Linear transformations:

Recall: \(T: V \to W \) is linear if for all \(x, y \in V \) and \(\alpha \in \mathbb{F} \), we have \(T(x + y) = T(x) + T(y) \) and \(T(\alpha x) = \alpha T(x) \).

The nullspace of \(T \) is \(\text{N}(T) = \{ x \in V \mid T(x) = 0 \} \), a subspace of \(V \).

The range of \(T \) is \(\text{R}(T) = \{ T(x) \mid x \in V \} \), a subspace of \(W \).

- \(T \) is injective \(\iff \) \(\text{N}(T) = \{ 0 \} \iff \text{nullity}(T) = 0 \)
- \(T \) is surjective \(\iff \) \(\text{R}(T) = W \iff \text{rank}(T) = \text{dim}(W) \)

Assume that \(\mathcal{B} = \{ v_1, \ldots, v_n \} \) is a basis of \(V \).

Then:

1. \(T \) is injective if and only if \(\{ T(v_1), \ldots, T(v_n) \} \) is linearly independent.
2. \(T \) is surjective if and only if \(\{ T(v_1), \ldots, T(v_n) \} \) spans \(W \).

Proof:

1. Assume \(T \) is injective, and let \(\lambda_1, \ldots, \lambda_n \in \mathbb{F} \) be such that \(\lambda_1 T(v_1) + \cdots + \lambda_n T(v_n) = 0 \).

Since \(T \) is linear, \(T(\lambda_1 v_1 + \cdots + \lambda_n v_n) = 0 \). So \(\lambda_1 v_1 + \cdots + \lambda_n v_n \in \text{N}(T) \).

But \(\text{N}(T) = \{ 0 \} \) since \(T \) is injective. Hence \(\lambda_1 v_1 + \cdots + \lambda_n v_n = 0 \).

Since \(\{ v_1, \ldots, v_n \} \) is linearly independent, we deduce that \(\lambda_1 = 0, \ldots, \lambda_n = 0 \).

In conclusion, \(\{ T(v_1), \ldots, T(v_n) \} \) is linearly independent.

Conversely, assume \(\{ T(v_1), \ldots, T(v_n) \} \) is linearly independent. To prove that \(T \) is injective, we show that \(\text{N}(T) = \{ 0 \} \). It is clear that \(\{ 0 \} \subset \text{N}(T) \) since \(\text{N}(T) \) is a subspace.

Let \(x \in \text{N}(T) \). Since \(\{ v_1, \ldots, v_n \} \) generates \(W \), there exists \(a_1, \ldots, a_n \in \mathbb{F} \) such that \(x = a_1 v_1 + \cdots + a_n v_n \). Then:

\[
0 = T(x) = T(a_1 v_1 + \cdots + a_n v_n) = a_1 T(v_1) + \cdots + a_n T(v_n).
\]

Since \(\{ T(v_1), \ldots, T(v_n) \} \) are independent, we have \(a_1 = 0, \ldots, a_n = 0 \).

So \(x = 0 v_1 + \cdots + 0 v_n = 0 \). In conclusion, \(\text{N}(T) = \{ 0 \} \) and \(T \) is injective. Q.E.D.
2. Assume \(T \) is surjective. Let \(y \in W \). Since \(T \) is surjective, there exists \(x \in V \) such that \(y = T(x) \). Since \(\{v_1, \ldots, v_n\} \) spans \(V \), we have \(x = \alpha_1 v_1 + \cdots + \alpha_n v_n \) for some \(\alpha_1, \ldots, \alpha_n \in F \).

Hence \(y = T(x) = T(\alpha_1 v_1 + \cdots + \alpha_n v_n) = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n) \) since \(T \) is linear.

So \(\{T(v_1), \ldots, T(v_n)\} \) spans \(W \).

Conversely, assume \(\{T(v_1), \ldots, T(v_n)\} \) spans \(W \). Let \(y \in W \). Since \(\{T(v_1), \ldots, T(v_n)\} \) spans \(W \), there exist \(\beta_1, \ldots, \beta_n \in F \) such that \(y = \beta_1 T(v_1) + \cdots + \beta_n T(v_n) \).

Since \(T \) is linear \(y = T(\beta_1 v_1 + \cdots + \beta_n v_n) \).

Hence \(y \in \text{R}(T) \), and \(T \) is surjective. \(\square \)

Applications of the rank-nullity theorem.
Recall that if \(V \) is finite dimensional and \(T : V \to W \) is linear then \(\dim(V) = \text{rank}(T) + \text{nullity}(T) \).

\[
\text{dim}(\text{R}(T)) = \text{dim}(\text{N}(T))
\]

Consequence: if \(\dim(V) = \dim(W) \) then \(T \) is injective if and only if \(T \) is surjective.

Example of application: let \(V \) be finite dimensional, and \(T, U : V \to V \) linear such that \(TU \) is injective. Show that \(T \) is injective.

Proof: since \(TU : V \to V \) is injective, it is also surjective.

So \(\text{R}(TU) = V \). But \(\text{R}(T) \supseteq \text{R}(TU) = V \), so \(\text{R}(T) = V \). Hence \(T \) is surjective. So it is also injective. \(\square \)
Useful properties of composition:
1. $R(\text{TU}) \subseteq R(\tau)$
2. $N(\tau) \subseteq N(\text{TU})$

Important example of linear transformation: projections

Def: a projection of V is a linear transformation $P: V \to V$ such that $P^2 = P$

Example: orthogonal projection on a plane in \mathbb{R}^3

```
\begin{figure}[h]
\centering
\begin{tikzpicture}
\draw[->, thick] (0,0) -- (4,0) node[anchor=north] {$R(P)$};
\draw[->, thick] (0,0) -- (0,4) node[anchor=east] {$n(P)$};
\draw[->, thick] (0,0) -- (3,3) node[anchor=south] {$P(x)$};
\end{tikzpicture}
\end{figure}
```

Theorem: Let P be a projection of V. Then:
1. $V = N(P) \oplus R(P)$
2. for all $x \in V$, $x = y + z$ with $y \in N(P)$, $z \in R(P)$ we have $P(x) = z$.

Pf:
1. Let us prove that $N(P) \cap R(P) = \{0\}$.
 - Let $x \in N(P) \cap R(P)$. Then $x = P(y)$ for some $y \in V$.
 - Also $P(x) = 0$ so $P^2(y) = 0$. But $P = P^2$ so $P(y) = P^2(y) = 0$.
 - Hence $x = P(y) = 0$. So $N(P) \cap R(P) = \{0\}$.
 - Now $\dim (N(P) + R(P)) = \dim(N(P)) + \dim(R(P)) + \dim(N(P) \cap R(P)) = 0$.
 - So $V = N(P) + R(P)$.

In conclusion, $V = N(P) \oplus R(P)$

2. If $x = y + z$ with $y \in N(P)$, $z \in R(P)$ then $P(x) = P(z)$.
But \(y = P(x) \) for some \(x \in V \Rightarrow P(y) = P^2(x) = P(x) = y \).

Hence \(P(x) = y \) \(\Box \).

Remark: other proof of \(V = N(P) + R(P) \):

Let \(x \in V \), then \(x = x - P(x) + P(x) \).

\(P(x) \in R(P) \)

\(P(x - P(x)) = P(x) - P^2(x) = 0 \), so \(x - P(x) \in N(P) \).

\(\Rightarrow x \in N(P) + R(P) \).
Matrix of linear transformation:

Recall, assume \(T : V \rightarrow W \) is linear, \(\beta = (v_1, \ldots, v_m) \) is an ordered basis of \(V \) and \(\gamma = (w_1, \ldots, w_n) \) is an ordered basis of \(W \).

For each \(j \in \{1, \ldots, m\} \), there exist unique scalars \(a_{ij} \), \(i \in \{1, \ldots, n\} \) such that \(T(v_j) = a_{i1}w_1 + \cdots + a_{in}w_n \).

Then the matrix of \(T \) in the bases \(\beta, \gamma \) is \([T]_{\beta}^{\gamma} = [a_{ij}]_{i=1}^{n}j=1}^{m} \).

If \(V = W \) and \(\beta = \gamma \), we denote it by \([T]_{\beta} \).

Example: \(T : P_2(\mathbb{R}) \rightarrow P_3(\mathbb{R}) \)

\[f(x) \mapsto \int_{0}^{x} f(t) \, dt + f(2) \cdot x \]

Check: \(T \) is linear.

With \(\beta = (1, x, x^2) \) and \(\gamma = (1, x, x^2, x^3) \), let us find \([T]_{\beta}^{\gamma} \).

- \(T(v_1) = \int_{0}^{x} 1 \, dt + 1 \cdot x = 2x = 0w_1 + 2w_2 + 0w_3 + 0w_4 \)
 \(\Rightarrow \) first column of \([T]_{\beta}^{\gamma} \) is \(\begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \end{bmatrix} \)

- \(T(v_2) = \int_{0}^{x} t \, dt + 2x = \frac{x^2}{2} + 2x = 0w_1 + 2w_2 + \frac{1}{2}w_3 + 0w_4 \)
 \(\Rightarrow \) second column of \([T]_{\beta}^{\gamma} \) is \(\begin{bmatrix} 0 \\ 2 \\ \frac{1}{2} \\ 0 \end{bmatrix} \)

- \(T(v_3) = \int_{0}^{x} t^2 \, dt + 4x = \frac{x^3}{3} + 4x = 0w_1 + 4w_2 + 0w_3 + \frac{1}{3}w_4 \)
 \(\Rightarrow \) third column of \([T]_{\beta}^{\gamma} \) is \(\begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{3} \end{bmatrix} \)

Conclusion: \([T]_{\beta}^{\gamma} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 0 & \frac{1}{2} & 4 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{bmatrix} \)
2. Assume that \(\dim(V) = 2 \), \(\beta = (e_1, e_2) \) is an ordered basis of \(V \) and \(T: V \rightarrow V \) has matrix \([T]_\beta = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \).

We can express \(T(e_1) \) and \(T(e_2) \) as linear combinations of \(e_1 \) and \(e_2 \) by looking at the columns of \([T]_\beta \).

1st column \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} = [T(e_1)]_\beta \) so \(T(e_1) = 1 e_1 + 0 e_2 = e_1 \).

2nd column \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} = [T(e_2)]_\beta \) so \(T(e_2) = 0 e_1 + 1 e_2 = e_2 \).

Question: given \(T: V \rightarrow W \), can we find ordered bases \(\beta \) of \(V \) and \(\gamma \) of \(W \) such that \([T]_\beta^{\gamma} \) is "simple"?

Theorem: assume that \(V, W \) are finite dimensional and \(T: V \rightarrow W \) is a linear transformation. Then there exists bases \(\beta, \gamma \) such that:

\[
[T]_\beta^{\gamma} = \begin{bmatrix} 1 & \cdots & 0 \\ & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}
\]

the number of non-zero entries is \(\text{rank}(T) \).

Proof: pick a basis \(v_1, \ldots, v_n \) of \(\text{N}(T) \). Complete into a basis \(v_1, \ldots, v_n, u_1, \ldots, u_r \) of \(V \).

Claim: \(T(u_1), \ldots, T(u_r) \) is a basis of \(\text{R}(T) \).

Proof of claim: let \(y \in \text{R}(T) \). Then \(y = T(x) \) for some \(x \in V \).

There are scalars \(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_r \) such that \(x = \alpha_1 v_1 + \cdots + \alpha_n v_n + \beta_1 u_1 + \cdots + \beta_r u_r \).

Thus \(y = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n) + \beta_1 T(u_1) + \cdots + \beta_r T(u_r) \).

Hence \(T(u_1), \ldots, T(u_r) \) span \(\text{R}(T) \).
Assume that $\lambda_1 T(u_1) + \cdots + \lambda_r T(u_r) = 0$ for scalars $\lambda_1, \ldots, \lambda_r$.

Then $T(\lambda_1 u_1 + \cdots + \lambda_r u_r) = 0$, so $\lambda_1 u_1 + \cdots + \lambda_r u_r \in \ker(T)$.

Since v_1, \ldots, v_n span $\ker(T)$, there are scalars μ_1, \ldots, μ_n of $\lambda_1 u_1 + \cdots + \lambda_r u_r = \mu_1 v_1 + \cdots + \mu_n v_n$.

So $\lambda_1 u_1 + \cdots + \lambda_r u_r - \mu_1 v_1 - \cdots - \mu_n v_n = 0$.

But $u_1, \ldots, u_r, v_1, \ldots, v_n$ are linearly independent so $\lambda_1 = 0, \ldots, \lambda_r = 0$.

Hence $T(u_1), \ldots, T(u_r)$ are linearly independent.

This ends the proof of the claim.

Back to the proof of the theorem:

$u_1, \ldots, u_r, v_1, \ldots, v_n$ basis of V

$\lambda_1 u_1 + \cdots + \lambda_r u_r$ basis of $\ker(T)$

$T(u_1), \ldots, T(u_r)$ basis of $\operatorname{R}(T) = \ker(T)$ complete into a basis $T(u_1), \ldots, T(u_r), w_1, \ldots, w_k$ of W.

Then let $\beta = (u_1, \ldots, u_r, v_1, \ldots, v_n)$

$\gamma = (T(u_1), \ldots, T(u_r), w_1, \ldots, w_k)$.

We have $T(v_i) = 0$ so $[T(v_i)]_\gamma = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.

$T(w_i) = \lambda_1 T(u_1) + \cdots + \lambda_r T(u_r) + 0 w_1 + \cdots + 0 w_k$.

So $[T(w_i)]_\gamma = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_r \end{bmatrix}$ in \mathbb{R} now.

Hence $[T]_\beta^\gamma$ has the desired form \square.

Much harder (and interesting) question: given $T : V \to V$, can we find a basis β such that $[T]_\beta$ is "as simple as possible"? ("simple" = most entries are 0).

\implies diagonalization, Jordan canonical form

\(\implies\) later

\(\implies\) Math 115B