Symmetric, Tridiagonal, Positive Definite System Solver 
 
(from Golub-Van Loan) 
Given an n-by-n symmetric, positive definite matrix A and a vector b in R^n, 
the following algorithm overwrites b with the solution to Ax=b. It is assumed 
that the diagonal of A is stored in d(1:n) and the superdiagonal in e(1:n-1). 
for k=2:n 
 
     t=e(k-1);
      e(k-1)=t/d(k-1); 
      d(k)=d(k)-te(k-1);
 
end 
 
for k=2:n
        b(k)=b(k)-e(k-1)b(k-1) 
 
end 
 
 b(n)=b(n)/d(n)  
 
for k=n-1:-1:1
       b(k)=b(k)/d(k)-e(k)b(k+1) 
 
end