
We apply numerically the general Uzawa’s algorithm, as presented in Ekeland and Temam [28] for minimax prob-

lems. However, we do not show here the convergence of the numerical approximation to the optimal solution (we
cannot directly apply the general convergence result from [28], Chapter VII, Section 1). Uzawa’s method constructs
the sequences um,gm, tm, defined in the following way: start with any t0 > 0, then we calculate u0, g0, t1, u1, g1, etc.
Thus,

• tm being known, find (um,gm) solution of infu,g L(u,g, tm);
• then define tm+1 as solution of supt>0 L(um,gm, t), and repeat.

The numerical details are as follows:

(1) Start with a given t0 = 2.5τ i > 0, for some i = 1, . . . ,N , and let m = 0.
(2) For m � 0, tm is known and then define (um,gm) as solution of infu,g L(u,g, tm). Thus, we compute the Euler–

Lagrange equations in um, gm of L(um,gm, tm), which are (44) and (45) below with (u, g) = (um,gm)

0 = −∇ · (∇ϕ(∇u)
) − 2μ(f − u − �g), (44)

0 = −2μ�(f − u − �g) + λ
∥∥Kα

tm
∗ g

∥∥1−p

Lp Kα
tm

∗ (∣∣Kα
tm

∗ g
∣∣p−2

Kα
tm

∗ g
)

(45)

in Ω . Equations (44) and (45) are solved using standard finite differences (as in [9,60] for the divergence term,
with a semi-implicit scheme; these Euler–Lagrange equations are well defined, as in Ekeland–Temam [28], Chap-
ter X, Section 4.3).

(3) tm+1 is obtained as solution of supt>0 L(um,gm, t). In practice, to avoid longer nonlocal computations, we only
look near tm, so

tm+1 = arg max
t∈{2.5τ i−1,tm=2.5τ i ,2.5τ i+1}

∥∥Kα
t ∗ gm+1

∥∥
Lp .

(4) Continue iterating steps 2 and 3 until the discrete energy L(um,gm, tm) that we minimize becomes stationary.

The algorithm will guarantee that L(um,gm, tm) � L(um−1, gm−1, tm) and L(um−1, gm−1, tm) > L(um−1, gm−1,

tm−1).

3.4.2. The case p = ∞
For p = ∞, we define the sup norm in space by duality. Thus we minimize

inf
u,g

{∫
Ω

ϕ(∇u)dx + μ

∫
Ω

|f − u − �g|2 dx + λ sup
h∈L1(Ω),‖h‖

L1(Ω)
�=0, t>0

∫
Ω

(Kα
t ∗ g)hdx

‖h‖L1(Ω)

}
, (46)

by introducing a new unknown variable h. The problem can be written as a minimax problem, as

inf
u,g

{
sup

{t>0, h,‖h‖
L1 �=0}

L(u,g, t, h)
}
,

where now

L(u,g, t, h) =
∫

ϕ(∇u)dx + μ

∫
|f − u − �g|2 dx + λ

∫
Ω

(Kα
t ∗ g)hdx

‖h‖L1(Ω)

.

Ω Ω
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Fig. 2. Test images to be decomposed. Top four images: (left) real (noise free) images, (right) noisy (additive Gaussian) versions of images on the
left. The bottom one is a noise free image.

Again the general Uzawa’s algorithm [28] becomes:

• Start with t0 > 0, h0 ∈ L1(Ω), ‖h‖L1 �= 0, m = 0.
• Let (um,gm) be solution of inf(u,g) L(u,g, tm,hm).
• Let (tm+1, hm+1) be solution of sup{t>0, h,‖h‖ �=0} L(um,gm, t, h), and repeat.
L1
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Fig. 3. A decomposition of f1 using (42) with ϕ(∇u) = |∇u|, α = 1.9, p = 1, μ = 1, and λ = 3e−06.

Fig. 4. A decomposition of f1 using Pt in (42) with ϕ(∇u) = |∇u|, α = 1.5, p = 1, μ = 1, and λ = 1e−04.

The details are as follows:

(1) Let t0 = 2.5τ i > 0 given for some i = 1, . . . ,N , and let h0 given, with ‖h0‖L1 �= 0, m = 0.
(2) For m � 0, suppose that tm and hm are known. Compute (um,gm) as solution of the problem infu,g L(u,g, tm,hm)

by the Euler–Lagrange equations and gradient descent (47) and (48)

uT = ∇ · (∇ϕ(∇u)
) + 2μ(f − u − �g), (47)

gT = 2μ�(f − u − �g) − λ
Kα

tm
∗ hm

‖hm‖L1
, (48)

and letting (u, g) = (um,gm).
(3) tm+1 = arg maxt>0L(um,gm, t, hm). Again, we only look locally, near tm, thus

tm+1 = arg max
t∈{2.5τ i−1,tm=2.5τ i ,2.5τ i+1}

L(um,gm, t, hm).
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Fig. 5. A decomposition of f1 using Pt in (42) with ϕ(∇u) = |∇u|, α = 1.0, p = 1, μ = 1, and λ = 3e−03.

Fig. 6. Energy versus iterations.

(4) hm+1 is obtained as solution of suph,‖h‖
L1 �=0 L(um,gm, tm+1, h), or using (49) as gradient ascent:

hT = Kα
tm

∗ gm

‖h‖L1
−

∫
Ω

(Kα
tm

∗ gm)hdx

‖h‖2
L1

h

|h| , (49)

and letting h = hm+1.
(5) Continue iterating until the discrete energy L(um,gm, tm,hm) becomes stationary.

The numerical algorithm guarantees that L(um,gm, tm,hm) � L(um−1, gm−1, tm,hm), and that L(um−1, gm−1,

tm,hm) � L(um−1, gm−1, tm−1, hm−1), etc.



42 J.B. Garnett et al. / Appl. Comput. Harmon. Anal. 23 (2007) 25–56
Fig. 7. A decomposition of f1 using Pt in (42) with ϕ(∇u) = |∇u|, α = 0.5, p = 1, μ = 1, and λ = 0.5.

Fig. 8. A decomposition of f1 using Pt in (42) with ϕ(∇u) = |∇u|, α = 0.1, p = 1, μ = 1, and λ = 0.5.

3.4.3. Exact decompositions
Recall the minimization problem (21):

inf
u

{∫
Ω

ϕ(∇u)dx + λ‖f − u‖
Ḃα−2

p,∞, 1 � p � ∞, 0 < α < 2

}
. (50)

Let Hα
t denotes either (t2−αPt ) or (t1−α/2Wt). For 1 � p < ∞, we are led to consider

inf
u

{∫
Ω

ϕ(∇u)dx + λ sup
t>0

(∫
Ω

∣∣Hα
t ∗ (f − u)

∣∣p)1/p}
, (51)

or as minimax problem infu{supt>0 L(u, t)}, with

L(u, t) =
∫

ϕ(∇u)dx + λ

(∫ ∣∣Hα
t ∗ (f − u)

∣∣p)1/p

.

Ω Ω
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Fig. 9. A decomposition of f1 using Pt in (50) with ϕ(∇u) = |∇u|, α = 0.8, p = 1, λ = 5000.

Fig. 10. A decomposition of f1 using Pt in (50) with ϕ(∇u) = |∇u|, α = 1, p = 1, λ = 1500.

Thus the Uzawa’s steps are as before:

• Start with t0 > 0, m = 0.
• Let um be solution of infu L(u, tm).
• Let tm+1 be solution of supt>0 L(um, t), and repeat.

Briefly the details are:

(1) Let t0 = 2.5τ i > 0 given for some i = 1, . . . ,N , m = 0.
(2) For m � 0, assume that tm is known, and let um be solution of infu L(u, tm) by solving the Euler–Lagrange

equation with gradient descent

uT = ∇ · (∇ϕ(∇u)
) + λ

∥∥Hα
tm

∗ (f − u)
∥∥1−p

Lp Hα
tm

∗ (∣∣Hα
tm

∗ (f − u)
∣∣p−2

Hα
tm

∗ (f − u)
)
, (52)

and we let um = u.
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Fig. 11. Energy versus iterations.

Fig. 12. A decomposition of f1 using Pt in (50) with ϕ(∇u) = |∇u|, α = 1.5, p = 1, λ = 50.

(3) Let tm+1 = arg maxt>0(
∫
Ω

|Hα
t ∗ (f − um)|p)1/p , again in practice looking only locally, near tm.

(4) Repeat until energy becomes stationary.

For p = ∞, (50) can be seen as

inf
u

{∫
Ω

ϕ(∇u)dx + λ sup
h∈L1,‖h‖

L1 >0, t>0

∫
Ω

(Hα
t ∗ (f − u))h

‖h‖L1

}
. (53)

The corresponding minimax problem is infu{supt>0 ,h,‖h‖
L1 �=0 L(u, t, h)}, with

L(u, t, h) =
∫
Ω

ϕ(∇u)dx + λ

∫
Ω

(Hα
t ∗ (f − u))h

‖h‖L1
.

The Uzawa’s numerical steps are
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Fig. 13. A decomposition of f5 using Pt in (50) with ϕ(∇u) = |∇u|, α = 1, p = 1, λ = 2000.

Fig. 14. A decomposition of f3 using Pt in (50) with ϕ(∇u) = |∇u|, α = 1, p = 1, λ = 1500.

• Start with t0 > 0, h0, ‖h0‖L1 �= 0, m = 0.
• um is solution of infu L(u, tm,hm).
• (tm+1, hm+1) is solution of supt>0, h,‖h‖

L1
L(um, t, h), and repeat.

Briefly the main details are:

(1) Let t0 = 2.5τ i > 0 given for some i = 1, . . . ,N , and let h0 given, with ‖h0‖L1 �= 0, m = 0.
(2) For m � 0, assume that (tm,hm) is known, and let um be solution of infu L(u, tm,hm) by solving the Euler–

Lagrange equation with gradient descent

uT = ∇ · (∇ϕ(∇u)
) + λ

Hα
tm

∗ hm

‖hm‖L1
, (54)

and let um = u.
(3) tm+1 = arg maxt>0L(um, t, hm), again looking locally, near tm.
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Fig. 15. A decomposition of the noisy image f4 using Pt in (50) with ϕ(∇u) = −β +
√

|∇u|2 + β2, β = √
10, α = 1, p = 1, λ = 1500.

Fig. 16. A decomposition of f1 using Pt in (42) with ϕ(∇u) = |∇u|, α = 1, p = ∞, μ = 10, and λ = 1.

(4) hm+1 = arg max
h,‖h‖

L1 >0
L(um, tm+1, h), or hm+1 = arg max

h,‖h‖
L1 >0

∫
Ω

(Hα
tm+1

∗ (f − um))hdx

‖h‖L1
,

will be solved as before by Euler–Lagrange equation and gradient ascent (similar with (49)).
(5) Repeat the above steps.

Remark 6. In practice, we solve all these models on the original image domain with Neumann boundary conditions
on u (we only extend periodically by reflection the functions to compute the convolutions using the Fast Fourier
Transform).

Again, we do not show here convergence of our numerical algorithms. However very satisfactory experimental
results are presented next, together with the energy decrease versus iterations.
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Fig. 17. A decomposition of the noisy image f2 using the Cauchy–Poisson kernel Pt in (42) with ϕ(∇u) = −β +
√

|∇u|2 + β2, β = √
10, α = 1,

p = 2, μ = 10, and λ = 0.01.

Fig. 18. Exact cartoon images and their noisy versions corrupted by additive Gaussian noise.
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Fig. 19. The top row shows a decomposition of f1 from Fig. 18 using the ROF model (2) with rmse = 1.3923. The bottom row shows a decompo-
sition of the same image using Wt , p = 2 and α = 1 in (50) with rmse = 1.7200.

4. Numerical results

In this section, we would like to show some numerical results of the proposed models applied to images with the
presence of noise and/or texture. We also test the proposed models on cartoon images corrupted by additive Gaussian
noise. Let ū and u be the exact image and the reconstructed image, respectively, of size n × n. For denoising, we
measure the goodness of the reconstructed image by the following quantity

rmse =
(∑n

i,j=1 |ui,j − ūi,j |2
n2

)1/2

. (55)

Figures 3–8 show the decompositions of f1 from Fig. 2 and an energy decrease versus iterations, with p = 1
and with different values of α, 0 < α < 2 using the Cauchy–Poisson kernel Pt in the approximated model (42)
with ϕ(∇u) = |∇u|. Notice the improvement in terms of cartoon and texture decomposition of f1 as α → 0. Local
oscillations are well captured in v.

Figures 9–12 show an exact decomposition (50) of f1 from Fig. 2 with ϕ(∇u) = |∇u|, p = 1 and various values
of α using the Cauchy–Poisson kernel Pt .

Figure 13 shows an exact decomposition (50) of f5 from Fig. 2 with ϕ(∇u) = |∇u|, p = 1 and α = 1 using the
Cauchy–Poisson kernel Pt .

Figure 14 shows an exact decomposition (50) of f3 from Fig. 2 with ϕ(∇u) = |∇u|, p = 1 and α = 1 using the
Cauchy–Poisson kernel Pt .
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Fig. 20. The top row shows a decomposition of f2 from Fig. 18 using the ROF model (2) with rmse = 4.4287. The bottom row shows a decompo-
sition of the same image using Wt , p = 2 and α = 1 in (50) with rmse = 4.7221.

Fig. 21. A decomposition of f1 from Fig. 2 using the model (59) with the kernel being the characteristic function of a square centered at 0 having
3-pixel length for the sides, ϕ(∇u) = |∇u|, p = 1, and λ = 1.5.
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Fig. 22. A decomposition of f1 from Fig. 2 using the model (59) with the kernel being the characteristic function of a square centered at 0 having
5-pixel length for the sides, ϕ(∇u) = |∇u|, p = 1, and λ = 1.5.

Fig. 23. A decomposition of the noisy image f2 from Fig. 2 using the model (59) with the kernel being the characteristic function of a square
centered at 0 having 3-pixel length for the sides, ϕ(∇u) = |∇u|, p = 1, and λ = 2.

Figure 15 shows an exact decomposition (50) of f4 from Fig. 2 with ϕ(∇u) = −β + √|∇u|2 + β2, β = √
10,

p = 1 and α = 1 using the Cauchy–Poisson kernel Pt .
Figure 16 shows a decomposition of f1 from Fig. 2 using the Cauchy–Poisson kernel Pt in (42) with ϕ(∇u) = |∇u|,

p = ∞, α = 1. Here v ∈ E = Ḃ−1∞,∞ (as proposed by Y. Meyer). The oscillatory component v tends to be uniform,
and captures other non-repeated patterns as well. This comes from the property of L∞.

Figure 17 shows a decomposition of f2 from Fig. 2 using the Cauchy–Poisson kernel in (42) with ϕ(∇u) =
−β + √|∇u|2 + β2, β = √

10, p = 2, α = 1. Here v ∈ Ḃ−1
2,∞.

In Figs. 19–20, we show the results for image denoising using the model (50), and the ROF model (2) for compar-
ison, applied to the noisy images from Fig. 21. We notice that the proposed new model does not give improvement
over the ROF model in this denoising case.
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Fig. 24. A decomposition of f2 from Fig. 2 using the model (59) with the kernel being the characteristic function of a disk centered at 0 having the
radius equal to 1-pixel length, ϕ(∇u) = |∇u|, p = 1, and λ = 1.5.

5. Discussion

As seen from Figs. 1–17, the proposed models perform fairly well on texture decompositions. The repeated patterns
are well captured in the v component when p = 1. For the case with p = ∞, other oscillations (not just repeated pat-
terns) are also captured in v. However, for denoising of cartoon images (Figs. 19–20), we do not see an improvement
over the ROF model (2).

In the minimization problem (50), choosing a parameter α > 0 amounts to finding a t̄ > 0 such that ‖Hα
t̄

∗ v‖Lp is
optimal. Therefore, (50) can be seen as the minimization problem,

inf
u∈BV

{∫
Ω

ϕ(∇u) + λ
∥∥Kt̄ ∗ (f − u)

∥∥
Lp , 1 � p � ∞

}
, (56)

where Kt̄ is either Pt̄ or Wt̄ , for some fixed t̄ = t̄ (α) > 0. Computationally, (56) is less demanding compared to (50).
Similarly, we can also consider a more simple problem instead of (42),

inf
u∈BV

{∫
Ω

ϕ(∇u) + μ‖f − u − �g‖2
L2 + λ

∥∥∥∥∂2Kt̄

∂t2
∗ (f − u)

∥∥∥∥
Lp

, 1 � p � ∞
}
. (57)

Now, t̄ is another parameter to the problem, in addition to μ and λ.
Also note that, given f ∈ Lp for 1 � p < ∞, we have Kt ∗ f → f strongly in Lp as t → 0, [30]. Therefore, as

t̄ → 0, (56) becomes the minimization problem,

inf
u∈BV

{∫
Ω

ϕ(∇u) + λ
∥∥(f − u)

∥∥
Lp , 1 � p < ∞

}
. (58)

Clearly, the norm ‖Kt ∗ v‖Lp is weaker than the norm ‖v‖Lp , for all t > 0.
From the numerical results, we notice that the case p = 1 gives better cartoon-texture decomposition, and captures

well repeated patterns. M. Green [33] experimentally shows that texture-like natural images, when being convolved
with kernels of zero mean, have a Laplacian probability distribution (that would amount to minimize an L1 norm with
kernel convolution). In all the above models, we assume that oscillatory components have zero mean; therefore, Pt or
Wt are suitable, and our result is in agreement with M. Green’s results.

Remark 7. When smooth kernels are used, for instance the Poisson or Gaussian kernel, then the model in (56) is
related to the idea arising in discussions, which at that time were not motivated by Besov spaces, between the fourth
author and B. Engquist at Princeton University in March 2004.
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Fig. 25. (u1, v1) is a decomposition of f1 = u1 + v1 from Fig. 2 using the model (59) with the kernel being the characteristic function of a vertical
line centered at 0 having 3-pixel length. u1 is then decomposed into u2 + v2 using the same model with the kernel being the characteristic function
of a horizontal line centered at 0 having 3-pixel length. The two decompositions have ϕ(∇u) = |∇u|, p = 1, and λ = 2.

Also, Sobolev spaces are particular cases when the kernels are of the form Kα(x) = ((1+|ξ |2)(α/2))∨(x), for some
α, and p = 2. These are considered by Lieu and Vese for image denoising and decomposition in [38].

From the image analysis point of view, where images are defined discretely, we consider here other non-smooth
kernels as well. An interesting one is the characteristic function of a set, which can be a disk, or a square, etc.
To separate oscillations of different orientations, we will also consider anisotropic kernels. We refer the readers to
H. Triebel [58] for a discussion of other anisotropic kernels.

Let B be a set containing 0 and KB(x) = 1
|B|χB(x) be the averaging kernel. We have

KB ∗ f (x) =
∫
Ω

KB(x − y)f (y) dy = 1

|B|
∫
B

f (x − y)dy.

Now, (56) can be written as

inf
u

{
E(u) =

∫
ϕ(∇u) + λ

∥∥KB ∗ (f − u)
∥∥

Lp

}
. (59)
Ω



J.B. Garnett et al. / Appl. Comput. Harmon. Anal. 23 (2007) 25–56 53
Fig. 26. (u1, v1) is a decomposition of f = u1 + v1 using the model (59) with the kernel being the characteristic function of a horizontal line
centered at 0 having 3-pixel length. u1 is then decomposed into u2 + v2 using the same model with the kernel being the characteristic function of
a vertical line centered at 0 having 3-pixel length. The two decompositions have ϕ(∇u) = |∇u|, p = 1, and λ = 2.
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Next, we would like to show some numerical results using the averaging kernels.
Figures 21–22 show decompositions of f1 from Fig. 2 using the model (59) with a non-smooth averaging kernel

KB , where B is a square centered at 0 with sides parallel to the axis. Both decompositions use ϕ(∇u) = |∇u|, p = 1,
and λ = 1.5. However, the decomposition in Fig. 21 uses the square with 3-pixel length for the sides, while the other
uses the square with 5 pixel length.

Figure 23 shows a decomposition of the noisy image f2 from Fig. 2 using the model (59) with B equal to the
square of 3 pixel-length centered at 0, ϕ(∇u) = |∇u|, p = 1, and λ = 2.

Figure 24 shows a decomposition of f2 from Fig. 2 using the model (59) with B equal to the disk centered at 0 and
the radius equal to 1-pixel length, ϕ(∇u) = |∇u|, p = 1, and λ = 2.

Figures 25–26 show decompositions using anisotropic kernels, which are suitable for the separation of different
orientations of oscillations. Here, we are interested in separating texture that has a vertical orientation from other
oscillations in f1 from Fig. 2 and in f from Fig. 26. We have obtained this result in two steps. In Fig. 25, we first
decompose f1 into u1 + v1 using the kernel of a characteristic function of a vertical line centered at 0 having 3-pixel
length (related with hierarchical multiscale decompositions introduced in [56]). This kernel picks up oscillations in the
horizontal direction. We then decompose u1 into u2 + v2 using the kernel of a characteristic function of a horizontal
line centered at 0 having 3-pixel length. This kernel picks up oscillations in the vertical direction. A similar process is
done in Fig. 26, but the kernels are used in reverse order. This process can be done simultaneously in one step via this
minimization problem

inf
u,v

{∫
Ω

ϕ(∇u) + λ1‖K1 ∗ v‖Lp + λ2‖K2 ∗ w‖Lp, f = u + v + w

}
, (60)

where K1 is the vertical kernel, and K2 is the horizontal kernel. From Fig. 25, we would have u = u2, v = v1, and
w = v2.

Remark 8. Here, we use horizontal and vertical directions. But other directions can also be used to separate different
texture orientation, and the directions do not have to be orthogonal.
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