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Simultaneous Structure and Texture Image Inpainting

Marcelo Bertalmio, Luminita Vese, Guillermo Sapitddember, IEEEand Stanley Osher

Abstract—An algorithm for the simultaneous filling-in of The algorithms reported in the literature best perform for pure
texture and structure in regions of missing image information is  texture, [10], [14], [28], or pure structure, [2], [3], [5]. This

presented in this paper. The basic idea is to first decompose the . . L "y
image into the sum of two functions with different basic character- means that for ordinary images such as the one in Fig. 1, dif

istics, and then reconstruct each one of these functions separately férent techniques work better for different parts. In [26], it was
with structure and texture filling-in algorithms. The first function ~ shown how to automatically switch between the pure texture and
used in the decomposition is of bounded variation, representing pure structure filling-in process. This is done by analyzing the
the underlying image structure, while the second function captures o5 o\ ,rrounding the region to be filled-in (inspired by [17]), and
the texture and possible noise. The region of missing information . ] . . o
in the bounded variation image is reconstructed using image selecting either a texture synthesis or a structure inpainting tech-
inpainting algorithms, while the same region in the texture image nique. Since mostimage areas are not pure texture or pure struc-
is filled-in with texture synthesis techniques. The original image is  ture, this approach provides just a first attempt in the direction

then reconstructed adding back these two sub-images. The novel ¢ o ltaneous texture and structure filling-in (attempt which
contribution of this paper is then in the combination of these three

previously developed components, image decomposition with Was found sufficient for the particular application of transmis-
inpainting and texture synthesis, which permits the simultaneous Sion and coding presented in the paper). It is the goal of this

use of filling-in algorithms that are suited for different image paper to advance in this direction and propose a new technique
frnzrsgggzgﬁsagﬁ?fﬁes on real images show the advantages Ofi 4t will perform both texture synthesis and structure inpainting
' in all regions to be filled-in.
_ Index Terms—Bounded variation, filling-in, image decomposi-  The basic idea of our algorithm is presented in Fig. 2, which
tion, inpainting, structure, texture, teture synthesis. shows a real result from our approach. The original image (first
row, left) is first decomposed into the sum of two images, one
capturing the basic image structure and one capturing the tex-
ture (and random noise), second row. This follows the recent
l. INTRODUCTION work by Vese and Osher reported in [30], [31]. The firstimage
L o L . is inpainted following the work by Bertalmio-Sapiro-Caselles-
HE.f|II.|ng.—|n of missing mformguon IS a very mportapt Ballester described in [5], while the second one is filled-in with
: topic N Image processing, with appll_catlons |nclud|n% texture synthesis algorithm following the work by Efros and
image coding and wireless image transmission (e.g., recover|n ng in [10], third row. The two reconstructed images are then

lost blocks), special effects (e.g., removal of objects), aN%ded back together to obtain the reconstruction of the orig-

image restoration (e.g., scratch removal). The basic idea behllrrll | data, first row, right. In other words, the general idea is

the algorithms that have been proposed in the “terature.}tbsperform structure inpainting and texture synthesis not on the

to fill-in these regions with available information from the|rOriginal image, but on a set of images with very different charac-

surroundings. This information can be automatically dEteCt?gristics that are obtained from decomposing the given data. The

as in [5], [10], or hinted by the user as in more classical textur, e . . .
silin [te](':r[mi]lues 8] [14]y [28] a%composmon is such that it produces images suited for these
9 q ' ' ' two reconstruction algorithms. We will show how this approach
outperforms both image inpainting and texture synthesis when
applied separately.
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functions of bounded variatioBV (IR?), [12], allowing for
edges

inf {F(u):/|Vu|+)\||v||%2,lzu+v} 1)

ueBV

whereX > 0 is a tuning parameter. The second term in the
energy is a fidelity term, while the first term is a regularizing
term, to remove noise or small details, while keeping important
features and sharp edges.

In [23], Meyer proved that for smaN the model will remove
the texture. To extract both the € BV (a piecewise constant
or cartoon representation of the image), and«#t@mponent
as an oscillating function (texture or noise) frdimsee Fig. 3,
Meyer proposed the use of a different space of functions, which
is in some sense the dual of the BV space (and therefore, con-
tains oscillations). The idea is that if (1) (or wavelet-type de-
compositions) is used, thenwill not just contain oscillations,
but also undesired brightness edges. Meyer introduced the fol-
lowing definition, and also proved a number of results showing
the explicit relationship between thie||. norm below and the
Fig. 1. Example of image with both texture and structure. model in [27] (see [23], [31] for details).
Definition 1: Let G denote the Banach space consisting of

decomposition, see Section V and [31]), to further enhance fhlkgeneralized functions(x, y) which can be written as
results of the texture synthesis algorithm.

v(z,y) = 0:91(2,y) + 0yga(2,), 91,92 € LZ(IR?)
)
Il. IMAGE DECOMPOSITION _ _
induced by the nornj|I||. defined as the lower bound of all
In this section, we review the image decomposition approaghe norms of the functionsy| whereg = (g1, g2), lg(z, y)| =
proposed in [30], [31], which is one of the three keyingredient\ygl(xjyy + g2(z,y)? and where the infimum is computed
of the simultaneous texture and structure image inpaintigger all decompositions (2) df.
algorithm. As explained in the introduction, this decomposition \eyer showed that if the component represents texture or

produces images that are very well suited for the imaggjse, therw ¢ @, and proposed the following new image
inpainting and texture synthesis techniques described in the ngdtoration model:

sections. The description below is adapted from [31], where
the technique was first introduced. The interested readers are
referred to this work for more details, examples, and theoretical
results.

The two main ingredients of the decomposition developdtl [30] and [31], the authors devised and solved a variant of this
in [31] are the total variation minimization of [27] for imagemodel, making use only of simple partial differential equations.
denoising and restoration, and the space of oscillating functioh&is new model leads us to the decomposition we need for si-
introduced in [23] to model texture or noise. multaneous structure and texture filling-in.

Let I : IR — IR be a given observed imagéc L?(IR?). The following minimization problem is the one proposed in
I could be just a noisy version of a true underlying image [31], inspired by (3)
or could be a textured image, then being a simple sketchy
approximation or a cartoon image 6f(with sharp edges). A |
simple relation between and T can be expressed by a linear, "y, {Gp(u’gl’”) = /qul + /\/ [ —u=0ugn
model, introducing another function, such that/(z,y) =

w(z,y) + v(z,y). In [27], the problem of reconstructing — 8,95 dady + [/( ligf—lrg%)p . dy];} @

from I is posed as a minimization problem in the space of

igf{E(u):/|Vu|+/\||v||*,I:u+v}. (3)

where\, p > 0 are tuning parameters, apd— oo. The first
_ o term ensures that € BV (IR?), the second term ensures that
1After this paper was accepted for publication, we learned that a numbe

r pf . . . .
new papers on inpainting, inspired by [5], will be published at SIGGRAPH ZOOZ; ~ u + div(g1, g2), while the third term is a penalty on the
and CVPR 2003. norminG of v = div(g1, g2)-



884 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

Fig. 2. Basic algorithm proposed in this paper. The original image in the first row, left (a section of Fig. 1) is decomposed into a structure imageiesnd a t
image, [31], second row. Note how the image on the left mainly contains the underlying image structure while the image on the right mainly costains.the t
These two images are reconstructed via inpainting, [5], and texture synthesis, [10], respectively, third row. The image on the left manageddbthecsingcture
(see for example the chair vertical leg), while the image on the right managed to reconstruct the basic texture. The resulting two images aret@dded to ob
reconstructed result, first row right, where both structure and texture are recovered.

Forp = 1, as used in this paper, the corresponding Eule
Lagrange equations are [31]

w=1—0yg1 — Dygo + d1v< V“) (5)

|Vu|
g1 a 2
— =2\ -0)+0 8 6

8
1 2

As can be seen from the examples in [31] and the images
this paper, the minimization model (4) allows to extract from ¢
given real textured imagkthe components andv, such that:
is a sketchy (cartoon) approximation bfandv = div(g, g2)
represents the texture or the noise (note that this is not jUSt a

Fig. 3. lllustration of the desired image decomposition. The top image is
IOW/hIgh frequency decomposmon) For some theoretical rQecomposed in a cartoon type of image (left) plus an oscillations one (right,
sults and the detailed semi-implicit numerical implementatiasxture). Note that both images have high frequencies.
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best match threshold tol;, and randomly pick one. We then replace the
current pixel being filled-in in the lost block by the value of the
Template corresponding pixel next to the selected block. This algorithm

rent pixel is considerably faster when using the improvements in [9], [13],
yn prxe s [33]. Note also that a segmentation algorithm (to the texture
~

candidate  jmagev) can be added to aid this texture synthesis algorithm.

-
s
-
-
-

- -

- IV. I MAGE INPAINTING

Lost Block We now describe the third key component of our proposed
scheme, the algorithm used to fill-in the region of missing infor-
mation in the bounded variation image For the examples in
this paper we use the technique developed in [5]. Other image
inpainting algorithms such as [2], [3] could be tested for this
application as well. The key idea behind these algorithms is to
propagate the available image information into the region to be
inpainted, information that comes from the hole’s boundary and
is propagated in the direction of minimal change (isophotes). We
Fig. 4. Basic texture synthesis procedure. should also note that these works explicitly showed the need for
high order partial differential equations for image inpainting (in
order to smoothly propagate both gray values on gradient di-

of the above Euler-Lagrange equations, see [31]. We should nttetions), thereby making simpler denoising algorithms such as
thatv can be further segmented using informatior(4n, g,) anisotropic diffusion not appropriate.

[31], or fromw as in Section V, segmentation that can help the Once again lef2 be the region to be filled in (inpainted) and
texture synthesis algorithm described below. 62 be its boundary. The basic idea in inpainting is to smoothly

propagate the information surroundifign the direction of the
isophotes entering(2. Both gray values and isophote directions
are propagated inside the region. Denoting liie image, this
propagation is achieved by numerically solving the partial dif-

We now describe the second key component of our scherfefential equationt(is an artificial time marching parameter)
the basic algorithm used to fill-in the region of missing infor-
mation inwv, the texture image. While for the examples in this ol
paper, we use the algorithm developed in [10], this is not cru- ot
cial and other texture synthesis techniques could be tested for
this task. Note however that modulo the selection of a few pahereV, A, andV' stand for the gradient, Laplacian, and or-
rameters, this algorithm is fully automatic and produces vetliogonal-gradient (isophote direction) respectively. This equa-
good texture synthesis results. Moreover, this algorithm is vetign is solved only insid&2, with proper boundary conditions in
well suited to natural images when the regions to be inpainté€ for the gray values and isophote directions [5].
cover a large variety of textures. These are the basic reasons thatote that at steady statg)/)/(9t) = 0,andV(AI)- V41 =
lead us to the selection of this particular technique from the vastThis means thaf\[ is constant in the directioR -1 of the
literature on texture synthesis. isophotes (sinc&(AI) - V41 is just the derivative ofAT in

Let the region to be filled be denoted by Q will be filled, the directionv-+1T), thereby achieving a smooth continuation of
pixel by pixel, proceeding from the bordéf) inwards. Letl; the Laplacian inside the region to be inpainted. We have then
be arepresentative template, with known pixels, surrounding thietained a smooth propagation of available image information
pixelp(i, j) € Q to be filled-in next. We proceed to find a set of( AT) surrounding the hol@, propagation done in the direction
I, from the available neighborhood, such that a given distaneEminimal change (the isophote§- ).
d(Ty, I}) is below a pre-defined threshold. As per [18]is the For details on the numerical implementation of this in-
normalized sum of squared differences (SSD) metric. Once syzinting technique, which follows the techniques introduced in
asetofl,’s is found, we randomly chose one of the pixels whog@1], [27], as well as numerous examples and applications, see
location with respect td, corresponds to the same position of5]. Note in particular that at every numerical step of (8), a step
p(4, 7) with respect td;. We then fillp(i, j) € Q with the value of anisotropic diffusion, [1], [25], is applied [5]. Multiresolu-
of this pixel. tion can also be applied to speed-up the convergence [5].

The templatd; can be a simple seed-block ok33 pixels as For image inpainting alternatives to this approach, see [2],
shown in Fig. 4. Then, of all & 3 blocks with fully available [3]. In particular, [3] shows the relationship of the above equa-
data in the image, we look at those closer than a pre-definigoh with classical fluid dynamics, and presents a different flow

8—neighborhood of lost block

IIl. TEXTURE SYNTHESIS

=V(AI)-V*T (8)
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Fig. 6. Comparison of our proposed algorithm with pure texture synthesis
and pure image inpainting. Note how our proposed technique manages to
reconstruct both texture and structure (second image on first row), while pure
texture synthesis fails to reconstruct the structure of the wall and produces
artifacts in the water (first image on second row), while pure image inpainting
reconstructs the wall but fails with the water (second image on second row).

Fig. 5. Additional example, as in Fig. 2.

to achieve the steady stat®(A7) - VXTI = 0. The work in V. EXPERIMENTAL RESULTS

[2] presents a formal variational approach that leads to a system

of coupled second order differential equations. All these worksWe now present additional experimental results and compare
were in part inspired by [22], [24]. Full details can also be foundith the case when the image is not decomposed prior to
at http://mountains.ece.umn.edu/~guille/inpainting.htm. Addiling-in, and just one algorithm, either image inpainting or
tional related work is described in [7], [15], [16], [19], and [20]texture synthesis, is applied. The initial condition for inpainting
while [6], [11], [18], and [32] provide literature on inpainting ass given by running the texture synthesis algorithm. Color is
done by professional restorators. Comments on these contrisugeneral treated as in [5] and [10]. While each of the three
tions and comparisons with the work just described are providedmponents of the algorithm here proposed has a number of
in [5]. parameters, all but two of them were left unchanged for all the
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Fig. 7. Object removal. The original image is shown on top-left, followed by the result of our algorithm (top-right) and the results with pureyrekiese s
(bottom-left), failing to reconstruct the shoulder and introducing artifacts, and pure inpainting (bottom-right), giving a smoother réoanstruct

examples in this paper. The only parameters that vary ared VI. CONCLUSIONS ANDFUTURE DIRECTIONS

the number of steps in inpainting, although the results Were|, this paper, we have shown the combination of image
found to be very stable to these parameters aswaxture  yecomposition with image inpainting and texture synthesis.
synthesis can be performed reasonably fast with the extensigg, pasic idea is to first decompose the image into the sum
in [13], [33], while image inpainting also takes just a fewy o functions, one that can be efficiently reconstructed
seconds. The overall algorithm takes about 2-3 minutes iR;@ inpainting and one that can be efficiently reconstructed
Pentium IIl, 800 MHz, without any optimization. Most of theyja texture synthesis. This permits the simultaneous use of
computing time is consumed by the texture synthesis algoritifiese reconstruction techniques in the image domain they
since we are not using any of the speed improvements. were designed for. In contrast with previous approaches, both
First, in Fig. 5 we repeat the steps as in Fig. 2 for emage inpainting and texture synthesis are applied to the region
different portion of the image. Then, in Fig. 6 we comparef missing information, only that they are applied not to the
the results of our algorithm with pure texture synthesis and puvgginal image representation but to the images obtained from
image inpainting. Fig. 7 shows an example of object removéie decomposition. The obtained results outperform those
The last example is presented in Fig. 8, where two differe@btained when only one of the reconstruction algorithms is
textures are simultaneously reconstructed. The inpainted cart@@plied to each image region.
image u is used to guide the texture synthesis algorithm. Further experiments are to be carried out to obtain the
When reconstructing the texture of a given pi&lj) (via a best combination of image decomposition, image inpainting,
straightforward vectorial extension to [10]), only pixels witind texture synthesis. Since a number of algorithms exist for
cartoon value equal ta(i, ;) (the value of the cartoom each one of these three key componepts, the-comblna'Flon that
after inpainting has been performed) are searched. In oti&pvides th(_e best visual resglts is an m_terestlng experlm_ental
words, the inpainted cartoon image is used to provide a rou@ﬂd theoretical research topic. As mentioned before, an inter-

segmentation. Figs. 6-8 are all in color and can be seenh?ffd'ate shegmenltatlon ste.p of the. tr(]axtur-e Image W'I,I hfL:rther
http://mountains.ece.umn.edu/~guille/inpainting.htm. improve t '€ resu ts (see F'g', 8). Without it, images with large
variability in texture types might not be correctly handled by

the texture synthesis step. Different parameters selections at the

2or all the i " de 01 th ber of al image decomposition stage might also be needed for images

or al e Images we have usqd= U.1, € numper or numerica A . .
steps of the decomposition is equal to 100, and the texture syntheggmam”_]g textures_at r_na_ny different scales. Th|§ opens_ the
algorithm uses a % 7 square template. Regarding the varying parameterd0oOr to investigate inpainting and texture synthesis combined
A =0.1 for Figs. 2 and 6 and\ = 0.5 for the others, while the number wijth an image decomposition step that splits the data into more
of inpainting steps (with a discrete time step of 0.1) are 200 for Fig . . . .
n two images (e.gy and a series of images at different

2 and 6 and 2000 for the others (almost identical images were obtai
when 2000 steps were used for Fig. 2). scales).
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Fig. 8. Inpainting multiple textures. Original image, result of our algorithm, and the result of pure texture synthesis (note the driftingyefgsper inpainting
is not designed for this type of data.
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