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Constrained Restoration and the Recovery
of Discontinuities

Donald Geman, Member, IEEE, and George Reynolds

Abstract—The linear image restoration problem is to recover
an original brightness distribution X© given the blurred and
noisy observations Y = KX© + B, where X and B represent
the point spread function and measurement error, respectively.
This problem is typical of ill-conditioned inverse problems that
frequently arise in low-level computer vision. A conventional
method to stabilize the problem is to introduce a priori constraints
on X© and design a cost functional 7 (X ) over images X, which is
a weighted average of the prior constraints (regularization term)
and posterior constraints (data term); the reconstruction is then
the image X, which minimizes 7.

A prominent weakness in this approach, especially with
quadratic-type stabilizers, is the difficulty in recovering dis-
continuities. One seeks an estimate of X©, which not only
recovers the shape of the original image over smooth patches,
for example, those that are planar or quadric, but also recovers
sharp transitions between these components.

We therefore examine prior smoothness constraints of the form
¢(DkX), where ¢(u) = —(1 + |u|)”*, and DF denotes a kth
order derivative k= 1.2, or 3. The important attributes of ¢
are its concavity on (0,oc) and its finite asymptotic behavior
(limy—oc ¢(u) < o). Such constraints permit the recovery
of discontinuities without introducing auxiliary variables for
marking the location of jumps and suspending the constraints
in their vicinity. (In fact, our optimization problem is equivalent
to one involving a noninteracting “line process.”) In this sense,
discontinuities are addressed implicitly rather than explicitly.

Selecting the parameters, especially the relative weight
A between the prior and posterior terms (the “smoothing
parameter”), is also problematical. Moreover, in our view, there is
a conspicuous absence of theoretical results on model validation,
even for idealized X©. By exploiting the concavity of ¢ and
assuming that X9 is an ideal (but prototypical) pattern, we
calculate A by requiring that Pr{X°c W} = 1, where W is the
set of coordinate-wise minima of H. This procedure then yields
A (actually an upper bound) as a function of the other model
parameters, such as the noise variance and blur coefficients.

Index Terms— Concave stabilizers, discontinuity recovery,
“dual” energy, higher order constraints, image deblurring, model
validation, nonlinear restoration, parameter selection.

I. INTRODUCTION

A. Image Blurring

HE IMAGE restoration problem is to recover a 2-D
brightness (or other source) distribution X 0 defined over
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a continuous domain from discrete energy measurements actu-
ally recorded by a sensor. For example, visible light is sensed
by a video or CCD camera, and the continuous distribution
XY is converted into discrete samples Y, where s ranges
over some 2-D rectangular lattice. For electro-optical and
other devices, the transformation from X 0 to Y involves the
degradation of the signal by the transport medium, noise, and
sensor imperfections, as well as by the process of discretization
itself, namely, digitization and quantization. The most accurate
(but seldom used) model would therefore account for a variety
of degradation factors: blur, through the composition of X0
with a (possibly space-variant) point spread function (PSF);
quantum noise, i.e., random fluctuations in the number of
photons striking the photoactive material; noise in the scanning
electronics; radiometric distortion; and other effects (see, e.g.,
Andrews and Hunt [1]).

In many situations, the dominant effect is blurring, which
is the principal concern in this work. This distortion and loss
of spatial resolution may be due to defocusing or to other
factors such as motion, scattering, and atmospheric turbulence.
The simplest model accounting for both blur and (signal-
independent) noise is the familiar linear degradation model

Y, = (KX°%) +n, s€S

where S is an N x N lattice, 7 is taken as white noise, and K
is an operator representing the PSF. If we represent the domain
of X° by an Ny x Ny lattice Sp 2 S, then in matrix notation

(1.1)

in which case, relabeling the sites, we regard X9 asan Ng x 1
vector, Y and 77 as N2 x 1 vectors, and K as an N2 x NZ matrix.
In general, N < Np, due to the nature of optical blurring and
data acquisition (see Fig. 1).

Two exceptional cases in which one may assume N = Ny
are toroidal blurring (hence, actual convolution) and given
boundary values (i.e., X is known on S\ S). However, these
are generally unrealistic assumptions, and consequently, we
shall restrict our attention to the case of an underdetermined
system. Linear inverse problems of the same nature appear fre-
quently in such related areas as radio astronomy, microscopy,
computed tomography, and low-level computer vision.

The determination of the (distribution of) data Y given the
true brightness pattern X is the so-called “direct problem,”
and we will assume this mechanism is specified. In particular,
we assume that the PSF is known. This is often a reasonable
assumption; for example, the blur induced by the Vidicon
camera has been determined. Finally, we assume throughout

Y =KX%+9
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Fig. 1. Inner square S is where the data Y is given, and the outer square
So is where we wish to reconstruct the image X0©. The support of the point
spread function determines the size of So.

that the noise process 7 consists of independent and identically
distributed Gaussian random variables with zero means and
known variance o2. This choice of the noise statistics is
primarily for convenience, and the methodology supports other
choices.

There is usually a severe loss of information in the trans-
formation from X to Y. In particular, the system is underde-
termined, and KX~! is obviously not well defined. Moreover,
even if K were invertible, the “inverse problem” is usually ill
conditioned because the matrix X is nearly singular, and hence,
there is little control over the propagation of measurement
errors from the data to the solution. These observations can
be made more precise in operator-theoretic terms (see, ¢.g.,
Bertero [2]), but the basic dilemma is clear: given K and Y,
the solution space of (1.1) is typically very large, and two
images with blurred values very close to ¥ can be far apart
both visually and as vectors.

Finally, concerning the choice of blurs, most of our experi-
ments involve (approximations to) Gaussian PSF’s, which are
known to model various phenomena, such as the distortion
due to atmospheric turbulence. We also include an experiment
with a 2D uniform PSF (which results, e.g., from a defocused,
circular lens) and one with a 1D uniform PSF (motion blur).
In general, as mathematical inverse problems, the Gaussian
blur is the most difficult, and the motion blur is the least
difficult; at least this has been our experience and can be
partially substantiated by analyzing the degree of attenuation
of high-frequency components. (Obviously, some adjustment
must be made for the blur extent.) However, visually, the
reverse appears true: The motion blur presents the greatest
challenge, then the 2D uniform blur, and the Gaussian blur
appears the easiest to “invert.” It should also be emphasized
that all these problems are substantially harder in the presence
of noise, which imposes fundamental limitations on the degree
of accuracy that can be obtained.

B. Summary of Results and Methodology

Most image restoration methods employ prior constraints in
addition to those derived from modeling the image formation
process. Our method belongs to this category; we formulate
deblurring as a (nonlinear) optimization problem using a cost

functional designed to accommodate assumptions about X 0 as
well as the degradation model.

Specifically, we exploit the common observation that most
real scenes are locally smooth, i.e., the variations in intensity
are well behaved away from visual boundaries and textured
areas. The cost functional is therefore constructed to emphasize
images that are locally smooth and consistent with the data,
i.c., whose blurred values are close to Y. This converts the
ill-posed inverse problem (1.1) into a well-formulated (and
hopefully well-conditioned) optimization problem. (A simpler
constraint is simply to enforce positivity on the solution, in
which case, the reconstructions can be obtained with quadratic
programming. Generally, however, the problem is still badly
formulated.)

The reconstruction is defined as any (global) minimum of
a function

HE(X) = o8 (X) + MY - K| (1.2)
=Y o(DE(X)/A)
C
+AY (v = (K))™ (1.3)
seS

Here, Y and K are as above, X is a positive, integer-
valued function on So, and A and )\ are positive parameters.
(Notice that A multiplies the data term and, hence, is just the
inverse of the usual “smoothing parameter.”) We are primarily
interested in the planar and quadric cases (k = 2,3), although
all three functionals H*, k = 1,2, 3, will sometimes be utilized
during the optimization procedure. The “regularization term”
®*(X) imposes a smoothness condition X of order k. For
example, for k = 1, the first summation in (1.3) ranges over
all horizontal and vertical nearest neighbor pairs of pixels,
and DL(X) is simply the intensity difference X, — X; for
C = {s,t}. For k = 2,3 the terms D¥, correspond to discrete
(linear) approximations to the differences between elements
of the gradient vector (k = 2) and Hessian matrix (k=3)at
adjacent pixels. This will be amplified in Section IL.

We have selected one from among the family of functions
dlu) = —(1+ [uP)_l suggested by Geman and McClure
[13] for constructing “prior distributions” (see Section I-C) for
image reconstruction and related problems. Notice that each
such ¢ is even, increasing for u > 0, and limy, 00 ¢(u) = 0.
The motivation for the latter property was to allow sharp
transitions between distinct regions. In this sense, we say that
H* addresses discontinuities implicitly.

In this paper, we take

-1

Pu) = T

(1.4)
This function is concave on (0,oc) and therefore strictly
noninterpolating in regard to image transitions in a sense that
will be shortly explained. Other concave functions might do
equally well, but this choice has yiclded consistently good
results. The motivations are the results on coordinate-wise
minima (see Section IV) and the following noninterpolating
property. Consider just a 1D discrete signal and the class Js
of real-valued functions defined on the integers from 0 to I that
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have the property that Xo = 0 and Xy = 6. Then, provided ¢
is even, and concave, increasing on [0, 00), and for any choice
of I and é, the function

-1

O(X) =Y d(Xiv1 - X)

=0

is minimized over Js by those functions in Js with a single
jump. Moreover, it is not difficult to extend this property
of minimizing the number of discontinuities to higher order
derivatives. For example, again in 1D, functionals of the
form Y ¢(X;41 + Xi—1 — 2X;) are minimized by curves
displaying the fewest number of linear segments subject to
boundary conditions on X, X1, X7-1, and X5,

The traditional choice in “regularized” least-squares restora-
tion is the quadratic function ¢(u) = u?. Despite the compu-
tational advantages (notice that HF is then quadratic, resulting
in a linear estimate X = X(Y)), we find it ill suited to image
deblurring because the rapid growth as u — o0 inhibits the
recovery of large intensity gradients, and the slow growth
as u — 0 promoles excessive smoothing and interpolation:
Small intensity differences (or higher order analogs) incur
a relatively small “penalty,” and transitions are optimally
represented as gradual changes. For example, if a 1D signal is
constrained as above at two endpoints of an interval, then the
minimum energy solution for the intervening points distributes
the total jump in equal parts, ie., linearly interpolates (see
also the discussion in Shulman and Herve [27]). In contrast,
for the function ¢ in (1.4), the jump is absorbed in one step.
Moreover, as mentioned above, the finite asymptotic behavior
(¢(c0) = 0) does not introduce a bias against large transitions.
The result of these properties is that reconstructions are more
accurate in the vicinity of discontinuities.

There is another way to interpret the role of discontinuities
in this approach. Discontinuities may be addressed explicitly
by the addition of a line process as originally done in [12]. If
the line variables do not interact with each other (i.e., there is
no term for “organizing” the boundaries), then we shall show
in Section III that the two approaches are in fact equivalent in
the following sense. Suppose H is of the form above, and ¢ is
selected such that ¢(,/u) is concave for u > 0; in particular,
this holds whenever ¢ itself is concave for » > 0. Then, one
can define a coupled functional H* (X, B), where B denotes an
auxiliary (and continuous-valued) array, and H" is quadratic
in X for each B, such that H and H* have the same global
minima in X.

Note: Since the function ¢(u) in (1.4) is concave, there
is a corresponding coupled functional; see Example 2 in
Section 111 However, as noted above, the equivalence persists
for a wider class, for instance, for the functions ¢(u) =
~(1+ |u)7" with v < 2.

Usually, a particular method is validated by heuristics and
by displaying successful experiments. In addition, however, it
might be worthwhile to guarantee the photometric accuracy
of restorations relative to a collection of templates, i.e., a
prototype class of original images. In our case, this would
mean that H* is minimized by XY, at least for elementary
patterns, for instance, those composed of piecewise constant

regions separated by very simple boundaries. However, due
to the noise, the set of minima is, in fact, a random set. An
appropriate optimality criterion must then be formulated, for
instance, in terms of the probability of the event that H* is
minimized by the true image, but results on global minima
appear elusive in any generality; see Section IV.

Instead, we develop a surrogate criterion in terms of
coordinate-wise minima. A value X is a coordinate-wise
minimum for a function M if any change in X at a single
coordinate (i.e., pixel) increases the value of H. (Notice that
since ¢ is not differentiable, neither is H; if it were, a
coordinate-wise minimum X would necessarily be a stationary
point of H, that is, VH(X) = 0.) Let H* and ¢ be as in (1.3)
and (1.4); again, the important property of ¢ that is used is
concavity. Then, for the class of images X 0 mentioned above,
one can show that with probability arbitrarily close to one, X0
is at least a coordinate-wise minimum of the function H* for
each k, provided the parameters X and A are suitably chosen.
This is not surprising in view of the following observation:
Consider any site s, whether interior to a smooth patch or
in the vicinity of a discontinuity of (an idealized) XO; then,
a small perturbation X? + u of X0 “toward the data” will
incur a decrease in the data component of H* of order éu
but an increase in the regularization term of the same order
because ¢'(0+) > 0. The magnitudes of these increments will
depend on all the model parameters, including k, A, o2, and
the blur coefficients, as well as the particular noise realization.
However, one can select A to make it very likely that the
combined effect is a net increase in energy, i.e., XY is a
stationary point. On the other hand, if ¢'(0) = 0, there will
always be interpolation, and in general, X0 will be neither a
coordinate-wise nor local minimum.

In this way, we specify A as a function of the other
parameters; see (4.3). Actually, what we obtain is an upper
bound X; any A < X will suffice, although we just use the
upper bound in our experiments. The dependence on K is
only through the sum of squares 3 of the blur coefficients.
Moreover, as we shall see in Section IV, N decreases as o and
(3 increase, as we might expect. Finally, since X also depends
on A, we may also interpret the results as a A — A curve for
selecting these two parameters. However, since appropriate
values for A are more or less evident (but not at all for A), we
have chosen to specify A by hand and use the corresponding
upper bound for .

Of course, the experimental images, both synthetic and real,
may only locally resemble the ideal patterns. Nonetheless, our
persistent experience has been that the value of A so derived
yields results comparable with those obtained by extensive
trial and error, i.e., by trying many values of A over several
orders of magnitude and selecting the one that yields the most
faithful reconstruction according to, say, the L1 norm, which
in turn is usually the one that appears the best visually. (This
is reminiscent of “scale space” methods (see Section IV);
see also the results and experiments of Yang [30], which
corroborate our findings and extend the formal results to the
case of signal-dependent noise.)

The optimization problem involved in minimizing H* is
formidable, especially for the higher order models. We have
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used stochastic relaxation with annealing. This algorithm in-
volves repeatedly sampling from the univariate conditional
distributions of the probability measure

I (X) = e'Hk(X)/T/Ze_Hk(X)/T
X

for increasingly smaller values of the “temperature” 7. The
effect is to progressively concentrate the mass around the
minimum. The asymptotic properties of the annealing algo-
rithm are fairly well understood; in particular, the sequence
of states generated converges to the global minimum of H in
an appropriate sense (see Section V). Still, what is important
is the finite-time behavior. Nonetheless, we have found this
procedure at least comparable with other optimization meth-
ods, although it is computationally expensive. Some of the
practical implementation issues are addressed in Section V.
In particular, we use a computational trick to gain about an
order-of-magnitude speedup over proper stochastic relaxation;
recently, this has been understood theoretically [11], [30].
The “energy surfaces” (X, HE(X )) are complex. In particu-
lar, for the cases k = 2,3, there are many states X with nearly
the same energy as the lowest energy states but visually quite
distinct. (This becomes evident by sampling from the measures
11, for small 7 using an original image with sharp boundaries
as the starting point.) For example, whereas the lowest state
X may display a perfect “step edge,” there are numerous
interpolated transitions, built from small planar or quadric
ramps, that assume nearly the same encrgy value as X. This
makes the recovery of discontinuities quite difficult for the
higher order models by starting at the data Y ; since the data
are in fact the blurred image (with noise), the discontinuities
are already interpolated. In contrast, the first-order model is
very effective in locating and recovering jump discontinuities
but inadequate for recovering the basic geometric structure
of regions, such as planar or quadric patches, for which the
higher order functions are obviously better suited; indeed, the
corresponding distributions II, are concentrated on a richer
and more plausible set of interpretations. These observations
suggest a coarse-to-fine analysis in the order of the model,
and this is the strategy we have adopted in some of our
experiments. Starting at the data, we use the first-order model
to generate a starting point for the second-order model, which
in turn provides the starting point for the third-order model.
Moreover, the results on parameter selection yield values for
which the higher order models preserve the discontinuities
recovered by the first-order model. This procedure is useful
to the extent that sharp transitions constitute the information
content of the image; if these features are not important (or
present), then it is sometimes possible to obtain comparable
(or even better) results beginning directly with the planar or
quadric model initialized with the data Y; see Section VL

C. Related Approaches

In the classical version of constrained least-squares, the
linear inverse problem is formulated as a quadratic, constrained
minimization problem:

minimizex{llQXH2| Iy — KX = c} (1.5)

where Q is a matrix representing first- or second-order dif-
ferences or perhaps the Laplacian. The parameter ¢ should be
chosen in accordance with the noise variance o?; for the true
image X°, we know that {|Y — ICXOH2 = ||n|l®> = N For
instance, in the first-order case

1QXIE =Y (X, - X)?

where the sum extends over all pairs (s, t) of adjacent vertical
or horizontal pixels. The effect is to emphasize reconstructions
that are locally constant. The Lagrangian formulation is then

minimizex{HQXHz FAY - )CXH?} (1.6)

where A > 0 must be adjusted to satisfy the constraint
Y — KX|*> = c. Notice that since ) is positive, any solution
X to (1.6) is then a solution to (1.5) with ¢ = |[Y" — kX2
The solution is found by solving the linear system

(A‘lQ’Q +K'K)X = Kty 1.7
which is usually inverted in the Fourier domain after a
convolution has been arranged by approximating ATIRQ +
KK by a circulant matrix. The case Q = 0 corresponds to
ordinary least-squares (which is badly ill conditioned), and
the classical Wiener filter is also a special case of (1.7) with
Q constructed from the covariance matrices for X and 7. of
course, the resulting estimate is a linear function of the data,
and neither these constraints nor those involving positivity or
entropy address the problem of discontinuities.

The two main components of the Bayesian approach are
a “prior distribution” on images X, which encodes a pri-
ori knowledge or assumptions about the true image, and a
degradation model, which is the conditional distribution of
the data Y given X . Estimates are based on properties of the
“posterior” distribution of X given Y. If this prior distribution
is chosen with log likelihood proportional to —®F(X) in
(1.2), then under the assumption of Gaussian white noise, the
posterior distribution is I (X) with 7 =1 and A = 1/207%.
In particular, our estimator is then the mode of the posterior
distribution, which is often called the maximum a posteriori
(MAP) estimator. More generally, the MAP estimator is of
the form

X = arg miny(®(X) +A¥(X,Y))

where ® and W correspond, respectively, to the (negative) log
likelihoods of the prior distribution on X and the conditional
distribution of Y given X. Whereas the MAP estimator may
be formulated independently of the distribution itself, other
estimators, for instance, the posterior mean, are genuinely
distributional attributes. The model parameters, €.8., Aand A,
are construed as unknown parameters of the posterior distribu-
tion and are often estimated from the data using conventional
methods such as maximum likelihood and method of moments.
In contrast, our choice is independent of the data.

Recent applications of this methodology to problems in
image restoration, reconstruction, and segmentation appear in
Besag (3], [4], Chellappa, et al. [6], Derin and Elliott [7],
Geiger and Girosi [8], Geiger and Yuille [9], Geman and
McClure [13], Gidas [15], Green [16], Jeng and Woods [18],
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Marroquin [21], Marroquin et al. [22], Molina and Ripley
[23], Rangarajan and Chellappa [25], Terzopoulos [28], and
elsewhere. In particular, we share the emphasis in [5], [22],
[24], [25], (28] on detecting and preserving discontinuities,
although the problems there differ from ours; in particular,
they do not involve blur. Closer to ours is the work of Molina
and Ripley [23] on deconvolving astronomical images using
log-Gaussian priors.

Previous applications utilizing members of the class of func-
tions ¢(u) = —(1 + lu|")~" include, in the first-order case,
work on boundary detection and noise suppression for infrared
images [10] with v = 3/2 (including a “line process”), the
work of Geman and McClure [13] on computed tomography,
in which the prior distribution is over isotope surfaces (y=2)
and the data term ¥ involves an attenuated Radon transform,
recent work of Geman, et al. [14] on film restoration using
higher order constraints with ®* and unpublished work of the
same authors on ultrasonic and infrared image enhancement,
also using higher order constraints.

Convex regularization terms, with k=1, appear in the work

of Besag [4] (¢(u) = |u|) and Green [16] (¢(u) = log cosh u).

In Shulman and Herve [27], the quadratic is extended linearly
rather than truncated as in [5]; see below. This is motivated
by the theory of “influence functions” in robust statistics [17].
The convexity simplifies the computational problem, but these
choices of ¢ lack the properties we seek, and the applications
differ from ours; for example, [27] concerns optical flow.

There are several papers on image segmentation and surface
interpolation from sparse data that do not involve blur (i.e.,
K = I) but also focus on what we are calling “implicit discon-
tinuities.” For example, Blake and Zisserman [5] experiment
with the truncated quadratic ¢(u) = (u*> — 1) (wherev™ =0
if v > 0 and otherwise equals v) and observe the duality
between implicit and explicit discontinuities for the special
case of a binary line process. Indeed, this is the justification
in [5] for the elimination of the line process. We have found
this choice unstable for deconvolution because in the critical
early stages, the smoothing term is suspended over much of the
image (specifically at each clique C for which DE(X) > A),
and the method then exhibits the instability of unconstrained
least squares. In addition, boundaries are interpolated due to
the quadratic behavior near the origin, as explained above.
Along similar lines, the segmentation procedure in the recent
paper of Leclerc [20] roughly corresponds to setting A = 0;
consequently, ®¥(X) simply counts the number of kth order
discontinuities. In addition, a penalty is added for the order
k of the model, and the minimum description-length (MDL)
principle (Rissanen [26]) is employed for a priori parameter
selection. The removal of the scaling parameter A is certainly
appealing, but we have found this procedure also unstable in
the context of deconvolution.

Finally, the recent work of Geiger and Girosi [8] involves
computing the marginal distribution on the intensity process
from the joint distribution on intensities and lines of a coupled
Markov random field. The authors suggest the MAP estimator
of the marginal distribution for surface reconstruction and
discuss the extent to which discontinuities are accommodated
by this procedure. Note that the marginal distribution is of

the form (1.3), where ¢'(0) = 0. (It should be noted that the
methodology in [5], 8], and [20] actually involves a sequence
of ¢ functions.) Other results on “scalar line processes” and
on the equivalence between functions with and without line
variables have recently appeared in Geiger and Yuille [9] and
Rangarajan and Chellappa [25].

IL. LOCALLY CONSTANT, PLANAR, AND QUADRIC MODELS

Let us say that X is planar on a subregion T C Sy if there
are constants A, B, C such that X; ; = Ai+ Bj + C for all
(3,5) € T and that X is quadric if there are constants A B,C,
D, E, F such that X (i,j) = Ai®+ Bj?+Cij+Di+ Ej+ F
for all (4,5) € T. Then, X is locally planar (resp. quadric)
if the pixels in S can be partitioned into regions on each of
which X is planar (resp. quadric). Obviously, since the domain
is discrete, these definitions apply to any image unless some
assumptions are made about the size of the regions. Still, the
basic idea is clear.

We now describe the functions D%, k = 1,2, 3. For the first-
order case, we define a clique C' as any pair of horizontal or
vertical and adjacent pixels (s, t), which we can visualize as

se
(1) 52 (@) s
The first-order model is then

HU(X) = 3 ¢(DE(X)/A) + A3 (¥ = (KX),)’
C

s€S

te.

where
DL(X)=X,-X; and C= (s,).

Note: The nearest-neighbor model does introduce a bias
towards vertical and horizontal edges, especially in the first-
order case; this can be ameliorated by including diagonal
adjacencies (i.e., an eight-neighbor system), although we have
not done so.

For the planar case, looking at second differences, i.e.,
differences between components of the gradient at adjacent
pixels, yields cliques of three types, each involving three or
four pixels:

Se
so te
(1) ;o. (2) ve e (3) se te ue.
Now define

2 _ XS—2Xt+Xu
DC(X)‘ {Xs_Xt—Xu+Xv

Finally, for the quadric case, looking at third differences,
i.e., differences between components of the (discrete) Hessian
matrix at adjacent pixels, yields cliques of four types involving
between four and six pixels:

if Cis of type lor 3
if C is of type 2 '

se
te pe qe Te
(1) ue (2) se te ue
ve
pe se
(3) qo te (4) seo te ue wve.
T® Ue
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In this case, we define D3(X) at the bottom of this page.
It is then easy to see that X is constant, planar, or quadric
on S, if and only if D&(X) = 0 forevery C fork = 1.2 or 3.

[II. DISCONTINUITIES

In view of the shortcomings of standard regularization
theory for image restoration, in particular oversmoothing, a
coupled Markov random field model was introduced in [12] in
which image recovery and boundary detection are performed
simultaneously. The basic idea was to include a “line process”
L = (L) that is indexed by the dual lattice and suspends
the continuity constraint associated with the pixel pair s, t
when Lg; = 1 (the line is “on”) but preserves the constraint
when Lg; = 0 (the line is “off’). Moreover, the state
Ls: = 1 should be more likely (resp. less likely) than the
state L, ; = O if there is a large (resp. small) intensity gradient
across (s,t), and the entire configuration L should reflect
our prior expectations about boundary structure; for example,
boundaries are usually sparse and connected. The prior model
chosen in [12] was a Gibbs measure with “energy”

(X, L) =Y &' (X, = X)(1 - La) + V(L)
(s.t)

(3.1

where V is constructed to organize the line process, and
¢*(u) = 26,—1=—1ifu=0and=1ifu # 0. (This choice
of ¢* is appropriate for a small number of grey levels.) If the
degradation consists of blur and independent, additive white
Gaussian noise, then the MAP estimator of the intensity-line
pair (X, L) is the minimum of the (posterior) energy

H(X.L) = ©*(X.L) + AlY — KX|[°. (3.2)

If we eliminate the interactions among the line variables
by removing V and if we substitute the quadratic stabilizer
¢*(u) = (u/A)? — 1 for ¢ (u) = 26, — 1 in (3.1), then Blake
and Zisserman [5] observed that

inf (X, L) = > (X, - X0)/D)
(o)

where ¢ is the fruncated quadratic: ¢(u) = (u® — 1) . It
follows immediately that minimizing H* in (3.2) (with V. =0
in ®*) with the quadratic ¢* and minimizing

Hx) = 30 (X = X)/a) 1)+ Ay - KX
(s.t)

are equivalent problems in the sense that the set of X for

which (X, L) minimizes H*(X, L) for some L is identical

to the set of X, which minimizes H(X). It should be noted
that we delete V solely to explore this connection and that
allowing interactions among the line variables is useful for
many problems.

In order to pursue this correspondence for general ¢’s and
higher order constraints, we consider a process B = (Bc)
indexed by the appropriate cliques C (depending on the
order of the model; see Section II) where each B¢ assumes
continuous nonnegative values (possibly +00) and represents
the strength of the constraint associated with C. In the first-
order, binary case, the relationship between B and L is simply
Bsﬁt =1- Ls.t-

Now, given a model of the form we are using, namely

HX) = S ¢(De(X)/8) + Ay (Y = (X))
C

s€S

one can ask for conditions on ¢ such that there exists a “dual
energy”

H(x.3) = Y (Be(De(X)/A) +¥(Be))

c
DY (X))

s€S
such that
‘H(X) =infp H* (X, B).

In this case, the problems of minimizing H and H* are
equivalent. Since there are no interactions among the B
variables, this is equivalent to finding conditions on ¢ for
which there exists a function 9 with

o(u) = é%fb (b’u,2 +1(b)).

This has the simple geometric interpretation that ¢ is the
infimum of a family of quadratic functions; see Fig. 2.

Our motivation for this inquiry is twofold: first, to explain
exactly how our model corresponds to one in which disconti-
nuities are explicitly marked and, second, to explore how the
computational difficulties we have encountered in minimizing
H might be reduced by reformulating the optimization problem
using H*. Notice that the term (DC;(X)/A)2 is quadratic in
X because D (X) is linear in X It follows that under the
joint probability law e~ (X-B)/Z, 7 a constant, the process
X is conditionally Gaussian given B, and the variables B¢
are conditionally independent given X, with the same density
up to a single parameter depending on Dc(X). Consequently,
stochastic relaxation with the dual process is easier (although
perhaps not more efficient) than with the original process; see
Example 3 below.

X, - 3X,+3X, - X,

if Cisof typelord

3 —
De(X) —{Xp_qu+Xr_Xs+2Xt~XuifCisof type 2 or 3
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-1

Fig. 2. Function ¢(x) satisfying the conditions of Theorem 1 can be
realized as the infimum of a family of quadratic functions. Here,
o(x)y = —(1+ |z[)~*; see Example 2.

Theorem 1 (Existence of a Dual): Suppose ¢(u) has the
following properties on [0, c0):

1) ¢(o) = ~1

2) ¢(y/u) is concave

3) limy—too p(u) = 0.
Then, there exists a function 4(b) defined on an interval [0, M]
such that

p(u) = Jnf (bu® +9(b) (33)

and such that 1(b) has the properties

a) ¢¥(0) =0
b) +(b) is strictly decreasing
c) Y(M) = -1

Note: The function f(u) = ¢(y/u) is necessarily concave
given the stated conditions on 3. The reason is that f defines
the lower envelope of a one-parameter affine family (cf.
Kendall [19]).

Viewed geometrically, the idea of the proof is simple,
although writing down the details is awkward and will only be
done, in the Appendix, for the case in which ¢ is continuously
differentiable. Basically, the values assumed by ¢ are the
y intercepts of the tangent lines to the graph of flu) =
#(y/w). (Imagine Fig. 2 with the quadratics replaced by linear
segments.) More specifically, the conditions on ¢ imply it is
differentiable a.e. Let A = {u > 0|f/(u) exists}; then ¢ can
first be defined on E = f/(A) by

P(b) = f(u) — ub,

Then, 1 is decreasing on E, satisfies (3.3) for u € A (with the
infimum over E), and can be extended from E to an interval
[0, M] to satisfy the stated conditions; M is the right-hand
derivative of f at the origin.

Here are some examples; the given formulae are verified in
the Appendix.

Example 1: If

b= f'(u) € E.

_ —1
T 142

¢(u)

then

is strictly concave, and
P(b) =b-2vh, with0<b<1

In some cases, it can be difficult to compute ¥ directly, and
it is easier to reparametrize so that
¢(u) = infy (£(b)u” + (b)) ®)
for some function ¢ for which £(0) = 0 and £ is increasing.
Example 2: If
-1
u) = ——
#(w) 1+ Jul

then the conditions of Theorem 1 are satisfied, and we may
choose

b3/2
b) = ————5v>
O ot

_ oqp1/2
ww:é—%i— with 0 < b < 1.

Note: In this example (see Fig. 2), the fact that ¢'(0+) >
0 is reflected in the potentially infinite bonding strength
(£(1) = +00) associated with regions for which D¢ = 0.
Indeed, the value of B for which the minimum of H* is
achieved will be such that B¢ = +oo for regions containing
C, which are perfectly constant (k = 1), planar (k = 2), or
quadric (k = 3).

Example 3: For the truncated quadratic ¢(u) = (u* — 1),
(3.3) is satisfied with

P(b) = —b,

It the easy to check that the infimum in (3.3) is degenerate,
and achieved at b = 1 whenever u < 1 and at b = 0 whenever
u > 1. In the first-order case, the dual energy is then

H(X,B)= 3 Bue(((X, — X0)/) = 1)
(st}
AN (Ys = (KX))%

sES

0<b< 1.

Coordinate-wise descent on the bond variables amounts to
setting B, = 1 if | X, — X¢| < A and setting Bs; = 0
otherwise; thus, 1 — B, mimics the role of the binary line
process in earlier work. Moreover, in this case, the distribution
of the process { B} under the joint law e~ (X:5)/Z can
be explicitly computed. As already noted, the variables B+
are conditionally independent given X. Fix (s,?), and let
A= ((Xs - Xt)/A)2 — 1. Then, an easy calculation shows
that B, is uniformly distributed on 0,1 if A = 0 and
otherwise as

1 —A
3 ln(l— (1—6 ‘ )U)

where U is uniform on {0, 1]. It follows that stochastic re-
Jaxation with the dual process is reduced to choosing only
uniform random numbers.
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Remark: We have not assessed the complexity of the
coupled energy surface associated with H* (X, B); maybe it
is inherently more resistent to global optimization than the
original one. Consequently, we do not know if the balance
between rapid simulation and overcoming local minima will
result in a more efficient optimization procedure than ours,
namely, stochastic relaxation based directly on ‘H(X). Finally,
other work along similar lines appears in [8], [9], [22], and
[25].

IV. PARAMETER SELECTION

The free parameters are A (a scaling parameter) and A,
which balances fidelity to the prior constraints and fidelity to
the data. (Recall that we are assuming the noise variance o2
and the point spread matrix K are given.) In our view, one
very attractive method of selecting A and A (putting aside
computational difficulties) would be to determine those pairs
for which the true image X is the global minimum of H* with
high probability, provided that X 0 belongs to some (idealized)
image class Cy. For instance, C’3 might consist of all images
which are “locally” quadric, with components of a minimal
size relative to the blur support. Another possibility is to select
A on an ad hoc basis (regard it as a “knob”) and then to
choose A to satisfy the constraint ||Y — KX||?2 ~ N2,
where X minimizes H*. Of course, this is motivated by the
simple observation that by the law of large numbers, this
constraint is satisfied by X°. Still another possibility is to
adopt a Bayesian viewpoint, regard one or both of A and A
as unknown (hyper-)parameters of the probability distribution
II.(X) and attempt to estimate them from the data using
standard statistical procedures; see e.g., [13]. (See also the
survey of Thompson et al. [29] for a comprehensive analysis
of several widespread methods for the choice of A, especially
in the quadratic case.) Finally, other techniques have been
employed, such as applying the MDL principle [20] and
“tracking” the reconstructions for varying A [9].

Instead, we have chosen to seek conditions on A and
X such that under certain assumptions on the true intensity
surfaces, X° is a coordinate-wise minimum. In particular,
any coordinate-wise descent algorithm will remain at XOifit
arrives there. This criterion is mathematically more tractable
than those based on global minima, constraint satisfaction, or
statistical estimation theory and seems particularly suited to
our optimization procedure, namely low-temperature, single-
site stochastic relaxation. All our experiments employ the
parameters derived by this analysis. As it turns out, the
constraint on || Y — KX || is approximately satisfied in all
cases.

First, here is some notation used in the statement of Theorem
2. We assume that = (n,),cg consists of independent and
identically distributed Gaussian random variables with mean
0 and variance o%. The blur operator is

(KX), =Y vs-tXt
t

and we define # = 3, 7Z. No assumptions are made about the
PSF (except space invariance); thus, there are no constraints on

the weights 7; other than summing to 1. Fix the model order

k, write ‘H for HF, and let u® denote an image that is zero in

every coordinate except s, where it assumes the value u.
Definition 1: X is a coordinate-wise minimum of H if

H(X +u®) > H(X)

for all u®, s € So, u # 0.

The definition depends on the particular noise realization
n, in addition to the parameters A, A, K, and X0 itself. Let
() be the underlying probability space. The distribution of the
process 7 is given by the product measure

—|S]/2 02 /262
Pr(n € dv) = (2#02) 151/ He va/297 duyg.
seS
For convenience, let us identify € with the set of noise
realizations:

Q={nln:S— R}

The random nature of various functions will then be indicated
by including the argument 7; for example, let

beuM(n) = H(X® +un) = H(X",m)
where

H(X.n) =Y d(Dc(X)/D) + M|KXC +n - kx|
C

Consider the event
A= {n]XO is a coordinate—wise minimum of H(X,n)}
= {nlés,uH(m) >0V s € So. Vu #0}.

Our goal now is to find conditions on XY and on A and A in
terms of X, o, and the model order k, such that

Pr(A) = 1. 4.1)

Specifically, we want to determine an upper bound on A as a
function of A, K, ¢ so that (4.1) is true. (Actually, we finally
obtain a A — X curve for which (4.1) holds; however, we re-
gard A as easier to select “by hand” because of its inter-
pretation as a scaling parameter.) The local geometry of X 0
(corner, step edge, ramp, etc.) is a crucial factor, and we want
to examine cases that exhibit generic difficulties. One natural
case, the only one we will analyze in full detail, is a simple
step edge.
As we shall see in the Appendix

SsuH(n) = folu) + A(Bu? — 2uZs(n))

where the function f,(u) depends on ¢ and A as well as the
local geometry of X 0 at pixel s, and where

Zs(n) = Z Ye—sTt-

t

The collection of random variables {Z, : s € So} is a Gauss-
ian process with means 0 and covariance function given by

/ZsZt apP = UQZ/Y’I"YS—t‘FT‘
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In particular, each Z,(n) is normal with mean 0 and standard
deviation /Bo. It is easy to check (see the Appendix) that
the condition &5, H(n) > 0 is implied by

Fuw) = 5= (fs(w) +A80%) > 1Z(m)l, w0
where F is defined by the first equality. Thus, A contains
an event expressed in terms of the process {Z;} and the
values L, = inf, F,(u). For idealized images (see below),
the dependence of L, on s is simplified, and L, assumes
a few characteristic values corresponding to interior points,
edges, etc. Consequently, the corresponding probability Pr(A)
is related to the distribution of sup, Z, over subsets of So.

The calculation is still complicated because the distribution
of the supremum is inaccessible (which necessitates estimating
Pr(A)) and because the computation of L; is nontrival. In the
first-order case, one can in fact obtain a general result for a
“binary” image involving a step of size J, that is, an image
such as:

0O 0 0O 0 O O ©
o 0 O ®© @€ O O
O O e © & & O
O O © @ ® ® O
O e @ @ O O O
O © @€ O O O O
O o 0 0o 0o O O

where each pixel labeled e has value J > 0, all others have
value 0, and every site has at least two alike neighbors. It is
a consequence of the concavity of ¢ that, in the first-order
case, images such as these are coordinate-wise minima of the
regularization term ®. Thus, it is not difficult to imagine that
if there is not too much noise, then there are settings of the
parameters for which images such as these are also coordinate-
wise minima of H. However, the situation is more delicate for
the higher order models, and we will not analyze the general
(binary) situation for these. (The reader might want to consider
the simple case of a “diagonal” edge for the second-order
derivative and verify that in fact the image is not a coordinate-
wise minimum of the regularization itself, although there are
still values of A for which it is a coordinate-wise minimum
of H.)

Instead, we focus on the case of a horizontal or vertical step
edge. Specifically, we mean an image X0 of the form

0O O 0 0O 0O O o
0O 0O 0 0 0 O O
o 0o 0o 0o 0 O O
O 0O 0O 0O 0 O O
® 6 o o o o o
® 6 6 6 & o o
® 6 o o o o o

where, as above, each pixel labeled o has value J > 0 and
all others have value 0. The following theorem states that, in
this case, for any o, there is a value of A (actually an upper
bound) for which the probability that X 0 is a coordinate-wise
minimum is arbitrarily close to one.

For any € > 0, let d = d(e) be defined by the equation
d

—t2/2 _ €
e dt=1- —.
\/ﬂo | Sol

2

(4.2)

The proof of Theorem 2 appears in the Appendix, together
with additional comments on the general (binary) case.

Theorem 2: Let X© be a “step edge” of size J, and let A
denote the set of noise realizations for which X is coordinate-
wise minimum of H(X) in (1.3) with ¢ given by (1.4). Let
¢ > 0. Then

Pr(A)>1—c¢
provided that

ere ¢/(28y/Bod) if o< /BA/2d
- c/(\/—BA/2+ad)2 if o >/BA/2d
(4.3)

where ¢ is a constant that depends only on the order of the
model, and d is determined by (4.2). In the first-order case
¢ = 2, in the second-order case ¢ = 5, and in the third-order
case ¢ = 14.

Comments:

1) The analysis is based on a “worst-case” scenario in
which all pixels are assumed to lie near boundaries. As
a result, the number |Sp| in (4.2) can be replaced by one
substantially smaller, and we have found that choosing
d = 3 is quite sufficient.

2) Notice that X increases with the order of the model.
This is consistent with the fact that the coefficients of
D% increase in magnitude with k (see Section II), and
a change in u® will therefore induce a relatively larger
change in ® as k increases. Notice also that X decreases
as o and 3 increase, as we might expect.

3) The choice of ) is actually independent of the jump size
J. A more careful analysis provides sharper bounds, but
arbitrarily small jumps will be preserved with the result
as stated.

V. STOCHASTIC RELAXATION

Our reconstruction is any X that minimizes H:
H(X) = miny H(X)

where H = H* is defined by (1.2) and (1.3) and D was
described in Section II. A good approximation to the global
minimum can be obtained by stochastic relaxation (specifically
the Gibbs sampling algorithm) with annealing.

Stochastic relaxation is a Monte Carlo method designed
for sampling from probability distributions of Markov random
fields, such as those of the form

1K) = 00 52,0
X

When the goal is to minimize a function M, typically (as
here) nonconvex and defined over a very large but finite
configuration space, stochastic relaxation is combined with
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annealing by introducing a control parameter (corresponding
to temperature in a real physical system) during the sampling
process, which increasingly concentrates the mass in the vicin-
ity of X. Notice that X is the mode of the distribution I, for
every 7. This is the basic optimization algorithm used in some
earlier work with the line process as well as in much other
related work; see e.g., [6] and [15]. The simulated annealing
algorithm is computationally demanding but has the desirable
feature of converging to a global minimum of H. However,
this is (by definition) an asymptotic statement and is usually
difficult to realize in practice, partly because the theoretically
correct annealing schedule 7; requires a logarithmic decay of
temperature to guarantee eventual escape from local minima.
In particular, we have no guarantee of obtaining an actual
minimum with a finite amount of computation; in fact, it is
highly doubtful that we ever achieve the minimum energy,
and indeed, the original image X° usually assumes a lower
energy value than the estimate X. Nonetheless, we have
found this algorithm more reliable for our problem than other
optimization methods.

Let us briefly review the ingredients of stochastic relaxation.
One generates a Markov chain X(j), 7 = 0,1,---, whose
values are intensity images X representing, in our case,
successive restorations. The initial value X (0) is arbitrary in
principle, although in practice, this choice can be pivotal; we
shall return to this point later. It is well known that if the
transition dynamics are suitably chosen, then the Markov chain
converges to the uniform probability measure over the set {2y
of global minima of H; in particular, Pr(X (j) € Q) — 1 as
j — oo. At each stage j of the algorithm, one updates the value
of the pending restoration X (j) at a single, predetermined,
pixel s by computing a sample from the conditional probability
distribution, with respect to I, 7 = 7;, of the random variable
X, given the current values X; = X,(j), t # s at the
other sites. This operation is repeated indefinitely, visiting the
entire set of pixels in some predetermined fashion, usually
just cyclically. Each cycle through the pixels is referred to
as a “sweep.” This is the single-site version. In theory, one
can also update a group of sites using the multidimensional
conditional distributions and thereby accelerate convergence;
however, the amount of computation necessary is prohibitive.
For example, to update a four by four array of pixels would
necessitate sampling from a space of size G5, where G is the
number of grey levels.

Even single-site stochastic relaxation is computationally
demanding, especially for a full dynamic range. However, the
algorithm is highly parallelizable and given remarkable im-
provements in parallel hardware, single-site update algorithms
present no significant time limitations on advanced machines.
Moreover, we have found that a very simple approximation
to the usual recipe yields a considerable speedup with little if
any apparent degradation in the quality of the results. When
updating the value of X at site s, instead of sampling from
the actual (conditional) distribution of X, which puts positive
weight on every intensity value, we reduce the support of the
distribution to the values obtained by taking the union of small
intervals about the current value at site s, the current values
at the neighbors of s, and the data value Y. Specifically, in

the case of a full dynamic range with 256 grey levels, the
four nearest neighbors, and an interval of radius five about
each of the resulting six values, the distribution that must be
constructed for sampling has, on the average, 15 to 25 weights
rather than 256. This yields an order of magnitude decrease in
the number of operations performed with no apparent change
since the true distribution places virtually zero mass on the
complement of the reduced support.

Note: This procedure has recently been explored in a
theoretical setting by Yang [30]. By slightly modifying the
truncation procedure, the reduced support can be associated
with local sections in a (slightly) restricted image space;
moreover, the usual results on simulation and annealing remain
intact.

Another computational problem is that the number of sweeps
required to escape from very “wide” or “deep” local minima
may be prohibitive, and there is a tendency to get trapped in
local minima, especially when the algorithm is initialized with
the data Y. As we noted earlier, the energy surfaces associated
with the higher order models are extremely complex, and
the energy values assumed by images with much smoother
transitions than in the original image may in fact be only
slightly larger than the minimum energy value. Consequently,
because of the blur, the data provides a poor starting point.
We have explored a stepwise analysis in the order of the
model that overcomes some of these problems and by which,
in many cases, we obtained better results (see Section VI).
This approach has three steps:

1) Obtain a reconstruction with the first-order model start-
ing at the data.
2) Use this image as the starting point for obtaining a
reconstruction with the second-order model.
3) Use the second-order reconstruction as the starting point
for obtaining a reconstruction with the third-order model.
This procedure is often more dependable than starting
directly with the second- or third-order models. The reason
is this: the first-order model is very efficient at detecting first-
order discontinuities; moreover, if the parameters are suitably
chosen (see Section IV), the second- and third-order models
will preserve the discontinuities. The higher order models
cannot detect jumps as effectively due to the existence of
near-global minima, which display excessive ramping and
interpolation and hence may appear visually quite distinct
from the original image. Furthermore, escape from these local
minima would necessitate large moves in the configuration
space, which is virtually impossible with single-site updates.
On the other hand, whereas the reconstruction generated with
the first-order model will display jumps, the basic geometric
structure of the original intensity surfaces is missing, even if it
appears in the data. This is because the first-order distributions
are highly concentrated on locally constant solutions to the
reconstruction problem. For example, in the case of a linear
ramp, the low energy states of the first-order model have a
terraced quality. Significantly, these artifacts are overcome
by the higher order models, and some of the fine geometric
structures, particularly planar and quadric patches, of the
original image are recovered.
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Remark: In theory, simulated annealing is independent of
the initial value, i.c., the starting point; at high temperatures,
many changes occur, and the starting point is “forgotten.”
However, in practice, if one has a good starting point, such
as the data Y for the first-order reconstruction, or especially
the outcomes of previous reconstructions as discussed above,
then one wants to “remember” this image and in fact preserve
some of its attributes. For this reason, we initiate the annealing
process at a relatively “low” temperature (see Section VI).
This can be determined by examining the local conditional
distributions at a few representative image locations; the idea
is to keep the variance relatively small.

V1. EXPERIMENTS

We present experiments on five images of varying difficulty,
which demonstrate the merits (and demerits) of the algorithm.
The first image (see Fig. 3) is a simple locally constant
(“Mondrian”) image and the second (see Fig. 5) is locally
planar. Both of these are 64 x 64 synthetic images. (Figs. 4
and 6 show them as surface plots.) The third (Fig. 7) is the
image of a building, of size 100 x 100, and digitized from a
35-mm slide. The fourth (Fig. 8, a face) and the fifth (Fig. 10,
a soccer ball) are both obtained from a standard vidicon camera
and are of sizes 100 x 100 and 128 x 128, respectively. All
the images have 256 grey levels.

Each of the experiments involve both blur and noise. There
are four types of blur. Two are generated by convolving the
3 x 3 mask

1 111
9 1 1 1
1 1 1

with itself, 2 and 3 times, respectively. Two iterations yields
the 7 x 7 mask

18 36 42 36 13
9 18 21 18 9
3 6 7 6 3

1 3 6 7 6 3 1

3 9 18 21 18 9 3

1 6 18 36 42 36 18 6
— |7 21 42 49 42 21 7
29| ¢ 6
3 3

1 1

and three iterations yields a 9 x 9 mask with an approximately
Gaussian shape, referred to as the “Gaussian 9 x 9” blur.
One can show that the standard deviation of the (marginal)
distribution after n iterations of the 3 x 3 uniform mask is
v= (%(n + 1))1/2 in pixel units. Thus, v = V/2 for the 7x 7
mask and v = \/% for the 9 x 9 mask. The third bur is a
7 % 7 uniform blur, and the fourth is a 1 x 30 uniform blur.

White Gaussian noise was added with means zero and
variance o2 determined by first specifying the decibel level.
Recall that dB = 10log,, (SNR) in which SNR denotes the
signal-to-noise ratio, defined by

SNR = 6%(Y)/o?

:%Z(YS_V)U{#

©)
Fig. 3. Locally constant image: (a) Original image; (b) data: Gaussian 9 X 9
blur + 25-dB noise; (c) restoration: first-order model; (d) restoration: first —
second-order model.

(© @

Fig. 4. Locally constant image; surface plots: (a) Original image; (b) data:
Gaussian 9 x 9 blur + 25-dB noise; (¢) restoration: first-order model; (d)
restoration: first — second-order model.

where Y is the mean of the data (=signal). The value of SNR
is essentially unchanged if 6%(Y) is replaced by b2 (ICXO)
since the difference between these is of much smaller order
than 6%(KX°) (unless o is absurdly large). Consequently,
given dB, the data is obtained by adding noise with variance
o? = 62(KXP)/(10?B/1%). Quantization error (rounding the
grey levels to integers) may be regarded as uniform noise with
o = 0.29. We considered two nontrivial noise levels: 40 dB,
which in a typical image with 256 grey levels corresponds
roughly to ¢ = 0.5, and 25 dB, resulting in 0 & 3-4 grey
levels in our images.
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© ()]

Fig. 5. Locally planar image: (a) Original image; (b) data: Gaussian 7 X 7
blur + 25-dB noise; (c) restoration: first-order model; (d) restoration: first —
second-order model.

© @

Fig. 7. Building image digitized from a 35-mm slide: (a) Original image;
(b) data: Gaussian 7 x 7 blur 4+ 40-dB noise; (c) restoration: second-order
model; (d) restoration: first — second-order model.

Fig. 6. Locally planar image; surface plots: (a) Original image; (b) data:
Gaussian 7 x 7 blur + 25-dB noise; (c) restoration: first-order model; (d)
restoration: first — second-order model.

In every experiment, A was chosen according to the value
given the Theorem 2 in Section IV, with d = 3 and 3 = 0.037
(Gaussian 7 x 7 blur), § = 0.028 (Gaussian 9 x 9 blur),
B = 0.020 (uniform 7 x 7 blur), and 8 = 0.033 (1 x 30
motion blur). The choice of A is ad hoc. In a standard image
with 256 grey levels, it seems reasonable that an edge of 20
to 30 grey levels is significant. On the other hand, a change of

©

Fig. 8. Face image obtained with a standard vidicon camera: (a) Original
image; (b) data: Gaussian 9 x 9 blur + 40-dB noise; (c) restoration: third-order
model.

2 or 3 in the slope of a planar surface is visually significant.
In fact, in a large number of experiments on these images, we
have found that setting A = 10 — 20 in the first-order models,
and A ~ 3 — 10 in the second- and third-order model, gives
consistently good results.
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(@) (b)

©

Fig. 9. Output of the hierarchical approach applied to the face image: (a)
Restoration: first-order model; (b) restoration: first — second-order model;
(c) restoration: first — second-order — third-order.

Finally, all the experiments were run using 200 sweeps
(cycles of the pixel lattice) for each order and dropping
temperature linearly from an initial value 7 (0.3 in these
experiments) to a final value 7 ~ 0.

A. Locally Constant Image

See Figs. 3 and 4. This result clearly indicates the utility of
the first-order model when the original is indeed a Mondrian.
The image was blurred with the Gaussian 9 x 9 mask, and
25dB noise was added. In this case, the noise standard
deviation is ¢ = 3.9 grey levels. For the first-order model,
A was chosen to be 10 which implies A = 0.013. The
reconstruction of the first-order model was used to initialize
the second-order model with A = 4 and A = 0.33.

The second-order model produced little change; a slight
improvement can be observed in a few places. Similarly, the
third order-model was run on the output of the second-order
model, resulting in virtually no change.

B. Locally Planar Image

See Figs. 5 and 6. The experiment performed on this image
uses the Gaussian 7 x 7 blur at 25dB (o = 3.52). In this
experiment, A = 15 in the first-order model, and A =10 in
the second-order model. Note that the first-order model nearly
succeeds in restoring the discontinuities but terraces the linear
ramps. The second-order model kept the jump discontinuities
and restored the linear ramps. It is worthwhile noting that
repeated attempts to get a similar reconstruction using only
the second-order model (starting at the data) were never as
successful.

@

Fig. 10. Soccer ball image obtained with a standard vidicon camera: (a)
Original image; (b) data: 1 X 30 motion blur + 60-dB noise: (c) restoration:
first-order model; (d) restoration: second-order model.

C. Building Image

The image (see Fig. 7) was blurred with the 7 x 7 mask,
and 40 dB noise was added (o = 0.74). The value A = 20
(X = 0.01) was chosen for the first-order model, and A=6
(A = 0.038) for the second-order model.

This image has the appearance of being locally planar,
and close examination shows that this is approximately true.
It is reasonable that the second-order model is the most
appropriate. Indeed, the application of the third-order model
yielded no significant improvement of the restoration. It might
be noted that the window is difficult to reconstruct since
the vertical structures are only 1-2 pixels wide. It is useful
to compare the result of the second-order model alone with
the hierarchical one. Clearly, the output of the hierarchical
approach is “sharper”; however, the visual quality of the
second-order reconstruction may be better in some areas, for
instance, in the window detail.

D. Face Image

The image (see Fig. 8) was blurred with the Gaussian 9 x 9
mask, and 40 dB noise was added (¢ = 0.32). The third-
order model seems to be the most appropriate. The parameters
are the same as for the building image. We show both the
hierarchical reconstruction and the result of using only the
third-order model; see Figs. 8 and 9.

E. Soccer Ball

The blur is 1 x 30 horizontal motion blur, and the noise
is very small (just 60 dB (o = 0.07)). The result is typical
of those possible in high signal-to-noise situations. Fig. 10
compares the output of the first- and second-order models both
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starting at the data. In this case, A = 10 was chosen for both
models, and A = 1.0 for the first-order model, and A = 2.5
for the second-order model. The output of the second-order
model is slightly more “realistic” in the sense that extended
gradients are more faithful to the original (e.g., less terraced).

VII. CONCLUSION

We have considered the problem of image deblurring, which
is a classical example of the type of ill-conditioned inverse
problem that frequently arises in low-level computer vision
and many other fields. There is a substantial loss of spatial
resolution in passing from the original, continuous radiance
pattern to the observed image values, due principally to
defocusing and other effects that distort point sources, but also
to sampling and measurement error.

A conventional method to stabilize the problem is to intro-
duce a priori smoothness constraints on the true image X 0 and
construct a cost functional H(X) = ®(X) + A||Y - X%,
which is a weighted average of prior constraints (®) and
posterior constraints. The reconstruction is the value X, which
minimizes H. There are several well-known weakness in
this approach: recovering discontinuities (which is especially
difficult with quadratic stabilizers) and choosing the model
parameters (especially A). In addition, there is the problem of
model validation: Do the extremal or near-extremal states of
H necessarily resemble X©, at least in very simple cases?

The approach we have taken involves constraints @ that
are locally composed of functions of the type ¢(D*(X)),
where D* denotes a kth order derivative (k = 1,2, or 3), and
dlu)y = —(1+ lu|)~'. Due to the concavity of ¢ on (0,00)
and its finite asymptotic behavior (limy, e ¢(u) < 00), dis-
continuities may then be recovered without the use of a “line
process” or other device for explicitly marking their locations.

Perhaps the main contribution of this paper is an effort to
determine the parameters and validate the model by the same
mechanism. An explicit formula is given for choosing the
smoothing parameter ) in terms of the noise variance, the blur
coefficients, and the order k of the model. This exploits the
concavity of ¢ and was derived by requiring that an idealized
original image be at least a coordinate-wise minimum for the
cost functional.

In addition, we provide an analysis of the relationship
between these models and those that involve a cost functional
H*(X, B) (such as coupled Markov random fields), where B
is an auxiliary process designed to suspend the smoothness
constraints in the vicinity of discontinuities. Basically, if
#(\/u) is concave (which includes our choice), then there
exists a mixed cost functional H* with the same data term
as H and quadratic in X for each B fixed such that the set of
minima in X coincide with those of H.

Finally, when first-order discontinuities are important to
detect and preserve, we introduce a computational method
based on simulated annealing (although other procedures could
be utilized) in which the outcome of the first-order model
is used as a starting point for the second-order model, etc.
With the model parameters suitably chosen, planar and quadric

structures may then be recovered with the higher-order models
while existing jump discontinuities are maintained.

APPENDIX

Proof of Theorem 1: We sketch the proof in the special
case that ¢ is continuously differentiable, and f(u) = ¢(\/u)
is strictly concave. Let M = f'(0+); then 0 < M < oo. It
suffices to prove

f(2) = infocs<ns (bz + (b))

for some 1 as described.
Since f is strictly concave, f'(u) is strictly decreasing and
has an inverse h(b) = ()1 (b). Define

P(b) = f(h(b)) = bR(b),

which is the y intercept of the tangent line to f with slope b.
Then, for any z = h(b) > 0, the line y = bu+1(b) is tangent
to f(u) at the point (z, f(z)). In particular f(2) = bz + 1(b)
so that

0<bsM

infoch<nr (b2 + 9()) < f(2).

On the other hand, for any value b; # b, since the line
y = biu+(by) is tangent to f(u) at (21, f(21)), 21 = h(b1),
and since f(u) is strictly concave, we must have

f(z) < bz +4(b1).
Thus
f(z) = infochens (bz + ¥(b)).
Another computation shows that

dv __df7
db ~ du

<0

and this establishes conclusion b). Finally, since lim, o f'(u)
= limy oo f(u) = 0, we see that limy_o ¢(b) = 0, which is
conclusion a). Conclusion (c) follows directly from Condition
1. This completes the proof.

Verification of Example 1: This example can be verified
by following the recipe of the proof. Observe that

1
h(b) 7 1.

Thus
P(b) = f(h(b)) — b(h(b))
1 1
- b =-1
1+ (ﬁ - 1) (\/l_) )
=b—2Vb.

Verification of Example 2: Set f(z,b) = £(b)z% +4(b). It
suffices to show that if 0 < by < 1 and zg = bal/g — 1, then

1) f(0,b0) = —(1+20)")

2) %é(wo,bo) = (14+xz0) "
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The functions f(z,bp) and ¢(x) are then tangent at
(g, #(x¢)). Straightforward computations yield f(zo,bo) =
—\/E(; and gé(.To,bo) = bg.

Proof of Theorem 2: Recall from Section IV that

HY (X m) = Y o(DE(X)/A)
C

AT (kX0 +), - (X))’

seS
where (KX), = >, vs—t Xt The energy difference at s € So
is

SeuH () = HF (X +u®,m) — H* (X0, n)

where u® denotes a state that is zero in every coordinate except
s, where it assumes the value u, and X© is the “step-edge”
image described in Section IV of the text. Since nothing is
changed by adding a constant to ‘H* or incorporating A into
¢, the analysis is slightly simplified by replacing ¢ with

-1
¢+(U)=¢(U/A)+1=m+1
/Al
- 1+|u/A|‘

In addition, we shall only establish the result assuming all
pixels lie in S; the extension to So\S is straightforward. Set

) =3 (64 (DE(X® +w)) — 64 (DE(X)))
Cc
and observe that for each s
Il = K(X°+u)* - ¥ - KX°| =
KX +n — K(XO+u)|? - [ll)?

=Y ((m — mstt)” - nf)
t
—u? Y R, = 2uY Ye-sh
t t

= Bu? — 2uZs(n)
where

Zo(n) =Y We-s
t

and 8 = 3, 77. The random variable Z,(n) is normal, mean
0, and variance /Ba. Thus, for each s € 5 and u #0

b (m) = Y (64 (DE(X° +u)) = 64(DE(X?)))

C
# (X 4 - k(X0 )| - il

= FE(u) + M(Bu? — 2uZ,(n)).

We now establish several lemmas, the first of which is a
simple consequence of the fact that ¢, is even and concave
and increasing on the positive half-line.

Lemma 1: Let J > 0 and define a(u) = ¢4+(uv) +
¢4 (J —u) — ¢1(J). Then, a(u) > 0 for all w.

Proof: First observe that if « < 0 or u > J, then the
result follows from that fact that ¢ is increasing and positive

for u > 0. Next, the concavity of ¢ implies for any three
numbers 0 < a < b < ¢

¢+ (a) > ¢4(c) — d+(b)

a c—b '
Now, apply this inequality to the points o = %, b=J-u,
c:Jif0<u§J—u<Jandtoa=J—u,b:u,
c=JifJ-—u<u<J
Lemma 2: Let ¢; = 2, co = 5, ¢3 = 14. Then

FEu) > ckpi(u), Yu,s€8, k=123

Proof: We give the proof for the first-order case; the
others are similar. Let X0 be a step edge as described in the
text. If s is a site that is not adjacent to the edge, then it is
easy to check that

fsl(u) = 4¢+(u).
If s is adjacent to the edge, then
fiw) =
{3¢+(u) +oi(J—u)—¢u(J) HXI=0
364 (u) + 64 (J +u) — b () if X0 =T

Thus, in all cases, and using Lemma 1, we obtain fsl(u) >

2+ ().
By Lemma 2

SouHE > cudy (u) + A(Bu® — 20Zs(m)),
k=1,2,3.

s€eS,

Define
1
Fi(u) = m(AﬁuZ + ek (u)),
It follows that for each s € S, k = 1,2,3
|Z,(n)] < infuso Fie(u) = 85w H* >0,

u>0. (81

Vu#0. (82)

Lemma 3: Let Fi(u) be defined by (8.1). Then
Lk = infu>0 Fk(’LL)
_ fa/@a) i) 2 /A2
- \/ﬁck/)\—ﬁA/2 if)\fck/ﬂA2.

Proof: We outline the proof, which is a calculus exercise.
It suffices to assume u > 0. Note that

Bu Ck
F =y =
) =5+ RN 1 /)
and that
% 1
282X (1+u/B)”

Notice also that F] is increasing. If F;(0) > 0, which is
equivalent to A > ¢k / BAZ, the infimum occurs at v = 0 and
Ly = Fi(0) = cx/2XA. On the other hand, if F,(0) < 0, then
the infimum occurs at u = +/cx /A8 — A, and substituting this

value of u into F completes the proof.
To finish the proof of Theorem 2, define

A = {7I|5s,u7'lk(77) >0, Vu# 0}'

Fiw =
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Observe that by (8.2), for any s € S

Lk/ﬁa

/ e_t2/2 dt.

0

Pr(Ay) > Pr(|Zi(n)| < Ly) = %2_”

Let € > 0. Since

ﬂAszA

SE€ESo

it suffices to show that
€

Pr(Ag) > 1-—
B> 1= 15

for each s € Sp. This follows immediately on setting
Ly//Bo = d, where d is given by (4.2). If Ly = cx/2AM,
then A = ¢;/(2v/BAcd) and o < /BA/2d. If, on the other
hand, Ly, = \/Bex/A — BA/2, then A = e/ (vVBA/2 + 0d)’,
and o > \/BA/2d. This completes the proof of Theorem 2.
Remark: The difference between the above analysis for a
“step-edge” and the general case illustrated in Section IV is the
existence of “corner” pixels, where two neighbors assume the
value u = 0, and the other two assume the value u = J. The
argument is similar, but more delicate, than the one above.
For example, in the first-order case, in the lower bound on
63)1[}'{'“, the function ¢, must be replaced by o < ¢, where
o was defined in Lemma 1. The calculation of the infimum
Ly, is messy, and the corresponding value is smaller than the
one given in Lemma 3, resulting in a smaller upper bound for
A. In fact, there is then an upper bound on noise variance for
the result to hold: o < o* = \/BJ/2d. This is not surprising
if one notes that the corner configuration is unstable because
the prior term gives equal weight to the two cases X2 = 0
and X0 = J. Consequently, even though the true value at s
is, say, v = 0, it may happen, depending on the particular
noise realization, that 6, yjH < 8,0H. We then expect, and
indeed observe, erosion at the corners for low SNR ratios.
The corresponding formula for X in the first-order case is

(61/62)(c /™)™
if (o/0*) ng
01(1 - ((1 —8,)(1 - (U/a*))l/2)>

iff<(o/o*) <1

X.—.

where 6; = 2(2A + J)/B(A + J)?, 8, = AJ(A + J).
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