Solutions to selected exercises from the textbook

Exercise 2/2.1: T : R?> — R? defined by T'(ay, as, a3) = (a; — as, 2a3).
To find N(T) and a basis, let aj,as,as be s.t. T(ay,az,a3) = (a1 —
as, 2a3) = (0,0). Then
a; — ag = 0
20,3 =0

or a; = ag, ag = 0. Therefore N(T') = {(a,a,0), a € R} and dim(N(T")) = 1,
a basis of N(T') is given by {(1,1,0)}, therefore nullity(T) = 1. We deduce
(by Thm. 2.4) that T is not one-to-one, because N(T') # {0}.

We could have obtained this statement directly by the definition: note
that there are distinct vectors @,b in R® such that T(@) = T'(b) with @ # b.
Indeed 7'(2,2,1) =T(1,1,1) = (0, 2), therefore T is not one-to-one.

By the Dimension Theorem, we obtained that dim(R(T")) = 3—dim(N(T')) =
2. This implies that dim. of range of T coincides with dim. of R?, i.e.
R(T) = R? ie. T is onto.

This could have been done in the following way: let (x,y) € R* be arbi-
trary, and find (aq, as, az), if any, such that T'(a, as, a3z) = (z,y). This would
imply a; — ay = z, and 2a3 = y. We see that (z,y) is always in the image
of T, by T(a,a — z,y/2) = (x,y). Again, we conclude that 7" is onto and a
basis of R(T') is any basis of R?, for instance of standard basis {(1,0), (0,1)}.

Exercise 5/2.1: T : Po(R) — P3s(R), T(f(z)) = o f(x) + f'(z).

Note that T'(ap + a1z + asx?) = apr + a12® + axx® + (a1 + 2a97) =
ar + (ag + 2a2)x + ay2? + agx®, with f(x) = ag + a7 + a2

f(z) € N(T) if T(f(x)) = 0 for any x, therefore if a; = 0, ag + 2a3 = 0,
a; =0, a3 =0, ie. ay=a; = ay = 0, therefore N(T') = {0}. We deduce
that T is one-to-one, by Thm. 2.4.

By the Dim. Thm, we deduce that dim(R(T")) = dim(P2(R))—dim(N(T)) =
dim(P,(R)) = 3. However, dim(Ps(R)) = 4, therefore R(T) # P;(R) and T
is not onto.

From T'(ag + a1 + asx?) = ay + (ag + 2a)x + a2 + asx® = a1 (1 + %) +
aoT + az(2x + x3) we see that a basis for R(T) is given by {1+ 22, z, 2z + 23}
(clearly we see that it is a generator of {T'(ag + a1z + asx?®)} and is L.i.).

Exercise 14/2.1:
(a) Assume T one-to-one. Let S = {vy,vq,...,u,} C V be li., and let
S"={T(v1),T(v2), ..., T(v,)}.



Assume a;T'(vy)+aT(v2)+...+a,T(v,) = Oy for some scalars ay, ..., a, €
F. Then, since T is linear, we have T'(ajv; + asvy + ...a,v,) = Oy. But
T is also one-to-one, i.e. N(T) = {z : T(z) = Ow} = {0y}, therefore
a1vy + agvy + ...apv, = 0y. But S = {vy,vq,...,v,} is Li., this implies that
a; =0,ay =0, ..., a, = 0. In conclusion, S = {T'(v1), T (va), ..., T'(vy,) } is Li.

Converse: assume by contradiction that 7" is not one-to-one. Then N(T') #
{0y}, therefore there is v € N(T') with v # Oy, with T'(v) = Oy. But this is
a contradiction, since {v} is Li., while {T'(v) = Oy} is L.d. In conclusion, T
must be one-to-one.

(b) From left to right: directly by (a). From right to left: by Exercise 13
(was proved in class and at Midterm 1).

(c) By property (a), since T' is one-to-one and [ is Li. (it is a basis),
we deduce that T'(f) is 1.i. Now since T is also onto, and by the Dim.
Thm. (also by dim(N(T')) = 0) we have that dim(R(T)) = dim(W) and
dim(R(T)) = dim(V') — dim(N(T)) = n. Therefore dim(W) = dim(V) =n
and S(3) is therefore a basis of W, because S(3) is Li. and contains exactly
n distinct vectors.

Exercise 17/2.1:

(a) By the Dimension Thm., we have dim(N(T'))+dim(R(T)) = dim(V).
If dim(V) < dim(W), then dim(R(T)) < dim(V) < dim(W), therefore
dim(R(T)) < dim(W). This shows that R(T") # W, i.e. T is not onto.

(b) We apply again Dimension Thm: dim(N(T))+dim(R(T)) = dim(V).
We also know dim(R(T)) < dimW , therefore dim(V') > dim(W) > dim(R(T)) =
dim(V) — dim(N(T)), i.e. 0> —dim(N(T')) or dim(N(T)) > 0. Therefore,
N(T) # {0y}, and by Thm. 2.4, T is not one-to-one.

Note that these general properties (a) and (b) could have been applied
to the linear transformations from Exercises 2 and 5 above.

Exercise 15/2.2:

(a) Clearly the zero transformation Ty : V' — W belongs to S, because
To(xz) = Oy ofr any = € V| including any = € S.

Ile,TQ € SO, andifx € S, then (T1+T2)(ZL’) = Tl(ZL‘)‘l—TQ(ZL‘) = OW+OW =
Oy, for any x € S, therefore T} + T € S°.

Similarly, if T € S° and ¢ € F, then for any x € S: (cT)(z) = cT'(x) =
Oy = Ow, therefore (¢T') € S°. In conclusion, S° is a subspace.

(b) If T € S9, then T(x) = 0 for any x € Sy; but S; C Sy, therefore
T(z) =0 for any x € S, i.e. T € SY.



() UT eVINVY, then T € VP and T € V. Therefore T'(z) = 0 for any
x € Vi and T(z) = 0 for any = € V5. This implies that for any z = u+ v €
Vi+ Vo with w € Vi and v € Vi, then T(z) = T(u+v) = T(u) + T'(v) =
0+ 0 =0, therefore T € (V; + V5)". In other words, V? NVY C (V; + V3)°.

To show the other inclusion: we have V; C Vj + V5 (since V5 is a subspace
and 0y € V3), therefore from (b), (Vi + V5)? € V. Similarly, Vo C Vi + V;
(since Vi is a subspace and 0y € V}), therefore again from (b), (V; + V4)° C
V. These last two statements imply (Vi + V5)? c V2N V.

In conclusion: (Vi + V3)? =VN VY.

Exercise 3/2.4: By Thm. 2.19:

(a) not isomorphic, the dimensions are different: 3 and 4.

(b) isomorphic, the dimensions are the same = 4.

(¢) isomorphic, the dimensions are the same = 4.

(d) not isomorphic, the dimensions are different: dim(V') = 3 and dimW =

a a+b
0

by showing that T is linear, one-to-one and onto.

Exercise 14/2.4: Let T'( ) = (a, b, ¢). Finalize the problem



